Soil Inventory and Assessment Project: The EEA experience towards an Europe-wide assessment of areas under risk for soil contamination


NATO CCMS Pilot Study
Prevention and Remediation In Selected Industrial Sectors: Small Sites in Urban Areas
Athens, 4-7 June 2006
Contents

- Background on EEA activities
- Aim and objectives of the project
- 2004: PRA.MS I methodology
- 2004 Results of PRA.MS applications
- 2004: Inputs from peer review
- 2005: PRAMS II Pilot study
- 2006: Case Studies
- Next steps and conclusions
EEA members and participating countries
EEA main tasks

- Making **environmental information** accessible
- **Networking** – Implement and coordinate the EIONET (European Environmental Observation and Information Network)
- **Reporting** – Prepare regular reports on the state and trends of the environment

- Annual budget of approx. 30 Meuro, about 150 staff, 5 topic centres
EIONET

More than 300 national institutions in 31 countries:

- National Focal Points
- European Topic Centres
- National Reference Centres
- Main component elements

- National members are nominated by countries

- Covers a broad range of environmental issues

- Aims at:
  - improving capacity building in Member states
  - streamlining data flows originated from reporting obligations (also “moral” obligations)
Information on contaminated sites (1)

Sources of contamination

- Municipal and industrial waste disposals; losses during industrial activities; accidents
- CEE: mining sites; former military sites; pesticide stocks
- Industry: metal working, chemical, oil and wood industries; storage of hazardous substances

Major pollutants

- Heavy metals (31%), mineral oil (20), PAH (16), CHC (13), BTEX (13)
Information on contaminated sites (2)

Extent of the problem

- Partial estimates account for about 2 million sites in 25 countries of which about 100000 need remediation
- On average 5 sites per 1,000 habitants
- On average 2.2 % of artificial surface identified as contaminated

Progress in the management

- First management steps are far advanced, however detailed steps (investigation, remediation) are progressing slowly

Expenditures

- Average annual expenditures are app. 2.5 % of expected total costs
Aim of the PRA.MS Project

The main aim of the project is: to develop an effective tool to identify, assess and map the areas under risk or potential problem areas for soil contamination of EU concern in order to provide inputs to EEA assessment activities and support policy development.

The expected outcomes are:

- a EEA proposed method for identification and preliminary assessment
- a map and related assessment focusing on potential problem areas for soil contamination
Problem Areas definition

- The following definition has been adopted:

"Areas where soil contamination is considered to pose significant risks to human health and/or ecosystems with impacts beyond the local environment and where the assessment and reporting of pressures, state, impacts and remediation activities has a relevance at the European level."
2004: PRA.MS I methodology

**PRA.MS I (Preliminary Risk Assessment Model for the identification of problem areas for Soil contamination in Europe)** methodology: a risk scoring system for the classification and assessment of individual sites. The system includes 3 Tiers to be applied to data of different detail.

- **Objectives:**
  - Identify, classify and assess problem areas of EU concern

- **Background:**
  - “Review and analysis of existing methodologies for preliminary risk assessment” and harmonization of input parameters.
  - data available at the EU level, such as:
    - the BRGM/DECHMINUE and EPER databases
    - Geo-referenced environmental data
PRA.MS I risk scoring system

Parameters (values)
Factors (scores)
S-P-R Indicators (scores)

Source → Pathway → Receptor

Exposure routes (scores)
Groundwater (GW), Surface Water (SW), Air (AIR), Direct Contact (DC)

Human Health risk

Ecological receptors (scores)
Surface Water (SW), Protected Areas (PA)

Ecological risk

“PRA.MS I scoring model and algorithm” (EEA Technical Report, Volume 3)
2004: Results of PRA.MS I applications

The PRA.MS I model was applied to selected industrial and mining sites.

- **Tier 0 assessment:** pre-selection of relevant industrial and mining sites from available db (BRGM/DECHMINUE and EPER)
  - BRGM/DECHMINUE: selection of sites with chemical characterization of stored wastes (236 sites over 9 European countries)
  - EPER: selection of sites on the basis of source data availability (7881 sites)
- **Tier 1 assessment (industrial sites)**
  - Assessment of human health risks and evaluation of dominant exposure routes
  - Correlation between human health risks and IPPC classes
- **Tier 2 assessment (mining sites)**
  - Assessment of human health risks
  - Assessment of uncertainties
  - Mapping of results
Application of Tier 1 to EPER sites

Overall risk scores of industrial sites grouped according to IPPC classes

- Disposal of non-hazardous waste and landfills
- Intensive livestock farming
- Disposal or recycling of hazardous or municipal waste
- Cement and Lime, Glass, Ceramics
- Metal Industry
- Disposal or recycling of animal carcasses and animal waste
- Large Combustion Plants
- Basic inorganic chemicals or fertilisers
- Surface treatment or products using organic solvents
- Slaughterhouses, milk, animal and vegetable raw materials
- Basic organic chemicals
- Production of carbon or graphite
- Pharmaceutical products
- Tanneries
- Pulp, paper or board production
- Refineries (Large Volume Organic Chemicals)
- Textiles
- Coke ovens
- Biocides and explosives

Overall risk score of industrial sites grouped according to its dominant exposure route

- Dominant route: air, gw, air-gw, sw
- Overall risk score (Vtot)
- n= 3,294
- n= 310
- n= 4,117
- n= 82
Application of Tier 2 to DECHMINUE sites

Towards an EEA Europe-wide assessment of areas under risk for soil contamination - Application of the PRA.MS model to selected mining sites - processed by APAT/ETCTE - © EEA 2004
2004 Project outcomes

• ACCESS © database of existing methodologies for preliminary risk assessment
• ACCESS © based PRA.MS I model
• Technical reports:
  • Background and outcomes of the project
  • Review and analysis of existing methodologies for preliminary risk assessment
  • PRA.MS scoring model and algorithm
  • Application of PRA.MS to selected industrial and mining sites
2005: Inputs from peer review

Inputs from experts on methodology and data collection:

- Organize a streamlined country data collection: problem areas to be selected on the basis of agreed pre-screening criteria;
- Include assessment of multiple risks and multiple sources;
- Focus on site classification rather than on risk prioritisation;
- Add GIS and spatial assessment capabilities;
- Automate the methodology where feasible and relevant and integrate the procedures in an information system.
2005: PRA.MS II Pilot study

- Pre-screening of problem areas:
  Two sets of criteria to be used to select areas where:
  - knowledge on extent of impacts is available
  - knowledge on impacts is not sufficient and "surrogate" information may support the selection

- On-line questionnaire for the collection of data on areas passing the pre-screening

- Analysis and assessment of data collected
Schematic representation of a Problem Area

- Food safety (agricultural activities) problem area
- Land use (protected areas) problem area
- Sediment and coastal areas problem area
- Land use (residential areas) problem area
- Industrial district (8 sites)
- Groundwater problem area

GW wells for drinking water supply
## 2005: Results from pilot study

<table>
<thead>
<tr>
<th>Pilot Country</th>
<th>Problem Areas where pre-screening applied</th>
<th>Problem Areas passing pre-screening</th>
<th>Problem Areas loaded in the online questionnaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>50</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>Finland</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Austria</td>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sweden</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Belgium-Flanders</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Russian Federation</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>79</strong></td>
<td><strong>31</strong></td>
<td><strong>6</strong></td>
</tr>
</tbody>
</table>
2005: EIONET consultation

EIONET members were consulted on a number of questions:

- General data availability and accessibility (local vs. central inventories);
- Application of proposed pre-screening criteria;
- Relevance and availability of proposed parameters for the classification and characterisation of Problem Areas.
EIONET consultation - 18 countries

**National/regional inventories of contaminated sites in the country**

- Centralised/National: 77%
- Local/Regional: 17%
- Both: 6%

**Availability of impacts on groundwater bodies**

- Available: 24%
- Not available: 12%
- Partially available/additional resources needed: 6%
- In development: 58%
- Available in most cases: 58%
- Available in few cases/mostly not available: 24%
- Not clear: 12%
- Not answered: 6%
2006: Conclusions and next steps

- The EIONET consultation confirmed the feasibility of continuing the project on an operational basis. However:
  - Some elements (i.e. pre-screening criteria) need further clarification and simplification
  - Data collection and reporting is an effort that requires dedicated resources at the national level
  - Information on impacts on receptors is not always readily available

- The implementation of the forthcoming Soil Framework Directive would result in data more readily available and comparable
2006: Conclusions and next steps 2

1. Extend data collection to all Member countries

2. Data collected will be used to classify Problem Areas in relation to:
   - Source complexity (number of sites/ownerships, categories of activities/contaminants);
   - Size (source size, Problem Area size);
   - Receptor complexity (number/types of receptors impacted/threatened within the Problem Area);
   - Progress in management

   • Case studies

1. Results will be used in EEA reports
Case study 1: ACNA, Italy

Aerial photo of the source area

Lagoons on site used to dispose sodic salts
<table>
<thead>
<tr>
<th>Year</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1882</td>
<td>Activity started with the manufacturing of explosives</td>
</tr>
<tr>
<td>1909</td>
<td>Several drinking-water wells (up to 16 Km. from the site) of the Bormida River Valley were polluted.</td>
</tr>
<tr>
<td>1912</td>
<td>Production of pharmaceuticals and dyes started</td>
</tr>
<tr>
<td>1925</td>
<td>Production of sulphuric acid, nitric acid and phenol started</td>
</tr>
<tr>
<td>1938</td>
<td>Bormida river’s water were no longer used for irrigation.</td>
</tr>
<tr>
<td>1962</td>
<td>No living organism up to 20 km downstream and fishes captured 70 km downstream smelled like benzo-phenol</td>
</tr>
<tr>
<td>'80</td>
<td>ACNA dismissed dyes production but manufacture of pigments continued</td>
</tr>
<tr>
<td>1986</td>
<td>Wastewater with high sulfate concentration were dumped in lagoons.</td>
</tr>
<tr>
<td>1988</td>
<td>A cloud of sulphur dioxide was released. ACNA was closed for 45 days.</td>
</tr>
<tr>
<td>1998</td>
<td>ACNA was declared as “Contaminated Site of National Interest”</td>
</tr>
<tr>
<td>1999</td>
<td>In January 1999, ACNA was closed and a Government Commissary was nominated</td>
</tr>
</tbody>
</table>
ACNA:
Problem area delimitation
ACNA Management

Delimitation of the problem area (22,200 ha)

- It was divided into 3 zones: zone A, high risk, including the chemical plant, a landfill; zone B, medium risk, including the river and flooding areas; zone C, low risk.

Characterization

- Soil and groundwater on site are polluted with 214 different compounds. Soil off site is contaminated to a depth of 2-3 meters.

Risk reduction measures

- An area will be entombed because it is not possible to remove the source (2 M m³ of waste and cont’d soil).
- 140,000 tons of lagooned sodic salts are being dewatered, packed and transported to Germany.
- A leachate and drainage waters collection system has been completed.
- Estimated costs for remediation and safety measures are 190 M euro which include government funds.
Case study 2: Harjavalta, Finland

Legend

- Problem area boundaries
- Sources
- Cont’d groundwater
- Nature 2000 site
<table>
<thead>
<tr>
<th>Year</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1944</td>
<td>Smelter activity and fertilizer production started.</td>
</tr>
<tr>
<td>‘80</td>
<td>Risk management actions started. As example, liming and fertilization was used to improve the condition of forest in the problem area. Emissions from plants reduced.</td>
</tr>
<tr>
<td>2000</td>
<td>Soil contamination thoroughly studied: affected forest growth, quality of agricultural and garden products, quality of groundwater and landscape.</td>
</tr>
</tbody>
</table>
Harjavalta Management

Delimitation of the problem area

- The location of Harjavalta town is by the river Kokemäenjoki. Foundry (metals) and fertilizer production are located near the center of the town. Natura2000 site is located in the left upper corner, downstream from the Harjavalta site. The problem area includes an important groundwater reservoir called Järilänvuori groundwater area. The quality of the groundwater is good except in the area between the smelter and the river.

Characterization

- Heavy metals (Cu, Ni, Zn, Pb, As, Cd)
- Sulphur dioxide
- NH4+

Risk reduction measures

- Limitation on Groundwater use
- Limitation on Agricultural production
- Liming and fertilization of forest
### PRAMS II Questionnaire

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ACNA</th>
<th>HARJAVALTA</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Problem area characterisation</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate</td>
<td>9-12 °C -1000 mm/yr</td>
<td>4 °C – 600 mm/yr</td>
</tr>
<tr>
<td>Extension</td>
<td>22,000 ha</td>
<td>10,000 ha</td>
</tr>
<tr>
<td>Management progress</td>
<td>100% characterized</td>
<td>100% characterized</td>
</tr>
<tr>
<td></td>
<td>20% of site remediated</td>
<td></td>
</tr>
<tr>
<td><strong>Source</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Categories of activity</td>
<td>former chemical plant</td>
<td>smelting, fertilizers production</td>
</tr>
<tr>
<td>Site ownerships</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Categories of contaminants</td>
<td>heavy metals, PCB, PAH, etc.</td>
<td>heavy metals, SO2, NH4+</td>
</tr>
<tr>
<td>Quantity</td>
<td>0.5 M m³ waste</td>
<td>4.8 M m³ waste</td>
</tr>
<tr>
<td></td>
<td>1.5 M m³ cont’d soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140.000 tons salts</td>
<td></td>
</tr>
<tr>
<td><strong>Receptor specific data</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater</td>
<td>impacted, drinking use limitations</td>
<td>locally impacted, drinking use limitations</td>
</tr>
<tr>
<td>Surface water</td>
<td>impacted</td>
<td></td>
</tr>
<tr>
<td>Land use</td>
<td></td>
<td>nature and agricultural area impacted</td>
</tr>
<tr>
<td>Food safety</td>
<td></td>
<td>limitation of agricultural production</td>
</tr>
<tr>
<td>Sediments and coastal areas</td>
<td>river sediments impacted</td>
<td></td>
</tr>
</tbody>
</table>
EEA
European Environment Agency

Thank you!

http://www.eea.eu.int