Starting Soon: LNAPLs Training – Part 1 of 3

Light Non-Aqueous Phase Liquid (LNAPL) Site Management: LCSM Evolution, Decision Process, and Remedial Technologies (LNAPL-3, 2018) - <u>https://lnapl-3.itrcweb.org/</u>

Download PowerPoint file

- Clu-in training page at http://www.clu-in.org/conf/itrc/lnapl-3/
- Under "Download Training Materials"
- Download information for reference during class
 - Figure 1.1 (from the LNAPL-3 guidance document)

Use "Join Audio" option in lower left of Zoom webinar to listen to webinar Problems joining audio? Please call in manually

> Dial In 301 715 8592 Webinar ID: 841 942 52034#

Welcome – Thanks for Joining this ITRC Training Class

Based on ITRC Guidance Document:

Light Non-Aqueous Phase Liquid (LNAPL) Site Management: LCSM Evolution, Decision Process, and Remedial Technologies (LNAPL-3, 2018)

3-Part Training Series: Connecting the Science to Managing Sites

2

Part 1: Understanding LNAPL Behavior in the Subsurface

Part 2: LNAPL Conceptual Site Models and the LNAPL Decision Process

Part 3: Using LNAPL Science, the LCSM, and LNAPL Goals to Select an LNAPL Remedial Technology

Sponsored by: Interstate Technology and Regulatory Council (<u>www.itrcweb.org</u>) Hosted by: USEPA Clean Up Information Network (<u>www.cluin.org</u>)

Housekeeping

3

- Course time is 2¼ hours
- This event is being recorded
- Trainers control slides
 - Want to control your own slides? You can download presentation file on Clu-in training page

- Questions and feedback
 - Throughout training: type in the "Q & A" box
 - At Q&A breaks: unmute your phone with #6 to ask out loud
 - At end of class: Feedback form available from last slide
 - Need confirmation of your participation today? Fill out the feedback form and check box for confirmation email and certificate

Copyright 2019 Interstate Technology & Regulatory Council, 1250 H St NW, Suite 850, Washington, DC 20005

ITRC (<u>www.itrcweb.org</u>) – Shaping the Future of Regulatory Acceptance

- Host organization
- Network

- State regulators
 - All 50 states, PR, DC
- Federal partners

 ITRC Industry Affiliates Program

- Academia
- Community stakeholders
- Follow ITRC

Disclaimer

- Full version in "Notes" section
- Partially funded by the U.S. government
 - ITRC nor US government warranty material
 - ITRC nor US government endorse specific products
- ITRC materials available for your use – see <u>usage policy</u>
- Available from <u>www.itrcweb.org</u>
 - Technical and regulatory guidance documents
 - Online and classroom training schedule
 - More...

Meet the ITRC LNAPL Trainers – Part 1

Randy Chapman Virginia Department of Environmental Quality Woodbridge, Virginia 703-583-3816 randy.chapman @deq.virginia.gov

Sanjay Garg Shell Houston, Texas 281-544-9113 sanjay.garg@shell.com

Natasha Sihota Chevron San Ramon, California 925-842-5458 nsihota@chevron.com

Read trainer bios at https://clu-in.org/conf/itrc/LNAPL-3/

Our Focus is on LNAPL (Light Non-Aqueous Phase Liquid)

► What is LNAPL?

- Why Do We Care About LNAPL?
 - LNAPL Concerns
 - LNAPL can be difficult to accurately assess or recover
- Use LNAPL science to your advantage and apply at your sites

7

Connecting LNAPL Science to Regulation

Influencing State Management of LNAPL Sites

Examples: ITRC LNAPLs guidance used or referenced in the development of current or draft state guidance

8

Virginia Department of Environmental Quality references ITRC LNAPL guidance documents in its Storage Tank Program's <u>Closure Evaluation</u> <u>of Sites with Free Product</u> (*DEQ Guidance Document #LPR-SRR-03-2012, December 28,* 2012)

CO

Colorado Department of Labor and Employment Division of Oil and Public Safety revised its guidance to incorporate concepts from ITRC training courses and guidance documents. <u>http://www.coworkforce.gov/petroleumguidance/</u>

ITRC's History as LNAPL Solution Provider

- 2009: LNAPL-1 (Natural Source Zone Depletion) and LNAPL-2 (Evaluating LNAPL Remedial Technologies)
- **2010 2017**:

- LNAPL Online Training (3-parts)
- LNAPL Classroom Training
- Over 19,000 Trained
- 2016 2018: ITRC LNAPL Update
- March 2018: LNAPL-3 (LNAPL Site Management: LCSM Evolution, Decision Process, and Remedial Technologies)
- Spring 2018: Updated 3-Part LNAPL Online Training

¹⁰ Your Online LNAPL Resource <u>https://lnapl-3.itrcweb.org/</u>

- Expansion of LNAPL Key Concepts
- Development of a LNAPL Conceptual Site Model (LCSM) Section
- Emphasis on identifying SMART objectives
- Expansion of Transmissivity (Tn) and Natural Source Zone Depletion (NSZD) via Appendices

Who Should Use This Document?

- State and federal regulators in CERCLA, RCRA, UST, voluntary programs
- Remediation groups within integrated petroleum and services companies
- Environmental consulting firms, suppliers, and vendors supporting LNAPL site management
- Universities and colleges professors / college students in the environmental field

¹² Where Does This ITRC LNAPL Document Apply?

All Types of Petroleum Contaminated Sites

From large terminals or bulk storage facilities to your "mom and pop" corner gas station The SCIENCE is the same.

INTERSTA 13 **Learning Objectives 3-Part Training Series** Part 1 Use LNAPL science to your advantage and apply at your sites Develop LNAPL Conceptual Site Model (LCSM) for LNAPL concern identification Part 2 Inform stakeholders about the decision-making process Select remedial technologies to achieve objectives Prepare for transition between LNAPL strategies or technologies as Part 3 the site moves through investigation, cleanup, and beyond "SMART"-ly measure progress toward an identified technologyspecific endpoint

¹⁴ ITRC 3-Part Online Training Leads to YOUR Action

TODAY

Part 1: Connect Science to LNAPL Site Management (Section 3) Part 2: Build Your LNAPL Conceptual Site Model (Sections 4

and 5)

Part 3: Select / Implement LNAPL Remedies (Section 6) YOU Apply knowledge at your LNAPL sites

Based on the ITRC LNAPL-3 Document: LNAPL Site Management: LCSM Evolution, Decision Process, and Remedial Technologies

LNAPL Remediation Process and Evolution of the LCSM – Related to the Training Courses

Figure 1-1 – ITRC LNAPL-3

INTERSTATE

REGULATORY

OUNCII

- 1. LNAPL in wells does not mean 100% LNAPL saturation (dispel "pancake model")
- 2. LNAPL can be present in subsurface even if not in wells
 - Indicators
- 3. LNAPL Composition vs. LNAPL Saturation
 - Raoult's Law
- 4. Apparent LNAPL Thickness Challenges in Unconfined Conditions
 - Amount changes with soil type
 - Thickness changes with water table position

- 5. Apparent LNAPL Thickness in various hydrogeologic conditions (i.e., perched, confined)
- 6. LNAPL in well does not mean it is migrating
 - Darcy's Law
 - Limiting processes
- 7. Transmissivity is a better indicator of recoverability
- 8. Stable LNAPL bodies can still result in sheens
 - Mechanisms
- 9. Biological processes are significant in LNAPL depletion

Groundwater and LNAPL share pore space LNAPL in MWs \neq 100% LNAPL Saturation in Formation

Time Series LNAPL Body Development: Cross Section View

*** INTERSTATE**

²⁰ Lab Tank Experiment LNAPL Penetrates Below the Water Table

Photographs from Cristin Bruce

²¹ Impacts of LNAPL in the Formation: Key Messages

Monitoring well Formation

- LNAPL penetrates below the water table
 - LNAPL saturation in the formation is not 100% and varies with depth
 - LNAPL shares the pore space with water

Coming Next: How to determine LNAPL is there and how much

LNAPL vertical distribution in a lab tank

LNAPL can be in the formation even when it is not accumulating in a well

Nature of LNAPL Impacts in the Formation: LNAPL May Not Even Flow Into A Well

MW

 How do you know that LNAPL is present? How do you find out where it is?

INTERSTATE

Anatomy of an LNAPL Body

If There Is a Persistent Groundwater Plume....

.....there is an LNAPL sourceit may/may not flow into a well

²⁸ Effective Solubility Of Select Chemicals From Common LNAPL Mixtures

Effective solubility of each chemical in a mixture like gasoline is a function of Raoult's Law

Raoult's Law $S_i = x_i S$

* (mole fraction in the mixture)

LNAPL Mixture	Chemical	Sol of Pure Chem. (S) (mg/L)	<i>Typical</i> Mole frxn. in Unweathered LNAPL (x _i)	Eff. Sol of Chem. (S _i) (mg/L)
Gasoline	Benzene	1780	0.005 - 0.01	9 -18
Gasoline	Toluene	535	0.05 - 0.10	27 - 54
Gasoline	Xylene	167	0.05 - 0.10	8 - 17
Diesel	Benzene	1780	0.00005	0.22
Diesel	Toluene	535	0.0005	0.67

Calculator at http://www.epa.gov/athens/learn2model/part-two/onsite/es.html

GW – groundwater, conc - concentration

Indicator: Dissolved Phase

Calculated C_{sat} Values

- TPH in soil represents hydrocarbon present in soil gas, pore water, sorbed phase, and LNAPL
- C_{sat} indicates the concentration at which soil gas, pore water and sorbed phase are saturated with hydrocarbon TPH > C_{sat} →LNAPL

LNAPL	Soil Type	C _{sat} (mg TPH/Kg Soil)
Gasoline	Medium to coarse sand	143
Gasoline	Fine to medium sand	215
Gasoline	Silt to fine sand	387
Middle Distillate*	Fine to medium sand	9
Middle Distillate*	Silt to fine sand	18

* approximate to kerosene/diesel

Brost and DeVaull, 2000. API Bulletin 9.

31

TPH Cautions

- Do not collect soil samples at predetermined intervals (e.g., not each 5 feet)
- Collect soil samples based on field screening
- Ensure that TPH range is representative of the LNAPL type
 - Do not assess a diesel spill using TPH-G
 - If heavy hydrocarbons (e.g., crude, >C35) then use Oil & Grease method
 - Do not stop at the water table!

Inferring LNAPL from Soil TPH Concentrations

MW	Historical Benzene Concs (mg/L)	<i>Maximum</i> Soil TPH Concs (mg/Kg)
1	5	9300
2	13	24000
3	15	20000
4	1.6	1700
5	3.4	1500
6	0.6	12
7	0.35	10
8	0.1	ND<0.005
9	ND<0.001	ND<0.005
10	ND<0.001	ND<0.005

LNAPL present – MW-1, -2, -3, -4, -5

Picture cheiron-resources.com

OVA and Other Field Observations

- Boring logs to characterize LNAPL source zone geometry
 - Lithology, water content, stain, odor, OVA readings

- Shake test
- Oleophyllic dyes for presence of **LNAPL**
 - Detection +/- 1000 ppm TPH

34

Cor

Fluorescence of LNAPL

Laboratory Core UV Photograph

- All that fluoresces may not be LNAPL
 - Minerals, antifreeze, detergents, peat
- All LNAPLs do not fluoresce

Laser Induced Fluorescence

Pore Fluid Saturation

Correlating TPH & Sn

S_n = LNAPL saturation (unitless) = dry soil bulk density (g/cm³) ρ_b *TPH* = total petroleum hydrocarbons (mg/kg) = NAPL density (g/cm³) ρ_n = porosity n

(Parker et al., 1994)

10000 mg/Kg ~4-5%

37

LNAPL Saturation vs. Composition

Effective Solubility: Raoult's Law

Dissolved phase

Reasonable Simplification for BTEX: For gasoline: mole frxn. ~ wt. frxn For diesel: mole frxn ~ 2.5 x wt frxn

INTERSTATE

THOTALUS

Dissolved Phase

Indicator:

⁴⁰ Impact of LNAPL Recovery – Little Benefit In Reducing Dissolved BTEX Concentration

Strategy

Source: McHugh et al., 2013

INTERSTATE

41 How to Change LNAPL Composition

Volatilization from Water

Biodegradation

Compound	Aerobic conditions	Denitrifying conditions	Sulfate- reducing conditions	Iron- reducing conditions
Benzene	++	-	+	-
Toluene	++	++	+	+
m-Xylene	++	++	+	+
p-Xylene	++	+	+	
o-Xylene	++	+/-1)	-	-
Ethylbenzene	++	+/-		-
1,2,4-trimethyl- benzene	++			

Background: Consider a site with gasoline release:

- LNAPL is observed in onsite MWs
- Goal is to reduce concentrations of Benzene in groundwater in ~2 years

Question: What would be the appropriate remediation approach?

- A. Start LNAPL removal by pumping
- B. Change LNAPL composition
- C. Let Monitored Natural Attenuation take its course

ALL Apparent LNAPL Thicknesses are not created equal!

Apparent LNAPL Thicknesses in Unconfined Conditions

⁴⁴ Moisture Retention Curves: Relate Capillary Pressure & Fluid Saturation

 Relationship between capillary pressure and fluid saturation is established using moisture retention curves

INTERSTAT

 Unique relationship between capillary pressure and fluid saturations for a given soil type and LNAPL

- Volumes based on pancake model (uniform saturations) are over estimated!
- For a given LNAPL thickness, LNAPL saturations and volumes are different for different soil types (greater for coarser-grained soils)

Measured and Modeled Equilibrium LNAPL Saturations

Beckett and Lundegard (1997), Huntley et al. (1994)

Interpreting In-well Thickness

ALL Apparent LNAPL Thicknesses are not created equal!

Apparent LNAPL Thicknesses in Various Hydrogeologic Conditions

Example Seasonal LNAPL Redistribution

LNAPL Monitoring Over Time - Refinery

From API Interactive NAPL Guide, 2004

50 **Example Seasonal LNAPL** Redistribution

Interactive NAPL

Guide, 2004

- Measured LNAPL Depth in Monitoring Wells: 0 to 3 feet
- **Seasonal Water Table Variation: 8 foot range**

LNAPL Thickness change with water table fluctuation (sand tank study)

High water table

Low water table

INTERSTATE

Tank Photo From Alison Hawkins (CSU), graduate student of Dr. Tom Sale

LNAPL Thickness In Well vs. Water Table Elevation (Unconfined)

INTERSTATE

⁵³ **Perched LNAPL Conditions** (Exaggerated Well Thickness)

Source: Andrew Kirkman, PE, AECOM

INTERSTATE 54 **Confined LNAPL Thickness in Well Increases With Water-Level Rise?** Bottom Filling of Well Air-LNAPL Elevation Clay LNAPL-Water

LNAPL

Water

Apparent LNAPL Thickness

Monitoring well is a giant pore!

Gravel

LNAPL

Water

LNAPL Thickness vs. Potentiometric Surface Elevation (Confined)

INTERSTATE

Fractured and Preferential Pathway Conditions

LNAPL that is confined in a large pore network that is defined by capillary pressure contrast e.g., open fractures, sand surrounded by clay, macropores

Why Identifying Hydrogeologic Condition of LNAPL Occurrence Important

- Minimizes or exaggerates LNAPL thickness in wells relative to LNAPL thickness in formation
- Volume estimates modeling and recovery system implications
- Recovery can decrease while LNAPL thickness is constant
- Understanding LNAPL migration pathways
- Development of effective LNAPL remedial strategy
 - Identify zones to target for LNAPL remediation
 - Critical for identifying appropriate LNAPL remediation technology
- Recovery rate constant for perched controlled by rate draining off the perching layer (lowering water table won't help)

Background: A site has 7 ft. of LNAPL in a well. After a heavy rainfall season, the LNAPL thickness increases to 9 ft.

Question: Which of these is likely to be correct?

- A. LNAPL is unconfined
- B. LNAPL is perched
- C. LNAPL is confined
- D. LNAPL is moving / migrating

1st Question and Answer Break

60

Mobile LNAPL does not necessarily mean that the LNAPL is migrating

Emergency concerns when LNAPL in the ground (typically addressed by regulations)	Concerns when LNAPL in the ground (typically addressed by regulations)	Potential concerns when LNAPL in wells (not typically addressed by regulations)
Vapor accumulation in confined spaces causing explosive conditions Not shown - Direct LNAPL migration to surface water Not shown - Direct LNAPL migration to underground spaces	 Groundwater (dissolved phase) LNAPL to vapor Groundwater to vapor Not shown - Direct skin contact 	 4 LNAPL potential migration 5 LNAPL in well (aesthetic, reputation, regulatory)

62

Darcy's Law for LNAPL

- Darcy's Law governs fluid flow in a porous media
 - q = K i
- In a water / LNAPL system, not just dealing with a single fluid (groundwater or LNAPL)
- Darcy's Law applicable to each fluid (water / LNAPL) independently

Darcy's Law for water flow: $q_w = K_w i_w$ Darcy's Law for LNAPL flow: $q_n = K_n i_n$

- K =fluid conductivity (L/T)
- = gradient
- w = water
- n = LNAPL

Will next look at LNAPL conductivity (K_n) and LNAPL gradient (i_n)

LNAPL Conductivity

LNAPL conductivity:

K = conductivityk = intrinsic permeability $k_r =$ relative permeability $\rho =$ density $\mu =$ viscosityn = LNAPLw = waterg = acceleration due to gravity

Pore Entry Pressure: LNAPL Behavior

* INTERSTATE *

- Similar behavior when LNAPL tries to enter pores with pre-existing fluids
 - Fluid does not encounter resistance when flowing into like (e.g., groundwater flow)
 - Soil pores less wetting to LNAPL than water: LNAPL encounters resistance
 - Soil pores more wetting to LNAPL than air: LNAPL displaces air easily
- LNAPL only moves into water-wet pores when entry pressure (resistance) is overcome
 - To distribute vertically and to migrate laterally

Key Point: Pore Entry Pressure is the resistance that LNAPL encounters when flowing into a pore with preexisting groundwater

For water-wet media

⁶⁶ NSZD (Natural Source Zone Depletion) Contributes to LNAPL Stability

Rates have been measured at about 100 to 1000 gallons per year per acre (Lundegard & Johnson 2006; ITRC 2009; Sale 2011)

INTERSTATE

Lines of Evidence: 1. Gauging Data

- Monitoring results (assumes adequate well network)
 - Stable or decreasing thickness of LNAPL in monitoring wells
 - Sentinel wells outside of LNAPL zone remain free of LNAPL

<u>Caution</u>: Need to account for water-table fluctuations when evaluating thicknesses

Lines of Evidence: 2. Groundwater Data

- Dissolved-phase plume maps
 - Characterize source area shape, size and depth
 - Assess if natural attenuation on-going
 - Shrinking/stable GW plume = shrinking/stable LNAPL body

⁶⁹ Lines of Evidence: 3. Measured LNAPL Thickness < Critical Thickness</p>

LNAPL thickness > Critical thickness LNAPL thickness < Critical thickness LNAPL thickness < Critical thickness

Soil Type	Capillary Fringe Height (ft)	Critical LNAPL Thickness for Gasoline (ft.)	Critical LNAPL Thickness for Diesel (ft.)	
Sand	0.23	0.7	1	
Sandy Loam	0.43	1.4	2.1	
Loam	0.92	2.8	3.6	
Silt	2.03	4.8	5.9	
Sandy Clay	1.21	3.9	4.9	
Clay	4.10	6.6	9.5	
Silty Clay	6.56	8.7	13.8	

Ref: Charbeneau et al. (1999) API Publication No. 4682

Other Lines Of Evidence Of LNAPL Footprint Stability

- 4. Low LNAPL Transmissivity
 - Low Kn
 - Site measurements yield average values can have higher Kn lenses
- 5. Age of the release
 - Abated release
 - Timing of release (if known)
 - Weathering indicators
- 6. Recovery rates
 - Decreasing LNAPL recovery rates
- 7. Laboratory tests
 - Saturation and residual saturation values
- 8. Tracer test
 - Measures rate of dilution of hydrophobic tracer

What we have observed at sites:

- LNAPL can initially spread at rates higher than the groundwater flow rate due to large LNAPL hydraulic heads at time of release
- LNAPL can spread opposite to the direction of the groundwater gradient (radial spreading)
- After LNAPL release is abated, LNAPL bodies come to be stable configuration generally within a short period of time

⁷² Case Example 1: LNAPL Release and Spreading

⁷³ Case Example 2: Bemidji, MN North Pool Transect LIF Signatures

Oil thickness ~0.7 ft (0.2 m) is less than calculated critical thickness of 1.2 to 1.6 ft

Lundy, 2012

⁷⁴**Case Example 2: Bemidji, MN** Preliminary Estimates of Rates of Spreading vs Mass Depletion

- Oil discharge from oil infiltration zone
 - Baildown test oil transmissivity, T_{oil}
 - Q_{oil} = K_{oil} i_{oil} Area
 - 2.2 kg/d leaving infiltration area
 - CO₂ flux, proxy for LNAPL mass depletion
 - 4.3 kg/d over downgradient area

Distance from the center of the oil body (m)

Lundy, 2012 and Sihota et al. 2011

LNAPL Migration Potential / Stability Summary

- Mobile LNAPL is not necessarily migrating LNAPL
 - In-well LNAPL does not mean it is moving
- Principles of Darcy's Law apply
 - LNAPL can spread upgradient and migrate rapidly in the early phases following a release
 - Self-limiting process, once the release is abated
- LNAPL needs to overcome pore-entry pressure to move into a water-saturated pore
- NSZD (Natural Source Zone Depletion) contributes to LNAPL stability
- Use multiple lines of evidence to assess LNAPL stability

LNAPL Transmissivity is a better indicator of recoverability

Need a metric that is indicative of LNAPL recoverability!

Modified from Driscoll (1989)

LNAPL Transmissivity – The New Standard for LNAPL Recoverability

LNAPL Transmissivity (T_n) is a proportionality coefficient that represents the ability of a permeable medium to transmit LNAPL

> $q_n = K_n i_n$ $q_n b_n = K_n b_n i_n$ $Q_n = T_n i_n$

T_n represents *averaged* aquifer & fluid properties (soil permeability, density, viscosity, saturation) AND thickness of mobile LNAPL interval

$$T_n = K_n b_n \qquad \qquad K_n = \frac{\rho_n \cdot g \cdot k}{\mu_n} k_{rm}$$

T_n is an averaged indicator of recoverability

 K_n varies with saturation

Residual

T_n Values for Gasoline/Diesel

USDA Soil Type	Saturated Hydraulic Conductivity (ft./day)	LNAPL Thickness (ft.)	T _n gasoline (ft²/day)	T _n diesel (ft²/day)	LNAPL-2 = 0.1 - 0.8 ft²/day T _n modeled assuming homogenous soils
Medium Sand	100	1	8.5	0.2	
		2	58	2.4	iity
		5*	335	38	eab
Fine Sand	21	1	1.6	0.03	E I
		2	11	0.4	B B B B B B B B B B B B B B B B B B B
		5*	67	7.4	tive
Sandy Loam	1.25	1	0.3	0.03	Kela
		2	1.0	0.1	
		5	4.4	0.6	100% LNAPL Satn 0%
Silt Loam	0.6	1	0.006	0.0	*5 ft formation
		2	0.05	0.005	thickness unlikely at old sites
		5	0.5	0.05	

⁸² Residual Saturation and Transmissivity

"the oil that remains in an oil reservoir at depletion"

Pet. Eng. Handbook, 1987

- "oil that remains after a water flood has reached an economic limit" Morrow, 1987
 - "saturation at which the NAPL becomes discontinuous and is immobilized by capillary forces"

Schwille, 1984; Domenico and Schwartz, 1990; and Mercer and Cohen, 1990

When LNAPL saturation approaches Residual Saturation, LNAPL Transmissivity approaches Zero

From Wilson et al., (1990)

Background: A site has 7 ft. of LNAPL in a well. After a heavy rainfall season the LNAPL thickness increased to 9 ft.

Question: How would one make decision regarding recoverability?

- A. There is a lot of LNAPL at the site, and should be readily recoverable
- B. LNAPL is confined and does not need to be recovered
- C. Bail the LNAPL out and see how fast it recovers

Causes for Sheens Not Necessarily LNAPL Migration

⁸⁵ **Petroleum Sheens** Originating from LNAPL in sediments at the groundwater surface water interface

Images: CH2M (2016)

Sheen Release Mechanisms

1. Seep: Groundwater discharge carries LNAPL sheen

INTERSTATE

THOTALUE

Sheen Release Mechanisms

Gas generated carries LNAPL

*** INTERSTATE**

FGULATORY

87

Petroleum Sheens

From Sale and Lyverse, 2014

Sheen Release Mechanisms

INTERSTATE

Biological processes are important

Biodegradation Capacity of Saturated-Zone Electron Acceptors

Source: Bioscreen documentation

Electron acceptor mass-balance significantly <u>underestimated</u> LNAPL source zone biodegradation

NSZD Rates Being Observed

NSZD Study	Site-wide NSZD Rate (gallons/ acre /year)
Six refinery & terminal sites (McCoy et al., 2015)	2,100 – 7,700
1979 Crude Oil Spill (Bemidji) (Sihota et al., 2011)	1,600
Two Refinery/Terminal Sites (LA LNAPL Wkgrp, 2015)	1,100 – 1,700
Five Fuel/Diesel/Gasoline Sites (Piontek, 2014)	300 - 3,100
Eleven Sites, 550 measurements (Palaia, 2016)	300 - 5,600

NSZD rates are in the range of 100s to 1000s of POINT gallons/acre/year

KEY

Need Vapor Flux Also

Baedecker et al., 1993 Mass transfer calculations indicated that the primary reactions in the anoxic zone are...and outgassing of CH_4 and CO_2

Amos & Mayer, 2006 Molins et al., 2010 Oxygen Transport transfer of biogenically "...the main **Biodegradation** generated gases from degradation pathway Volatilization the smear zone can be attributed to Mobile or Residual LNAPI provides a major methanogenic Dissolved Plume control on carbon degradation of organic Groundwater Flow balance compounds ..." ITRC, 2009

Lundegard & Johnson 2006 Mass loss associated with oxygen diffusion through the vadose zone is more significant (2 OOMs) than dissolution and biodegradation in the saturated zone

KE

Direct Outgassing

Dissolution is not necessary for LNAPL biodegradation
Biodegradation occurs in pore space near LNAPL

Biological Processes

⁹⁶ ITRC 3-Part Online Training Leads to YOUR Action

Part 1: Connect Science to LNAPL Site Management (Section 3)

NEXT

Part 2: Build Your LNAPL Conceptual Site Model

(Sections 4 and 5) Part 3: Select / Implement LNAPL Remedies (Section 6)

YOU Apply knowledge at your LNAPL sites

Based on the ITRC LNAPL-3 Document: LNAPL Site Management: LCSM Evolution, Decision Process, and Remedial Technologies

 As you prepare to take Part 2 of the training series next week, think about how you can use the LNAPL science and key concepts presented today at your sites to develop your LCSM

- 2nd Question and Answer Break
- Links to additional resources
 - http://www.clu-in.org/conf/itrc/LNAPL-3/resource.cfm
- Feedback form please complete
 - http://www.clu-in.org/conf/itrc/LNAPL-3/feedback.cfm

CLU-IN	SERA United States Technology Innovation Program				
	U.S. EPA Technical Support Project Engineering Forum Green Remediation: Opening the Door to Field Use Session C (Green Remediation Tools and Examples)				
Go to	Seminar Feedback Form We would like to receive any feedback you might have that would make this service more valuable. Please take the time to fill out this form before leaving the site.				
Links					
Fe edback	Tunited States				
	Daytime Phone Number:				
Home	Email Address:				
CLU-IN Studio	enting of viewed the all time in its entity of the entity				
	Thank you for participating in an online technology cominar. We hope this was a valuable of your time.				
	Submit. Clear Form				

Need confirmation of your participation today?

Fill out the feedback form and check box for confirmation email and certificate.