Starting Soon: LNAPLs Training – Part 3 of 3

- ► Light Non-Aqueous Phase Liquid (LNAPL) Site Management: LCSM Evolution, Decision Process, and Remedial Technologies (LNAPL-3, 2018) https://lnapl-3.itrcweb.org/
- Download PowerPoint file
 - Clu-in training page at https://clu-in.org/conf/itrc/LNAPL-3/
 - Under "Download Training Materials"
- Download information for reference during class
 - Figure 1.1 (from the LNAPL-3 guidance document)
- Using Adobe Connect

Use "Join Audio" option in lower left of Zoom webinar to listen to webinar Problems joining audio? Please call in manually

> Dial In 301 715 8592 Webinar ID: 816 6384 0910#

Welcome – Thanks for Joining this ITRC Training Class

Based on ITRC Guidance Document:

Light Non-Aqueous Phase Liquid (LNAPL) Site Management: LCSM Evolution, Decision Process, and Remedial Technologies (LNAPL-3, 2018)

3-Part Training Series: Connecting the Science to Managing Sites

Part 1: Understanding LNAPL Behavior in the Subsurface

Part 2: LNAPL Conceptual Site Models and the LNAPL Decision Process

Part 3: Using LNAPL Science, the LCSM, and LNAPL Goals to Select an LNAPL Remedial Technology

Sponsored by: Interstate Technology and Regulatory Council (<u>www.itrcweb.org</u>)
Hosted by: USEPA Clean Up Information Network (<u>www.cluin.org</u>)

Housekeeping

- ➤ Course time is 2¼ hours
- This event is being recorded
- Trainers control slides
 - Want to control your own slides? You can download presentation file on Clu-in training page

- Questions and feedback
 - Throughout training:
 type in the "Q & A" box
 - At Q&A breaks: The trainers will verbally answer as many questions as they can
 - At end of class: Feedback form available from last slide
 - Need confirmation of your participation today? Fill out the feedback form and check box for confirmation email and certificate

Copyright 2019 Interstate Technology & Regulatory Council, 50 F Street, NW, Suite 350, Washington, DC 20001

ITRC (<u>www.itrcweb.org</u>) – Shaping the Future of Regulatory Acceptance

- Host organization
- Network

Federal partners

DOE

DOL

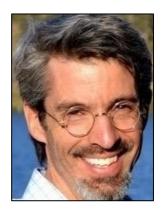
EP

- ITRC Industry Affiliates
 Program
- Academia
- Community stakeholders
- ▶ Follow ITRC

Disclaimer

- Full version in "Notes" section
- Partially funded by the U.S. government
 - ITRC nor US government warranty material
 - ITRC nor US government endorse specific products
- ► ITRC materials available for your use – see <u>usage policy</u>
- Available from <u>www.itrcweb.org</u>
 - Technical and regulatory guidance documents
 - Online and classroom training schedule
 - More...

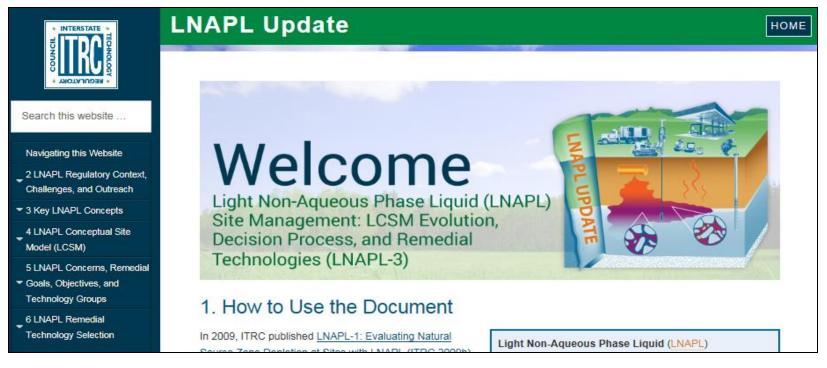
Meet the ITRC LNAPL Trainers – Part 3



Tom Fox
Colorado Division of Oil
and Public Safety
Denver, Colorado
303-318-8535
tom.fox@state.co.us

Lloyd Dunlap
Trihydro
Kansas City, MO
816-550-3961
Idunlap@trihydro.com

Tom Palaia
Jacobs
Kittredge, CO
303-679-2510
tom.palaia@jacobs.com


Joann Dyson GHD Services Inc. Durham, NC 980-221-8044 Joann.Dyson@ghd.com

Read trainer bios at https://clu-in.org/conf/itrc/LNAPL-3/

Your Online LNAPL Resource

https://lnapl-3.itrcweb.org/

- Expansion of LNAPL Key Concepts
- ▶ Development of a LNAPL Conceptual Site Model (LCSM) Section
- Emphasis on identifying SMART goals
- Expansion of Transmissivity (Tn) and Natural Source Zone Depletion (NSZD) via Appendices

ITRC 3-Part Online Training Leads to YOUR Action

Part 1:
Connect
Science to
LNAPL Site
Management
(Section 3)

Part 2:
Build Your
LNAPL
Conceptual
Site Model
(Sections 4
and 5)

TODAY

Part 3:
Select /
Implement
LNAPL
Remedies
(Section 6)

YOU
Apply
knowledge
at your
LNAPL
sites

Part 3 Learning Objectives:

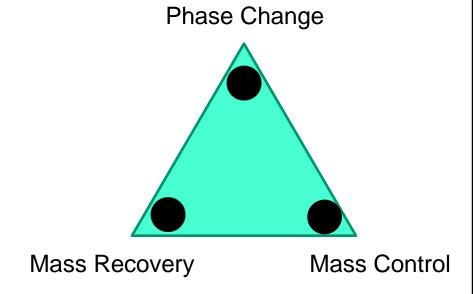
- Select remedial technologies to achieve objectives
- Prepare for transition between LNAPL strategies or technologies as the site moves through investigation, cleanup, and beyond
- "SMART"-ly measure progress toward an identified technology-specific endpoint

LNAPL Remediation Technology Groups

► Learning Objective: Understand:

- What the LNAPL remediation technology groups are,
- Why they've been grouped, and
- How site goals and objectives influence the selection of a technology group

Linkage Between Remedial Goals and Remedial Objectives


- "Saturation Goal" LNAPL mass recovery/control Objective
 - Reduce LNAPL saturation by recovering LNAPL
 - Stop LNAPL migration by containing LNAPL
- "Composition Goal" LNAPL phase change Objective
 - Change LNAPL characteristics by phase change
- "Aesthetic Goal" LNAPL Saturation or Composition goals

Remedial Technology Groups

- Mass Control
- Mass Recovery
- Phase Change

Key Point: Simplify the selection of technology

The Name Game & General Technology Group Applicability

LNAPL State	Residual		N	Mobile	Migrating	
LNAPL Concern		Saturation				
LNAPL Concern	Composition					
	LNAPL Phase-Change					
Technology Group	(Not Practical)			LNAPL Mass-Recovery		
	(NOT Practical)				LNAPL Mass-Control	
Recoverability	Recovery is ineffective	e				
	0.1 0.8 ft ² /day					
	Transmissive >					>

Terminology Changes

Residual, Mobile, Migrating

Sequenced Technology Deployment - "Treatment Train"

LNAPL State	Residual		N	<i>N</i> obile	Migrating	
INADI Canasas		Saturation				
LNAPL Concern	Composition					
Technology Group	LNAPL Phase-Change					
	(Not Practical)	LNAPL Mass-Recovery				
					LNAPL Mass-Control	
Recoverability	Recovery is ineffective	e				
	0.1 0.8 ft ² /day					
	Transmissive					

- 4. Natural Source Zone Depletion
- 3. Phase Change
- 2. Mass Recovery
- 1. Mass Control

Treatment Trains



Good

- When planned with SMART objectives, metrics for transition, and endpoints
- Orderly implementation

Bad

- Unplanned, lack specific SMART objectives, metrics for transition, and endpoints
- "Throwing" more technologies at the problem

Guidance Technology Series Tables

- ▶ Guidance Appendix A
- ▶ A table series (Tables A, B, and C) for each of the 21 LNAPL remediation technologies
 - A-series general technology information
 - B-series evaluation factors
 - C-series technical implementation considerations
- ► For a technology, the A, B, and C tables are presented on consecutive pages
- Key literature references presented in the tables

Key Point: Appendix A presents typical technology applicability to site conditions as concluded by the LNAPL Team. This doesn't mean you can't apply the technology in a setting different than what is presented.

LNAPL Mass Control

MC

MR

Dam the LNAPL!

Saturation Goal

LNAPL Concern

LNAPL Remedial Goal

Remediation Objective

Migration

Terminate LNAPL body migration

Stop LNAPL migration by physical barrier

Key Point: Limit mobility or eliminate migration through physical barriers (binding or containment)

LNAPL Mass Recovery

PC

MC

Think removal as bulk liquid...

Saturation Goal

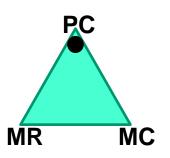
LNAPL Concern

LNAPL Remedial Goal

Remediation Objective

LNAPL occurrence in wells

Reduce
LNAPL when
above
residual
range


Recover LNAPL to Maximum Extent Practicable

Key Point: Reduce mobility and potential for migration by changing LNAPL saturation through mass recovery

LNAPL Phase Change

LNAPL Phase Change

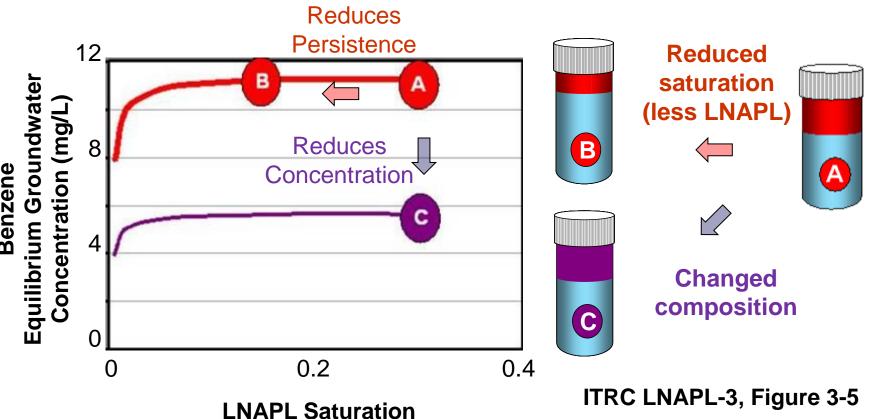
Composition Goal

LNAPL Concern

LNAPL Remedial Goal

Remediation Objective

Risk via Vapor Intrusion


Reduce concentrations

Deplete volatile or soluble constituent concentration in LNAPL

Key Point: Reduce soil vapor or groundwater risk by removing risk-driving constituent(s) from LNAPL

Contrast Between Composition And Saturation Goals

Key Point: Abatement of dissolved or vapor concentration is dependent on change in composition (mole fraction) and not saturation (unless almost all LNAPL is removed)

Knowledge Check

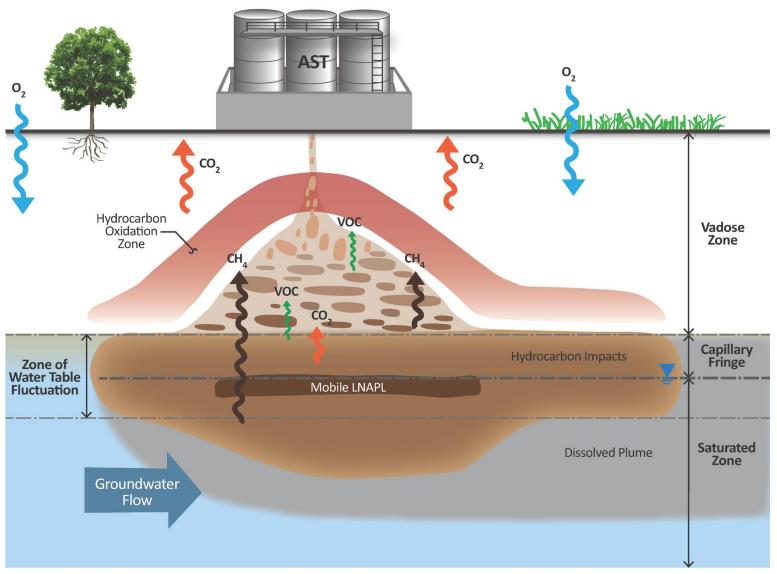
What are the three technology groups?

- A. Unconfined, Perched, and Confined
- B. Mass Control, Mass Recovery, and Phase Change
- C. Air Sparging, Skimming, and Excavation
- D. Aesthetics, Saturation, and Composition

Natural Source Zone Depletion

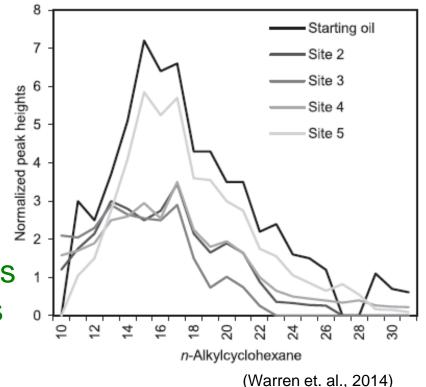
- Mass Control
- Mass Recovery
- Phase ChangeNSZD

NSZD Learning Objectives



- NSZD processes and importance
 - It occurs subsurface at most sites and results in LNAPL mass losses
- Incorporate natural source zone depletion (NSZD) into your LCSM
 - There are various measurement methods to suit varied site conditions
- Consider NSZD as a remediation alternative
 - It is an effective, accepted, and sustainable option for <u>low</u> risk sites

Conceptualization of NSZD

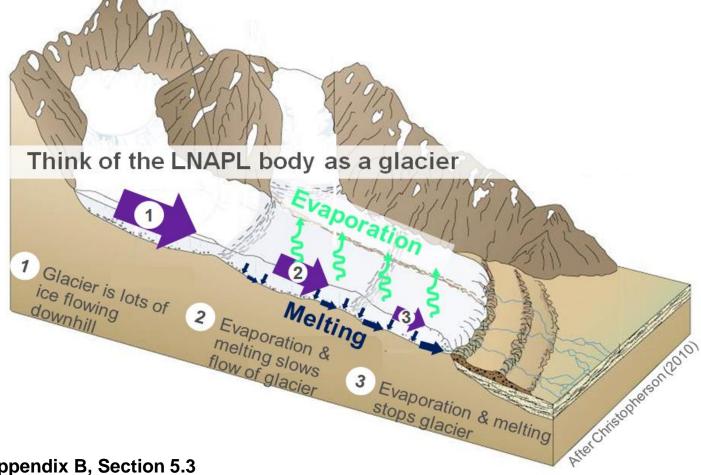


(with permission from API, 2017, http://www.techstreet.com/standards/api-publ-4784?product_id=1984357)

Key Aspects of NSZD

- Rates are a bulk measure
 - Appear to be zero-order (constant)
- Direct biodegradation
 - Oil-contact microbiology
 - Observing significant losses of longer chain compounds

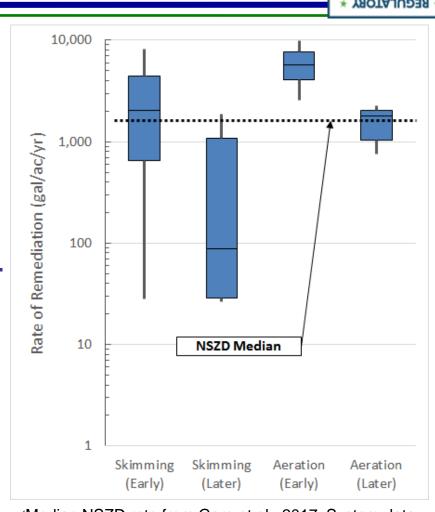
Pseudomonas


Intracellular n-octadecane inclusions

(Transmission electron microscopy from Hua et. al., 2014)

Using NSZD for Decision Making

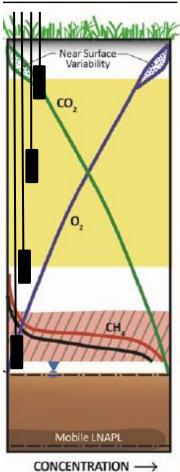
► LNAPL body stability evaluation



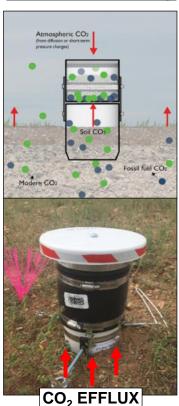
LNAPL-3, Appendix B, Section 5.3

Using NSZD for Decision Making

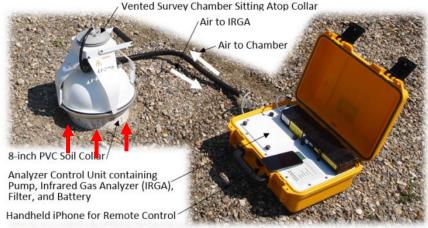
- Practicability of recovery
- Endpoint metric for active LNAPL remediation
- Benchmark for enhanced-NSZD remedy design
 - Aeration
 - Enhanced anaerobic
 - Heating



(Median NSZD rate from Garg et al., 2017. System data modified from Palaia, T. 2016. Natural source zone depletion rate assessment. Applied NAPL Science Review 6.)

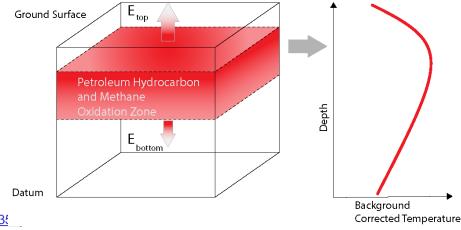

Four Methods to Measure NSZD

1. Gradient Method



2. Passive Flux Trap

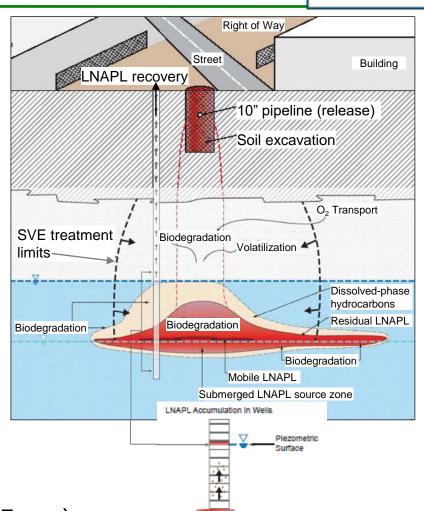
(from E-Flux, LLC, 2017, http://soilgasflux.com/main/home.php)


3. Dynamic Closed Chamber

(from API, 2017,

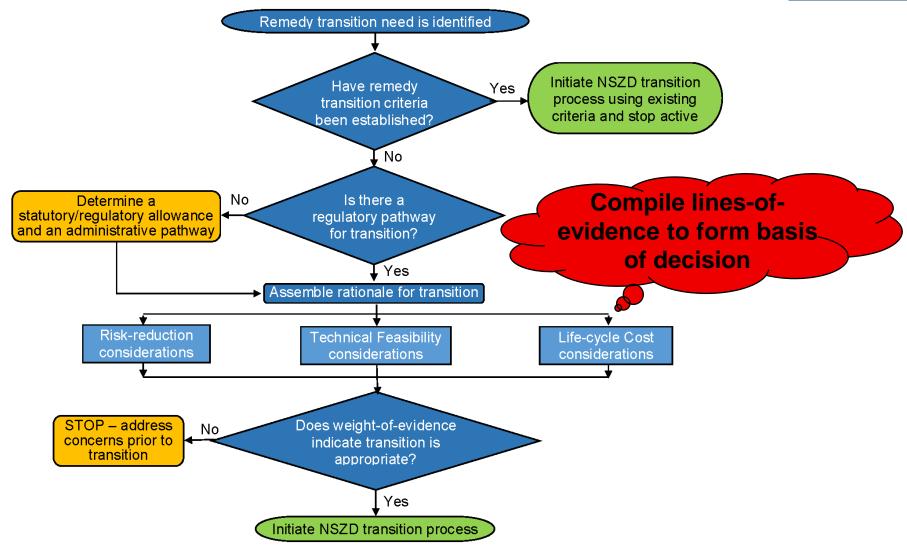
http://www.techstreet.com/standards/api-publ-4784?product_id=1984357)

4. Biogenic Heat


(from API, 2017,

http://www.techstreet.com/standards/api-publ-4784?product_id=19843{

Case Study - Transition from LNAPL Fluid Recovery to NSZD


- ▶ Jet fuel pipeline release
- Silt and clay overly silty, fine-grained sand
- Submerged LNAPL
- Historical remedial actions
 - Partial source excavation
 - LNAPL skimming
 - 10,000 gals removed (~10 yrs), <100 gallons/yr
 - SVE system
 - 9,600 gallons removed (~5 yrs)

Slow Seepage

Transition Decision Logic

LNAPL-3, Appendix B, Figure NSZD-15

Case Study – Decision Logic to NSZD

Risk-reduction	Technical Feasibility	Life-cycle Cost	
No threat of LNAPL nor dissolved plume migration	Active remediation was effective, but NSZD is now most effective (1,000 vs 100 gals/yr)	None needed.	
Industrial land use and no receptors	Impractical LNAPL recovery, $T \sim 0.05 \ \text{ft}^2/\text{day}$		
Groundwater is within a legally enforced use area	LNAPL and dissolved plumes are stable		

NSZD - Summary

- Natural source zone depletion (NSZD) occurs subsurface at most sites
 - Changes LNAPL composition and reduces saturation
 - Incorporate it into your LCSM

There are various measurement methods to suit varied site conditions

▶ It is an effective, accepted, and sustainable option for <u>low</u> risk sites

It is a viable remedial alternative as a stand-alone or transition remedy

44 LNAPL Remedial Technology **Groups**

PC

- Mass Control Contain LNAPL at a defined boundary (e.g. to protect a receptor)
- Mass Recovery Abate LNAPL body migration / mobility by removal of LNAPL mass
- Phase Change Abate unacceptable contaminants emanating from the LNAPL source

Technologies (i.e. processes) sometimes overlap into two groups.

Remedial Objective Grouping & Overlap

PHASE CHANGE

Biosparge/Biovent

NSZD

ISCO

Enhanced Anaerobic

Degradation

Vacuum Enhanced

Skimming

Cosolvent Flushing

Electric Heat

Thermal Heat

AS/SVE

Phytotechnology Activated Carbon

MPE

MASS RECOVERY

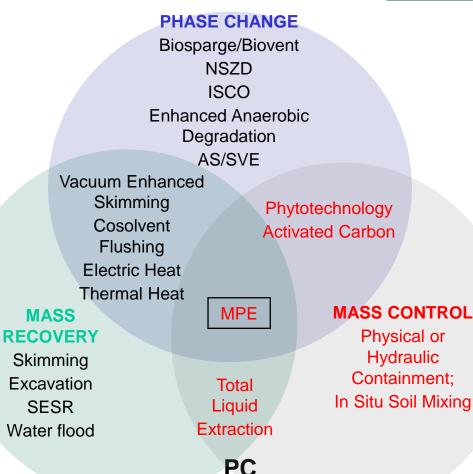
Skimming Excavation

SESR

Water flood

Total Liquid Extraction

MASS CONTROL


Physical or Hydraulic Containment;
In Situ Soil Mixing

Mass Control Technologies

- Physical containment or Hydraulic containment
 - Sheet piles
 - French drain
 - Slurry wall
 - Groundwater extraction
 - Trenches
 - Permeable absorptive barrier
- In situ soil mixing (stabilization)
- Refer to Tables 6.1, 6.2,6.3 & Appendix A

MR

MC

49 Performance Metrics for Mass Control Technologies

- See Tables 5.2 and 6.3 for additional metrics
 - ▶ No first LNAPL occurrence in down gradient sentinel well
 - LNAPL body footprint stabilized based on long-term monitoring (quarterly, semi-annual, annual monitoring)

Photo of barrier wall

Example: A LNAPL Plume is migrating toward a river

Guidance Document

Concern

LNAPL migrating into a river

Table 5.1

Goal

- Saturation based
- Stop the LNAPL migration

Table 5.1

Remedy Selection LCSM Review or Update the LCSM to Select a Remedy

Example continued: A LNAPL Plume is migrating toward a river

Stop the migration using physical barrier

Table 5.1 Sections 5.3 & 5.6

- MASS CONTROL NEEDED
- List of technologies
 - Physical or hydraulic containment
 - In Situ soil mixing
 - Also:
 - Total liquid extraction
 - Phytotechnology
 - MPE
- Align with the site conditions
- Further technology details needed

Table 5.1

Table 6.3

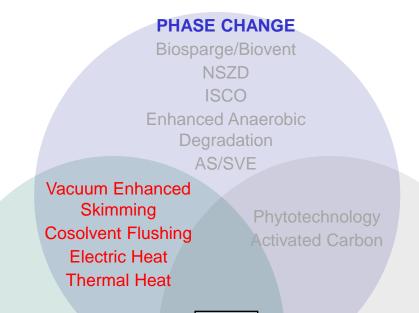
Appendix A

Example continued: A LNAPL Plume is migrating toward a river

Guidance Document

- Design and engineer the technology to meet Goals
- Evaluate Performance and Set Metrics

- No first LNAPL occurrence in down gradient well
- LNAPL body footprint stabilized
- No sheens detected in river



Tables 5.2 & 6.3

LNAPL Remedial Technology Groups

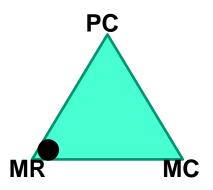
- Mass Control
- Mass Recovery
 - Examples of SMART Objectives
 - Recover LNAPL to a practicable limit
 - LNAPL transmissivity
- Phase Change

MASS RECOVERY

Skimming Excavation SESR Water flood

Total Liquid Extraction

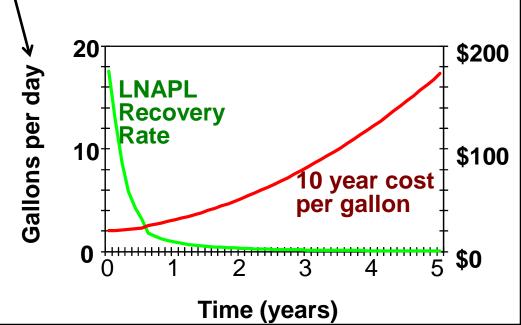
MPE


MASS CONTROL

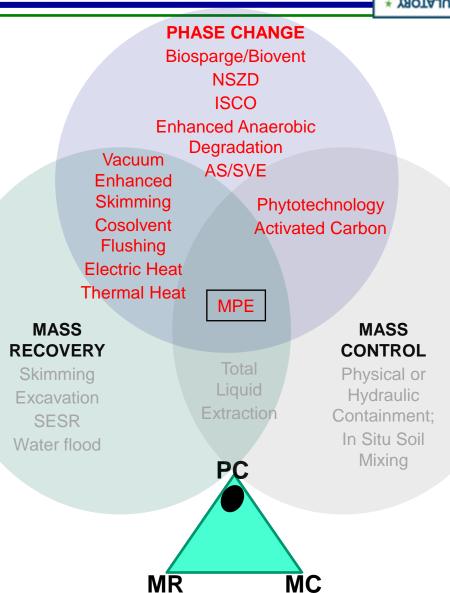
Physical or Hydraulic Containment; In Situ Soil Mixing

Mass Recovery Technologies

- ► (Simple) Fluid Recovery
 - Skimming
 - Total Liquid Extraction; formerly dual-pump liquid extraction
 - Vacuum enhanced skimming; or vacuum enhanced fluid recovery
 - Multi-phase extraction (MPE)
- Excavation
- Refer to Tables 6.1, 6.2, 6.3& Appendix A

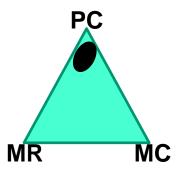


Examples of Performance Metrics


- **► LNAPL** transmissivity
 - Reduction of transmissivity over time to assess performance
- Asymptotic recovery
- Dollars per gallon of LNAPL removed

60 LNAPL Remedial Technology **Groups**

- **Mass Control**
- Mass Recovery
- Phase Change examples of Goals
 - Abate unacceptable vapor concentrations by depletion of volatiles from LNAPL
 - **Reduce dissolved** constituents at point of compliance by sufficient depletion of soluble constituents from **LNAPL**

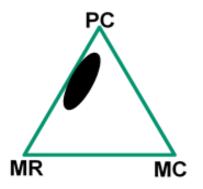

Phase Change Technologies

Ambient

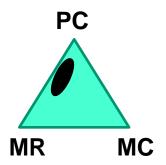
- Natural Source Zone Depletion (NSZD)
- AS/SVE
- Biosparging and bioventing
- MPE; Phytotechnology
- ► Refer to Tables 6.1, 6.2, 6.3 & Appendix A

63 Performance Metrics for Phase Change **Technologies**

See Tables 5.2 and 6.3 for additional metrics


- Dissolved phase concentration is stable or decreasing
- Soil concentrations stable or decreasing; endpoint reached when reduced to regulatory limits.
- Asymptotic performance of the recovery system
- Volatile or soluble constituents reduced to riskbased standards

In Situ Thermal Technologies


- Mass Control
- Mass Recovery
- Phase Change

In Situ Thermal Technologies

- Increases LNAPL volatility
- Reduces LNAPL viscosity
- SVE for recovery of volatilized LNAPL
- Hydraulic recovery of mobilized LNAPL
- Better in low groundwater velocity settings (<heat loss)

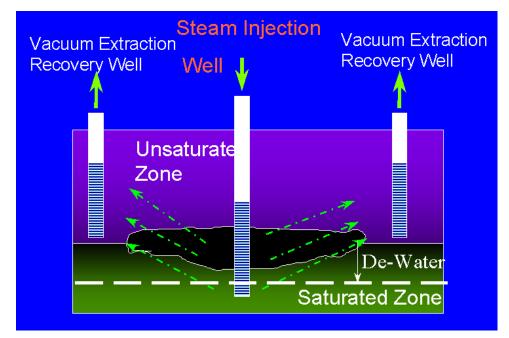
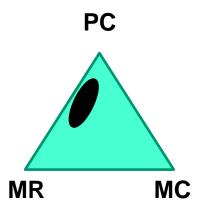



Image source: http://hillafb.hgl.com/steam

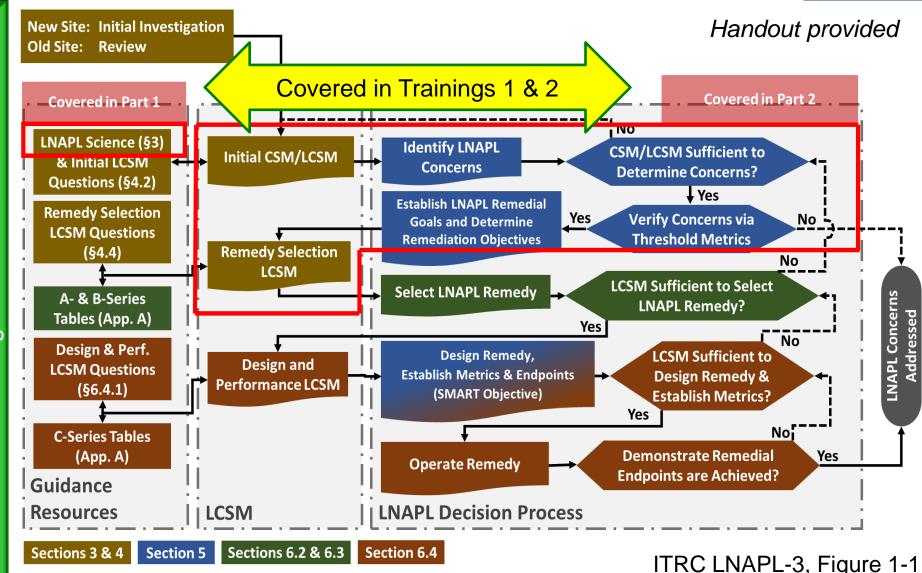
In Situ Thermal Technologies Metrics

- ▶ LNAPL transmissivity
- Soil concentration at regulatory standard
- Dissolved phase concentration at regulatory standard
- Cost per unit volume removed
- Asymptotic mass removal
- Also refer to Tables 5.2 and 6.3

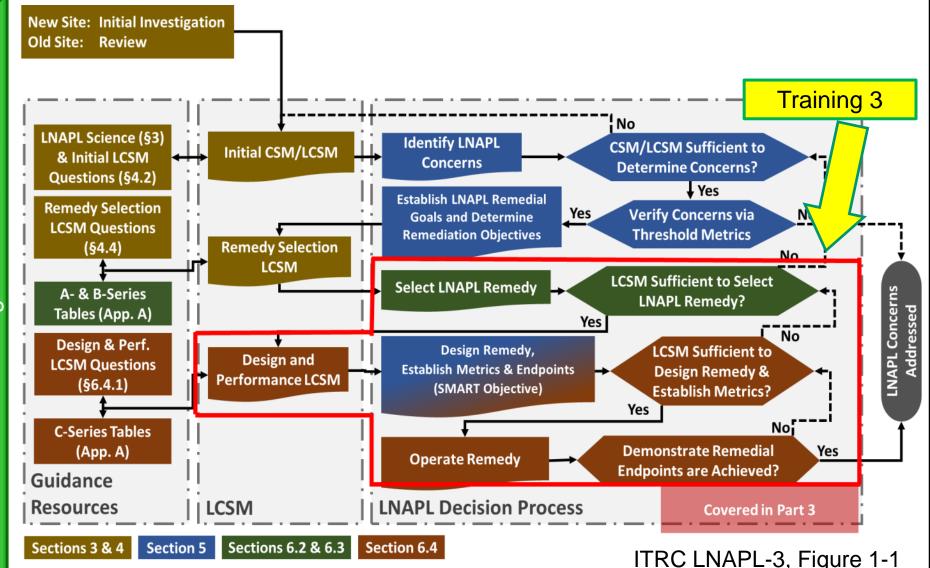
Q&A Break

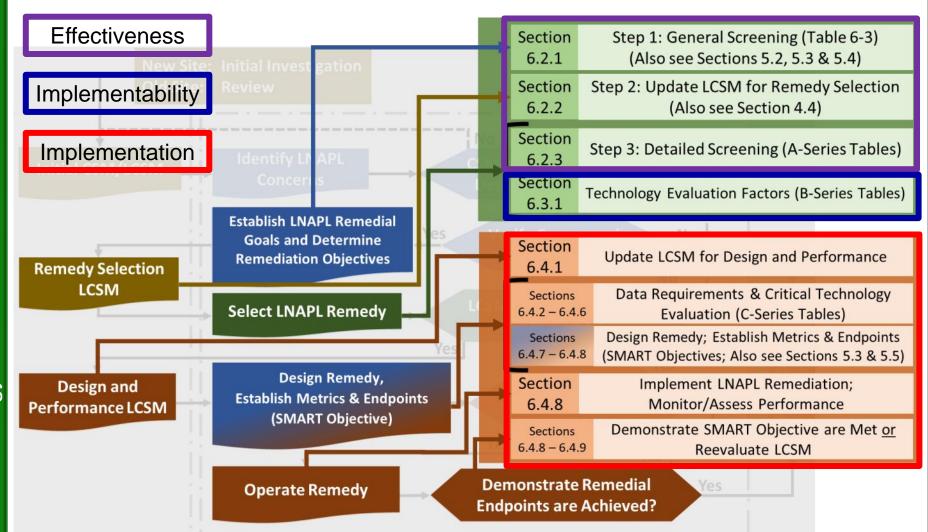
► 1st Question and Answer Break

LNAPL Remediation Technology **Selection**

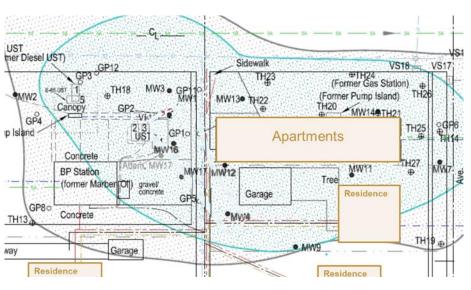

Learning Objectives:

- Learn about the Technology Selection Process
- Apply Remedy Selection Process to a real site


Guidance Process Flow Diagram Sections 4 and 5


Guidance Process Flow Diagram Section 6

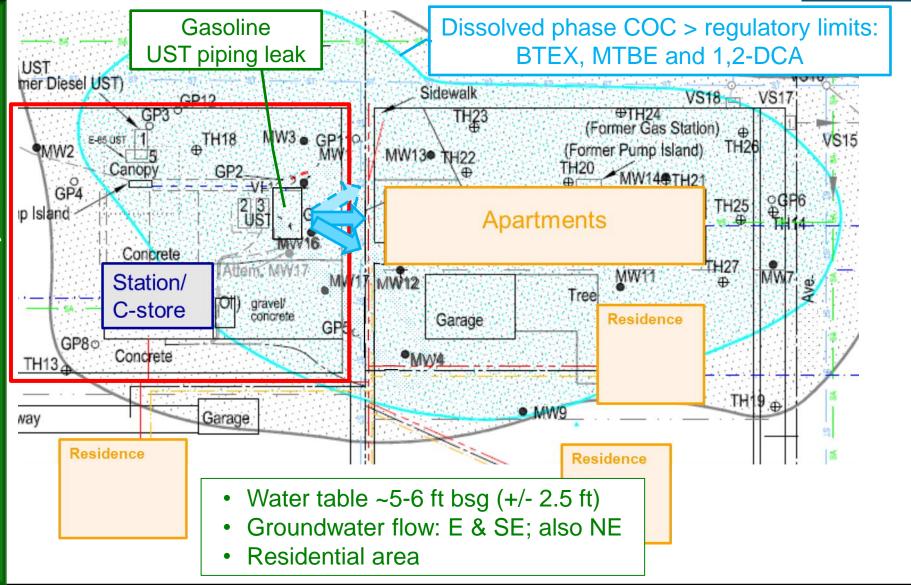
Guidance Process Flow Diagram: Figure 6-1



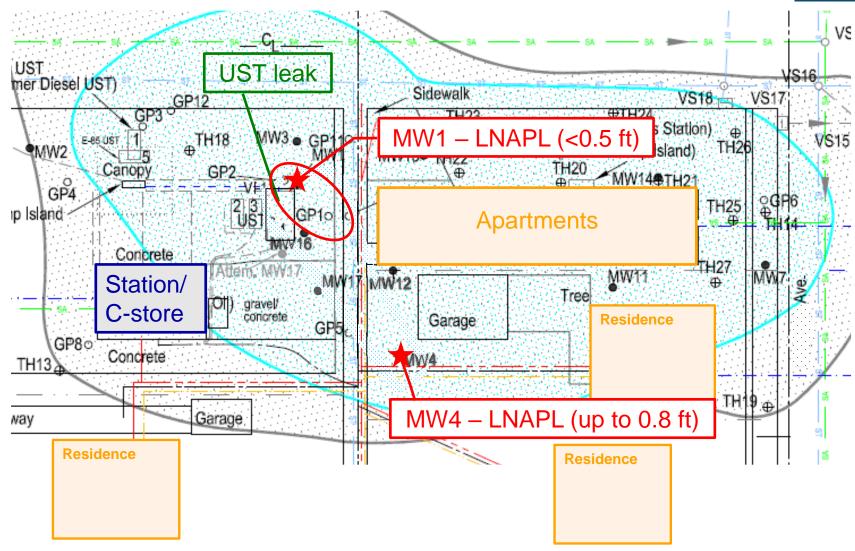
Case Study - LNAPL Remedial Technology Selection

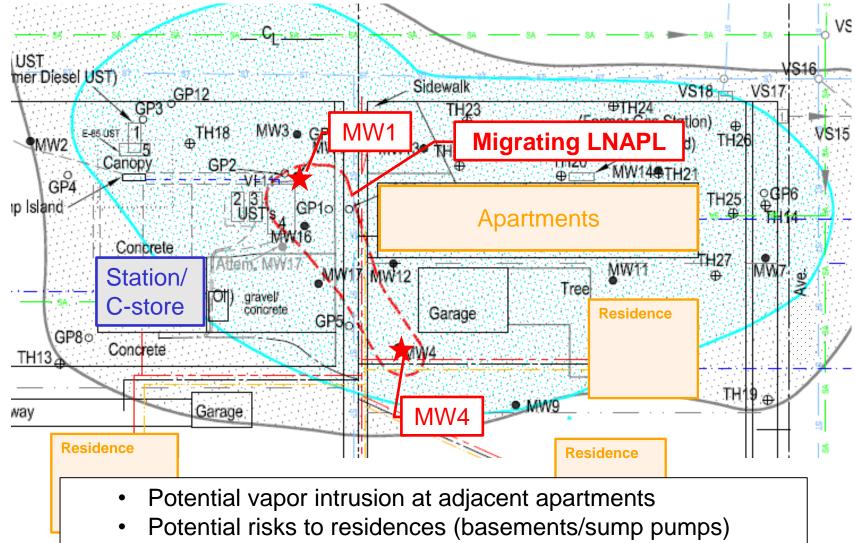
Learning Objectives:

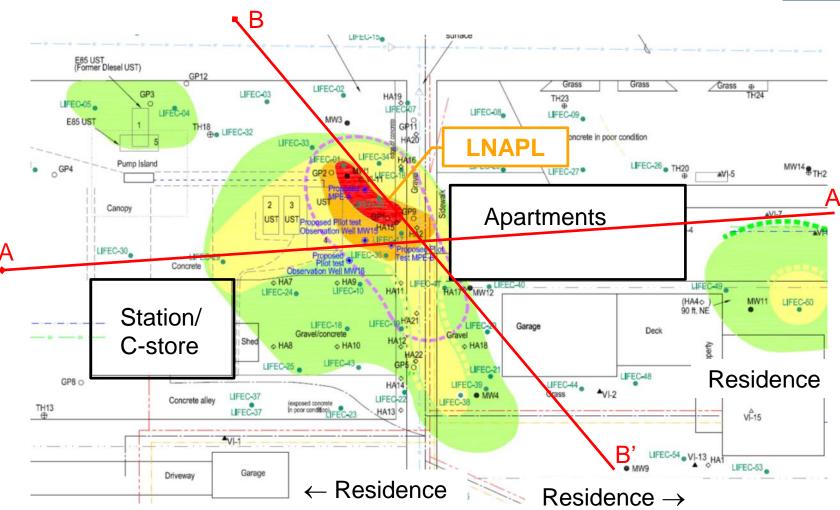
- Learn the Technology Selection Process
- Apply Remedy Selection Process to a real site

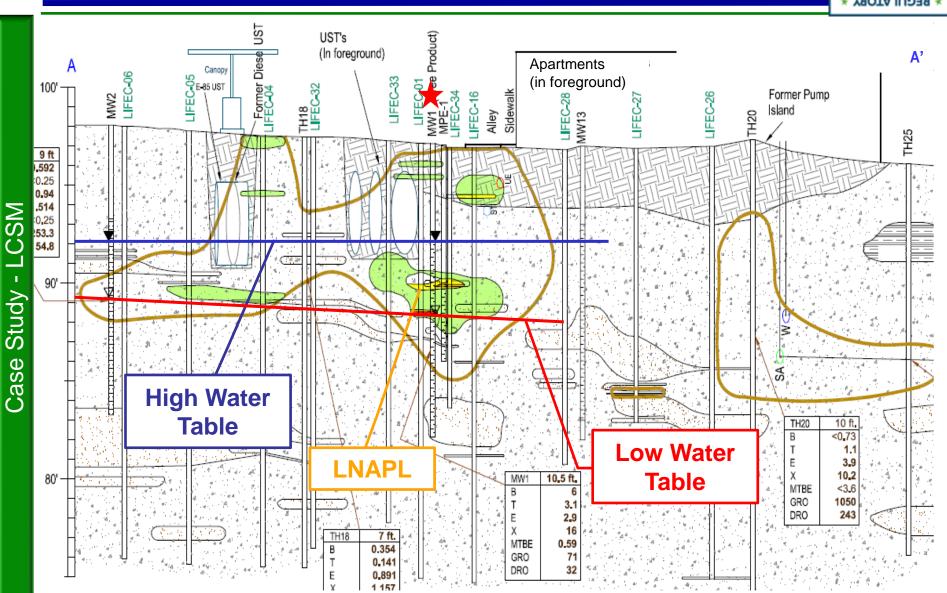


Case Study

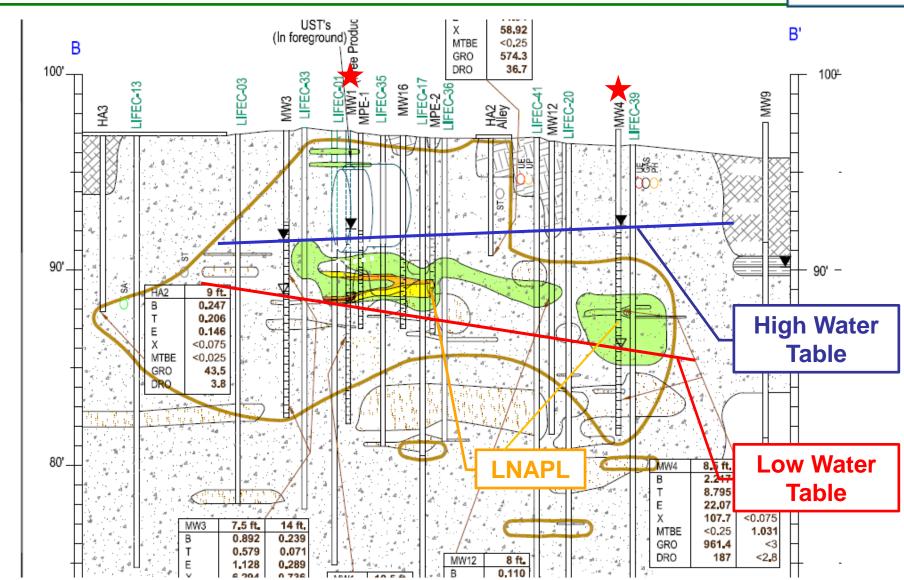

Case Study: LCSM


Case Study: LCSM

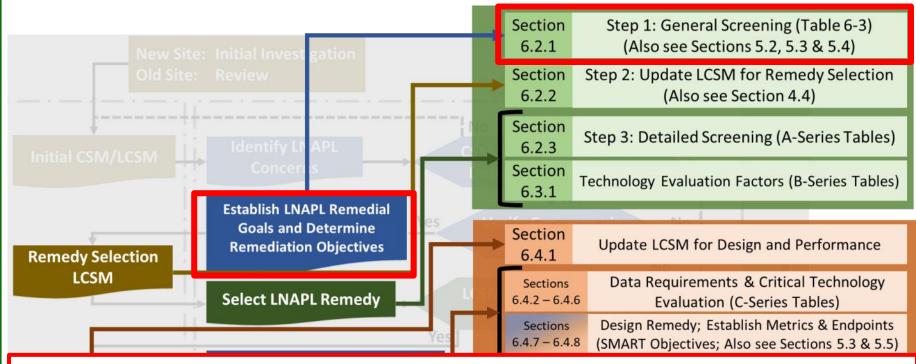

Case Study: LCSM


Case Study: Cross-section Plan View

Case Study: Cross Section A-A'



Case Study - LCSM


Case Study: Cross Section B-B'

Case Study: Step 1 - General Screening

Goal: Identify a subset of possible LNAPL technologies

- LNAPL concerns, remedial goals, remediation objectives (LNAPL Trainings 1 & 2)
- Table 6-3

Case Study: Site LNAPL Concerns

- ► LNAPL migrated SE during low groundwater elevations
- Large dissolved plume above regulatory limits
 - COC: BTEX, MTBE and 1,2-DCA
- Vapor plume
 - Potential vapor intrusion at adjacent apartments
 - Potential risks for residences (basements/sump pumps)

**Site moved to aggressive site status by Agency

Knowledge Check

- ▶ Which concern would you consider to be the highest priority for this site?
 - A. Migrating LNAPL
 - B. Large dissolved plume above regulatory limits (COCs: BTEX, MTBE, 1,2-DCA)
 - C. Vapor plume/vapor intrusion risks to off-site properties

Case Study: Site LNAPL Concerns

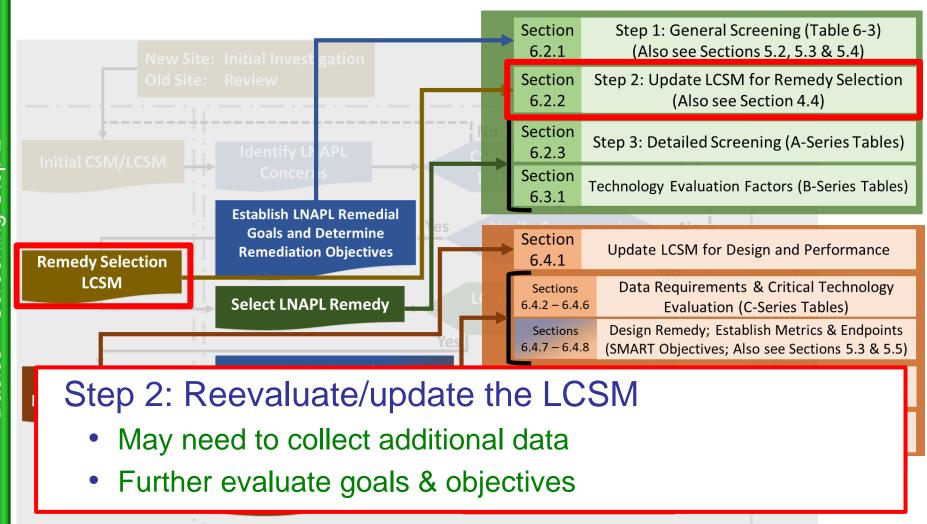
- ► LNAPL migrated SE during low groundwater elevations
- Large dissolved plume above regulatory limits
 - COC: BTEX, MTBE and 1,2-DCA
- Vapor plume
 - Potential vapor intrusion at adjacent apartments
 - Potential risks for residences (basements/sump pumps)

**Site moved to aggressive site status by Agency

Case Study: Step 1 – Goals, Objectives & <u>Table 6-3</u>

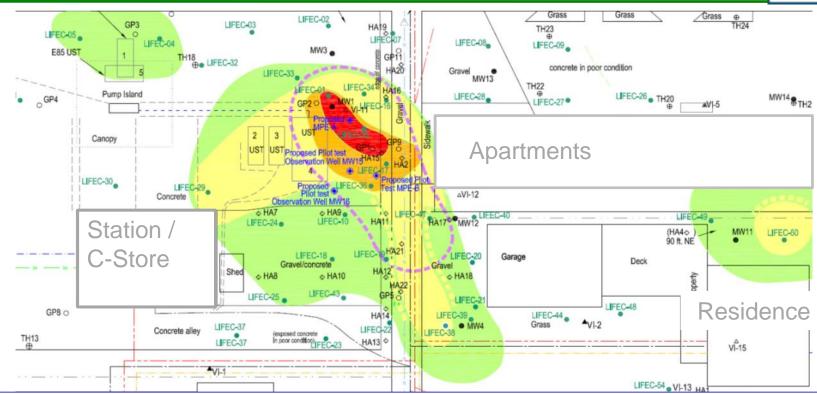
1	Table 6.3 Preliminary screening matrix									
	LNAPL	LNAPL remediation	Technology Potentially useful LNAPL		Applicable Site Conditions					
	remedial goal	objective	group	technology		logy a)	Zor (b			L type c)
ı	LNAPL saturation-based remedial objectives									
ı	Terminate Abate L LNAPL body migration	,	LNAPL mass recovery	Excavation	F	С	U	S	LV/LS	HV/HS
١	migration	sufficient physical	L COVERY	Skimming		С		S	LV/LS	HV/HS
	W	Stop LNAPL LN	/	●Vacuum enhanced skimming	F	С	U	S	LV/LS	HV/HS
	LNAPL			●Total liquid extraction		С		S	LV/LS	HV/HS
				●MPE ((F)	С	U	S	LV/LS	HV/HS
			LNAPL mass control	Phytotechnology	F	С	U	S	LV/LS	HV/HS
			cal barrier	●Physical containment	F	С		S	LV/LS•	HV/HS
				●In situ soil mixing	F	С	U	S	LV/LS	HV/HS
	Reduce LNAPL	Recover LNAPL to practicable limit	LNAPL mass recovery	● Excavation	F	С	U	S	LV/LS	IV/AS
	saturation when LNAPL is within residual range	ľ	recovery	● Skimming		С		S	LV/_S	V/HS
				●Vacuum enhanced skimming	F	С	U	S	LV/LS	V/HS
				●Total liquid extraction		С		S	LV/LS	HV/HS
				●MPE	(F)	С	U	S	LV/LS	HV/HS

Case Study: <u>Table 6-3</u> Geologic Factors

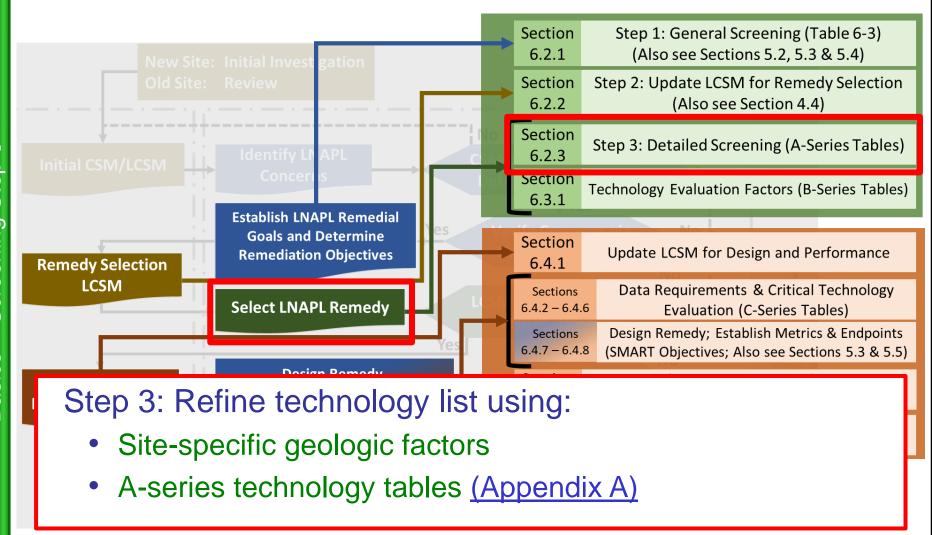

Table 6.3 Preliminary screening matrix									
LNAPL	LNAPL remediation	Technology	Potentially useful LNAPL		Applica	able S	ite C	onditio	ns
remedial goal	objective	group	technology		logy a)	Zone (b)		LNAPL type (c)	
		LNAPL sat	uration-based remedial objectives						
	Abate LNAPL body migration by	I	Excavation	F	С	U	S	LV/LS	HV/HS
III 'I	sufficient physical removal of mobile LNAPL mass	recovery	●Skimming		С		S	LV/LS	HV/HS
and reduce			 Vacuum enhanced skimming 	F	С	U	S	LV/LS	HV/HS
LNAPL			●Total liquid extraction		С		S	LV/LS	HV/HS
migration			●MPE	(F)	С	U	S	LV/LS	HV/HS

- Geology
 - Fine grained soils (F)
 - Coarse grained soils (C)
- Zone
 - Unsaturated zone (U)
 - Saturated zone (S)

- LNAPL type
 - Low Volatility/Low Solubility (LV/LS)
 - High Volatility/High Solubility (HV/HS)


Case Study: Step 2 – Update LCSM

Case Study: Step 2 – Update LCSM



No additional field work:

- LIF data already collected at the site
- LNAPL source below the water table
- Low permeability soils at the site

Case Study: Step 3 – Detailed Screening

Case Study: Step 3 - Geologic Screening

_								
1	Table A-3.A. Vacuum-enhanced skimming							
	Technology	Vacuum-enhanced skimming	LNAPL & vapor are the fluids removed. LNAPL drawdown and vacuum induce an					
١	Remediation process	Physical mass recovery	Yes (primary)	1.Skimming removes liquid LNAPL from saturated zone and perched LNAPL zones. 2. Induced vacuum extracts LNAPL vapors from				
I		Phase change	Yes (secondary)	The induced vacuum volatilizes and evaporates the LNAPL.				
ט		n situ destruction	Yes (secondary)	y) Infiltration of oxygenated air from the surface enhances in situ aerobio				
מכוב		Stabilization/ binding	No					
0	Objective applicability	LNAPL saturation	Yes	Vacuum-enhanced skimming reduces LNAPL saturations.				
00100		LNAPL composition	Yes	Vacuum-enhanced skimming reduces the volatile cons	stituent fraction			
	Applicable	All LNAPL types, although better suited to less viscous LNAPLs (e.g., gasoline, kerosene).						
	Geologic factors	Unsaturated zone	Permeability	More effective in higher-permeability materials where vapor flow is				
2			Grain size	ize More applicable to sands and gravels but can also be applied in				
Dasics			Heterogeneity	eity In heterogeneous soils, vacuum extracts LNAPL from preferential				
ם ט			Consolidation	Not typically a factor.				
			Permeability	Can achieve faster LNAPL removal and lower LNAPL saturations in higher-permeability materials.				
			Grain size	More applicable to sands and gravels but can also be applied in silts and clays.				
			Heterogeneity	Fractured bedrock and heterogeneous soils will induce flow. More applicable to perched LNAPL and unconfine	•			
			Consolidation	Not typically a factor.				

Case Study: Step 3 – Geologic Screening (A-2-A Skimming)

Excerpt from Table A.3.A. Vacuum-Enhanced Skimming
--

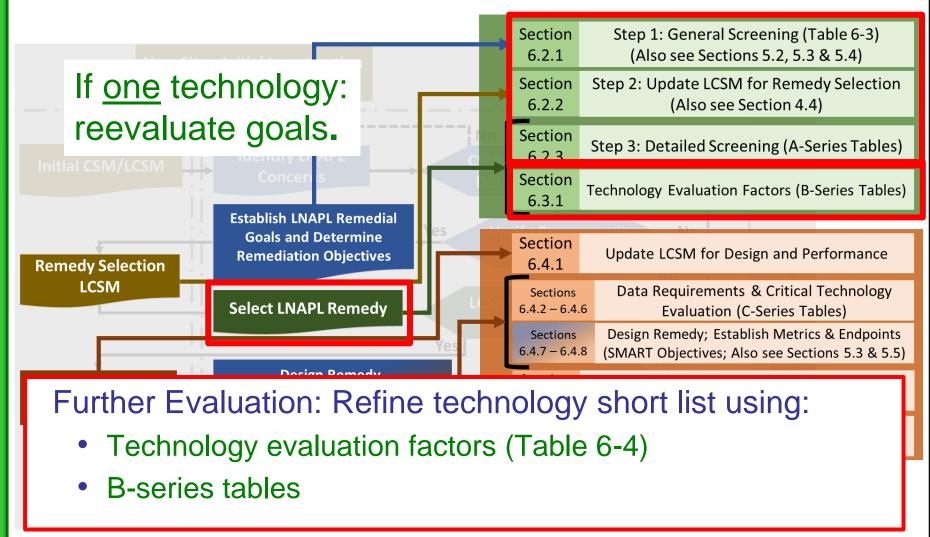
Geologic	Saturated	Permeability	Can achieve faster LNAPL removal and lower
factors	zone		LNAPL saturations in higher-permeability
			materials.

Site Geologic factors

- Saturated zone impacts
- LNAPL in higher permeable lenses
- Mainly lower permeable soils
- Heterogeneous soil profile

Technology Short List

excavation


-skimming

-vacuum enhanced skimming

total liquid extraction multi-phase extraction

Case Study: Technology Evaluation Factors

Case Study: Table 6-4 Evaluation Factors

- Remedial time frame
- Safety
- Waste stream generation and management
- Community concerns
- Environmental factors
- ▶ Site restrictions
- ▶ LNAPL body size
- ▶ Cost
- Other

- Review factors
- ▶ Rank top 4-6 factors
- Review "B-series" tables

Case Study: Table 6-4 Evaluation Factors

Example from Table 6-4. Evaluation Factors

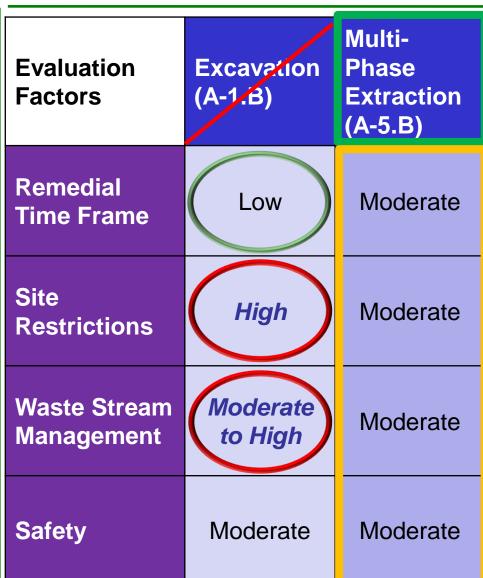
Site Restrictions	Defined	Physical, logistical or legal obstacles to system deployment at the site (e.g., building locations, high-traffic areas, small property size, noise ordinancesor nearby sensitive receptors, such as schools, day cares, hospitals, etc.)
	Impact	Site restrictions and limitations impact the implementation of some technologies more than others, due to equipment size, degree of surface disruption, etc. At sites with more potential physical, logistical, or legal site restrictions, the physically larger, more "disruptive" technologies may be less feasible to implement.

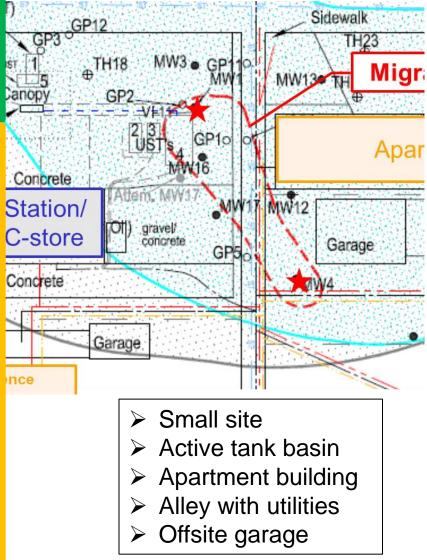
Case Study: Evaluation Factors

- ▶ Remedial Time Frame
 - Priority cleanup site by regulatory agency
- ▶ Site restrictions
 - No sewer connections
 - No 3-phase power nearby
 - Many underground utilities
- Waste Stream Management
 - Cannot handle large waste water volume
- Safety
 - Small site
 - Active gas station
 - Adjacent to highway & residential area/apartments

Case Study: B-Series Table – Excavation

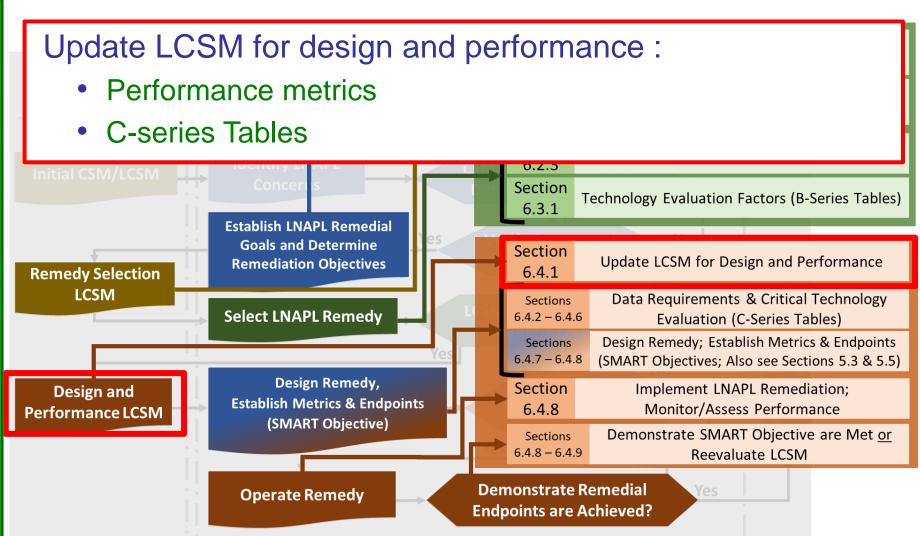
Technology:	Excavation	
	Concern (High
Site Restrictions	Discussion	Disruptive technology. Physical space, and logistical demands significant. Often excavation is infeasible due to site improvements, buildings, structures, roads, etc. Due to the use of large, heavy equipment and the need




Photo: WCEC

Case Study - Evaluation Factors

Case Study: Evaluation Factor Screening



Case Study: LCSM Update

Full-scale

Number of

¹⁰⁰Case Study: Design and Performance LCSM Update

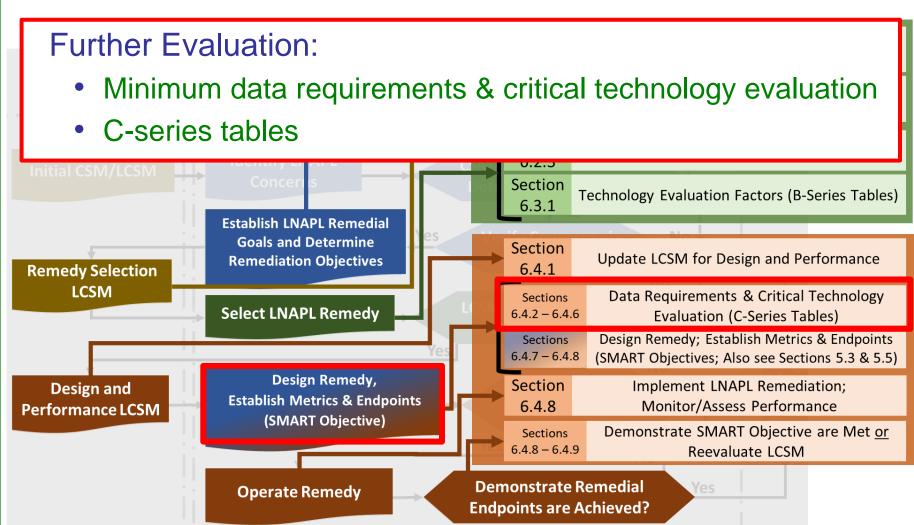
Table A-5-C Technical implementation considerations for MPE

Determine number of required MPE wells necessary

to achieve adequate zone of LNAPI recovery

aesign	extraction wells	to achieve adequate zone of LNAPL recovery
	Conveyance	Determine locations, lengths, materials for all
	piping	horizontal conveyance piping to/from MPE wells
	GW ROC	Establish groundwater ROI/ROC for different
		groundwater pumping rates. For continuous
	LNAPL ROC	Establish LNAPL ROI/ROC for different LNAPL
Performance	GW and LNAPL	Basic system performance monitoring
metrics	recovery rates	
	and volumes	
	Cumulative GW/	
	LNAPL recovery	
	LNAPL recovery	Cost per gallon of LNAPL recovered
	cost metric	

¹⁰¹Case Study: Design and Performance LCSM Update



Section 6.4.1 Design and Performance LCSM

- 1. What are the conditions to be created by the selected technology(s) that will accelerate LNAPL depletion?
- 2. What conditions will demonstrate the desired LNAPL changes?

Case Study: Data Requirements

Section 6 – Minimum Data Requirements and Critical Considerations For Technology Evaluation

Table A-5-C. Technical implementation considerations for MPE					
Data requirements	Site-Specific data for technology evaluation	Hydraulic conductivity/transmissivity; LNAPL conductivity/transmissivity; LNAPL characteristics, power availability			
	Bench-scale testing	N/A			
	Pilot-scale testing	GW and LNAPL ROC; GW and LNAPL recovery rate, volume & influent concentrations; vacuum and flow			
	Full-scale design	Number of extraction wells; conveyance piping; GW and LNAPL ROC; and LNAPL emulsification issues.			
	Performance metrics	GW/LNAPL recovery rates and volumes; system uptime vs downtime; cumulative GW/LNAPL recovery			

- Determine minimum data requirements
- ► Further evaluate considering critical technology evaluation
- ▶ If no technology can be determined, reevaluate the objectives or goals.

¹⁰⁴Case Study: Implementation Consideration

Multi-Phase Extraction (A-5.C)

Site Specific Data for Technology Evaluation

Hydraulic conductivity/ transmissivity, LNAPL conductivity/ transmissivity, power availability

Pilot Testing

GW & LNAPL radius of influence (ROI), recovery rates

Full-Scale Design Number of extraction wells, conveyance piping

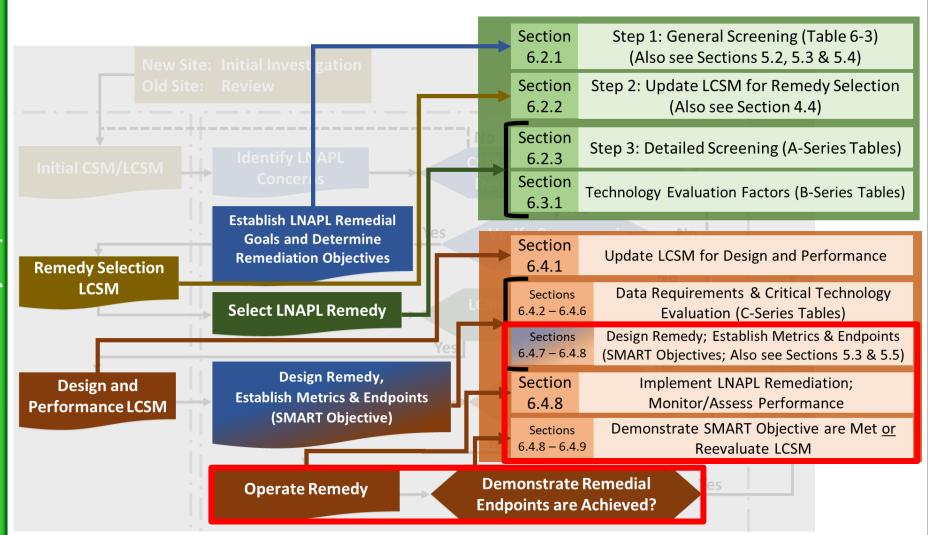
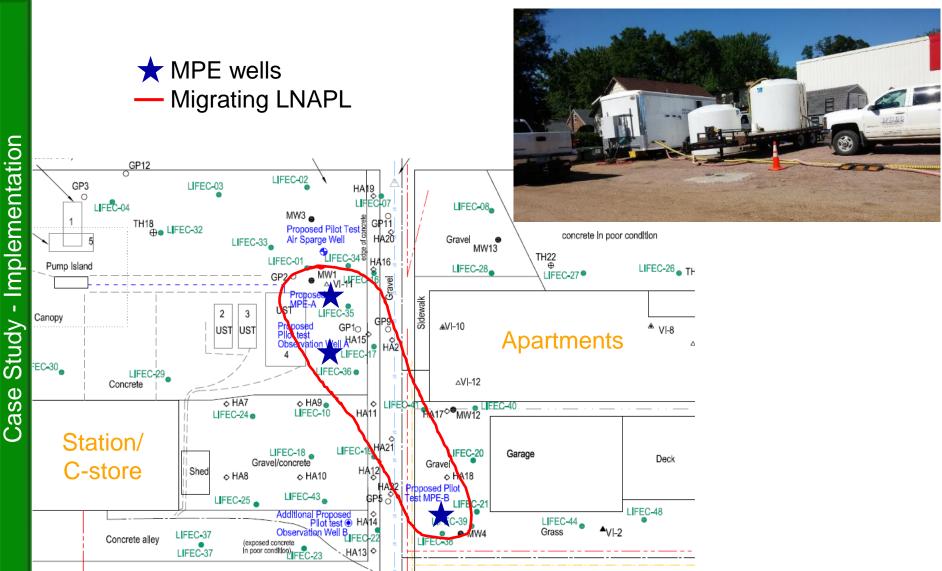
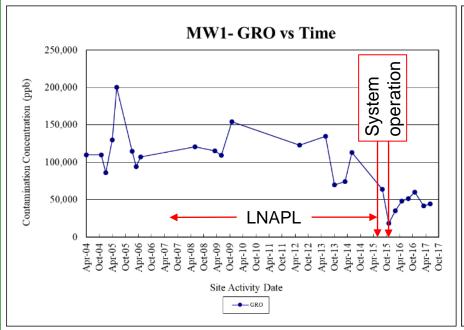


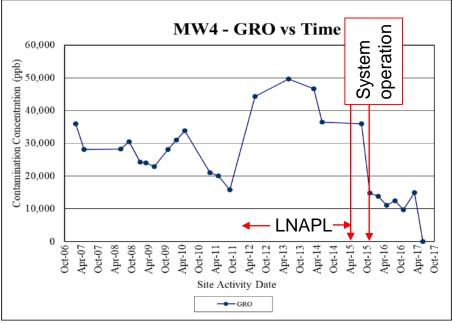
Photo: WCEC

Remedy Implementation **Basics**


¹⁰⁵Case Study: Implement Remediation and Monitor Performance

¹⁰⁶Case Study: Implementation and **Performance Metrics**





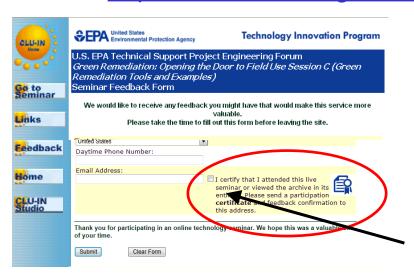
Case Study: Performance Evaluation

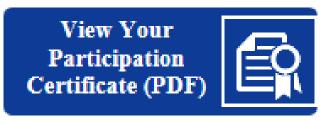
Gasoline range organics (GRO) concentrations

Technology Selection - Take Aways

- Need a robust LCSM
- Decide concerns/goals upfront
- ▶ The technology selection framework is systematic
- Repeat process for each concern/goal
- Use technology that overlaps with multiple concerns/goals
- Sequence the technologies as appropriate
- Establish performance metrics to know success

Knowledge Check


- During the technology remediation selection process, when should the LCSM be reevaluated? (Chose all that apply.)
 - A. An LCSM should be developed prior to starting the remedy selection process
 - B. During the preliminary screening process
 - C. After further screening with the evaluation factors
 - D. After remediation, if unsuccessful


Thank You

- 2nd question and answer break
- ▶ Links to additional resources
 - http://www.clu-in.org/conf/itrc/LNAPL-3/resource.cfm
- ► Feedback form *please* complete
 - http://www.clu-in.org/conf/itrc/LNAPL-3/feedback.cfm

Need confirmation of your participation today?

Fill out the feedback form and check box for confirmation email and certificate.