Housekeeping

This event is being recorded; Event will be available On Demand after the event at the main training page

https://clu-in.org/conf/itrc/Microplastics/

If you have technical difficulties, please use the Q&A Pod to request technical support

Need confirmation of your participation today?

Fill out the online feedback form, check box for confirmation email and certificate

ITRC – Shaping the Future of Regulatory Acceptance

Host Organization

Network – States, PR, DC

Federal Partners

DOE

DOD

EPA

ITRC Industry Affiliates Program

Academia

Community Stakeholders

Disclaimer

https://mp-1.itrcweb.org/aboutitrc/#disclaimer

Partially funded by the US government

- ► ITRC nor US government warranty material
- ► ITRC nor US government endorse specific products

ITRC materials available for your use – see <u>usage policy</u>

Welcome!

Microplastics (MP-1)

ITRC Guidance Document

Valerie Hanley, Ph.D.
California Department of
Toxic Substances Control
Valerie.Hanley@dtsc.ca.gov

Sponsored by: Interstate Technology and Regulatory Council (www.itrcweb.org)
Hosted by: US EPA Clean Up Information Network (www.cluin.org)

Meet the ITRC Trainers

Judd Mahan
Tetra Tech
Judd.mahan@tetratech.com

Valerie Hanley, Ph.D.
California Department of
Toxic Substances Control
Valerie.Hanley@dtsc.ca.gov

Yasemin Kunukcu, Ph.D., P.E. WSP. Yasemin.Kunukcu@wsp.com

Alia Enright, PE
TRC
aenright@trccompanies.com

Nizanna Bathersfield US EPA Bathersfield.Nizanna@epa.gov

Todd Miller
Kennedy/Jenks Consultants
ToddMiller@kennedyjenks.com

Usha Vedagiri, Ph.D.
WSP Environment and
Infrastructure Solutions
Usha.vedagiri@wsp.com

Alex MacDonald Retired alexmacd836@gmail.com

Read trainer bios at https://clu-in.org/conf/itrc/Microplastics/

Today's Training Road Map

Introduction to Microplastics Introduce the Interactive Case Study Environmental Distribution, Fate & Transport Sampling & Analysis **Q&A Session** Human Health and Ecological Effects **Regulatory Context** Mitigation and Abatement

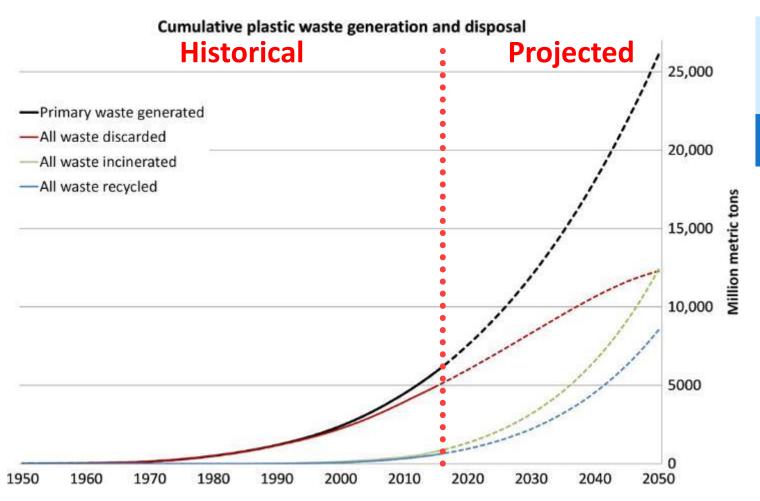
Wrap-up Slides

Q&A Session

Microplastics Guidance Document

Overarching Goal:

The guidance will provide an understanding of microplastics and the state of the applied science without having to go to the scientific literature.


Topics Covered

- Introduction to Microplastics and their Sources
- Environmental Distribution, Fate & Transport
- Sampling and Analysis Techniques
- Human Health and Ecological Effects
- Current Regulations
- Mitigation and Abatement

Global Plastic Production

Source: D. Yardimci
Data sourced from
https://www.plasticsindustry.org/history-plastics

Source: Geyer et al. (2017). Science Advances. [Open Access]

Global Plastic Waste

The pathway by which plastic enters the world's oceans Our World in Data

Estimates of global plastics entering the oceans from land-based sources in 2010 based on the pathway from primary production through to marine plastic inputs.

Global primary plastic production: 270 million tonnes per year

Global plastic waste: 275 million tonnes per year It can exceed primary production in a given year since it can incorporate

production from previous years.

Coastal plastic waste: 99.5 million tonnes per

This is the total of plastic waste generated by all populations within 50 kilometres of a coastline (therefore at risk of entering the ocean).

Mismanaged coastal plastic waste: 31.9 million tonnes per year

This is the annual sum of inadequately managed and littered plastic waste from coastal populations. Inadequately managed waste is that which is stored in open or insecure landfills. (and therefore at risk of leakage or loss).

Plastic inputs to the oceans: 8 million tonnes per year

2 billion people living within 50km of coastline

Plastic in surface waters: 10,000s to 100,000s tonnes

There is a wide range of estimates of the quantity of plastics in surface waters. It remains unclear where the majority of plastic inputs end up - a large quantity might accumulate at greater depths or on the seafloor.

Source: OurWorldData, CC-BY-SA

Why Do We Care About Microplastics?

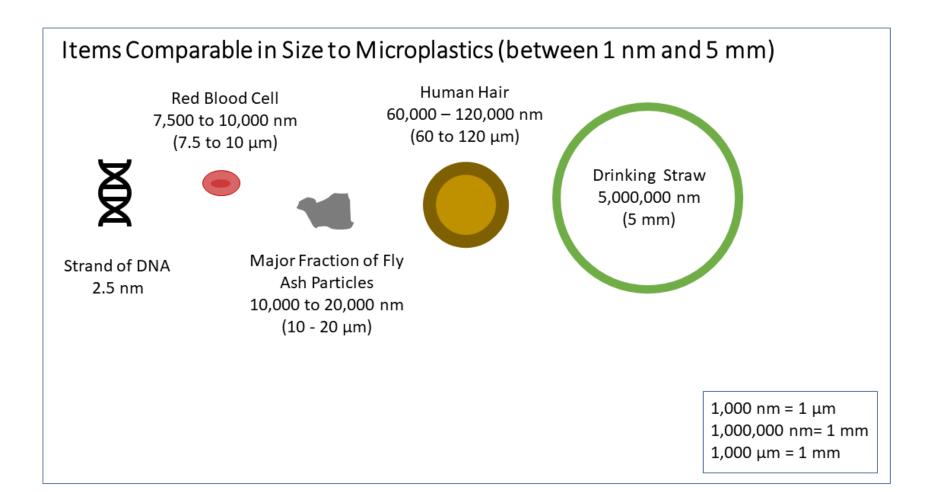
- Ubiquitous in the environment
- Accumulate and persist long time in the environment
- Contain harmful chemical contaminants and additives
- Consumed by humans and other organisms
- Cause adverse health impacts on humans and other organisms

Source Top: Flickr, Global Water Forum

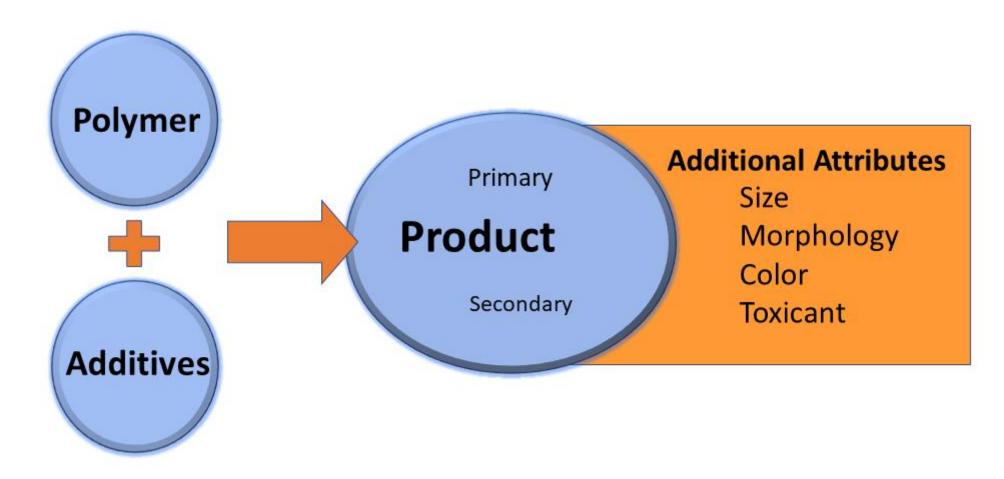
Source Bottom: Oregon State University, : <u>CC-BY-SA-2.0</u>

Microplastics Definition

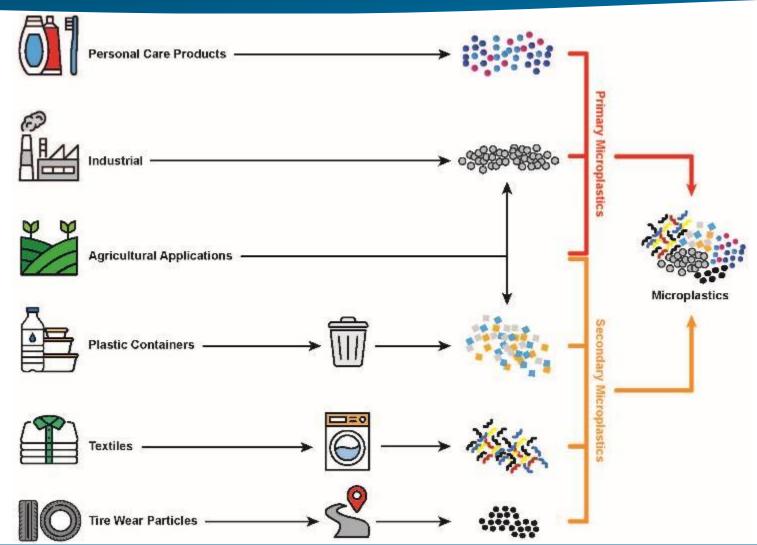
Particles that are *greater than 1 nanometer (nm)* and *less than 5 millimeters (mm)* in their longest dimension and comprised of solid polymeric materials to which chemical additives or other substances may have been added.


Polymers that are derived in nature that have not been chemically modified (other than by hydrolysis) are excluded

Microplastic Size


ITRC MP Figure 1-2 Source: V. Hanley

Variety of Microplastics


Source: C. Baysinger

Primary vs. Secondary Microplastics

ITRC MP Figure 2-1 Source: J. McDonald

Primary Microplastics

Intentionally manufactured for specific applications or products

microbeads in personal care products

Source: S. Ehardt / CC0-1.0

pre-production pellets (nurdles)

Source: gentlemanrook / CC-BY-2.0

Case Study: Appendix A.4: Nurdles Along the Gulf Coast

Highlights how citizen science can play a significant role in understanding and evaluating emerging contaminants, as well as drive litigation, which can ultimately impact policy

ITRC MP Figure A.4- 2

Source: Tunnell et al. 2020

Secondary Microplastics

Originate from larger plastics that fragment into smaller pieces

wear and tear of car tires

fragmentation of consumer products

fibers/filaments from synthetic textiles

Sources: S. Viinamäki/ CC-04, Streetwise Cycle /CC-04, B. Schumin/ CC-03, B. Spragg/CCO-1.0

Case Study: Appendix A.3: Impact of Disposable PPE and Single Use Plastic Items During the COVID-19 Pandemic

ITRC MP Figure A.3- 1.

Source: C. Huang

Microplastic Shape

- Fragments
- Beads
- Pellets
- Foams
- Films
- Sheets
- Filaments
- Fibers

ITRC MP Figure 1-4 Source: Martindale et al, 2020

Microplastics Adsorb Harmful Chemicals

Enhance sorption of heavy metals (e.g., lead, cadmium)

Enhance sorption of persistent organic pollutants (POPs)

- Polycyclic aromatic hydrocarbons (PAHs)
- Polychlorinated biphenyls (PCBs)
- Per- and polyfluoroalkyl substances (PFAs)
- Organochlorine pesticides (dichlorodiphenyltrichloroethane, DDT)

Factors Enhance Chemical Adsorption Capacity of Microplastics

High hydrophobicity

High surface area to volume ratio

- Smaller size
- Rougher shapes
- Weathered and aged

Polymer type

- Low-density plastics (PE, PP) > High-density plastics (PET, PVC)
- Rubbery plastics (PE, PP) > Glassy plastics (PET, PVC)

Microplastics as Vectors

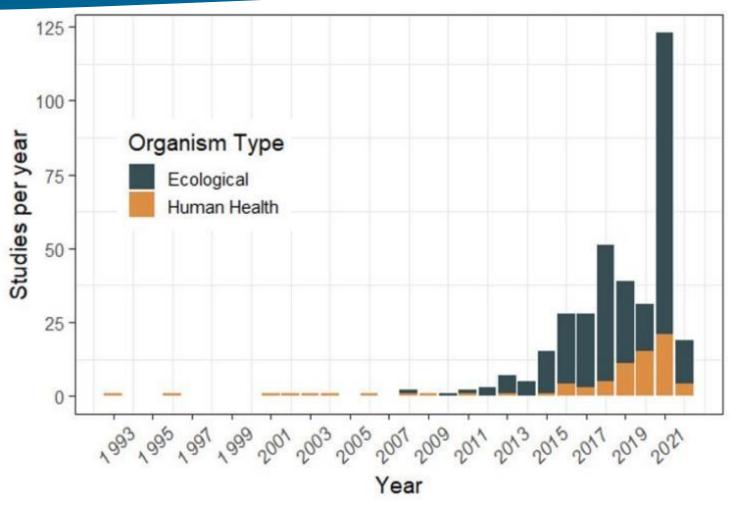
Allow formation of biofilms -> vector for bacterial pathogens

Spread of antibiotic-resistant bacteria (ARB)

Long-distance transport of chemical contaminants

Source of contaminants in aquatic environments, sediments, and biota

More studies needed to understand vector effects of microplastics



Evolving State of Science of Microplastics

Emerging contaminant of concern

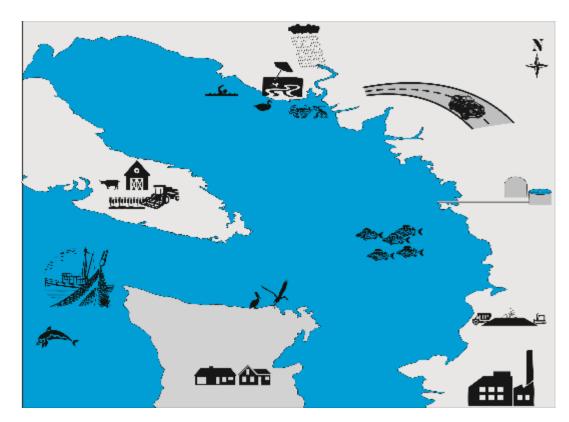
Rapidly evolving state of science

Increase in number of microplastics toxicity studies

Source: S. Coffin 2021 (unpublished, used with permission)

Today's Training Road Map

Introduction to Microplastics Introduce the Interactive Case Study Environmental Distribution, Fate & Transport Sampling & Analysis **Q&A Session** Human Health and Ecological Effects **Regulatory Context** Mitigation and Abatement Wrap-up Slides **Q&A Session**



Interactive Case Study - Objectives

and evaluation

Start with hypothetical environment

Identify sources, pathways, receptors

Develop recommendations for investigation

Source: A. MacDonald

Case Study – Step 1 – MP Sources

Identify the MP Sources:

Please use the chat function to type in your answers

Case Study - Step 1 - MP Sources

Possible MP Sources

- Roadway
- Waste treatment plant
- Farm biosolids
- Housing
- Factory
- Fishing Boat
- Landfill
- Car Tires
- Beach Use

Today's Training Road Map

Introduction to Microplastics Introduce the Interactive Case Study **Environmental Distribution, Fate & Transport** Sampling & Analysis **Q&A Session** Human Health and Ecological Effects **Regulatory Context** Mitigation and Abatement Wrap-up Slides **Q&A Session**

Conceptual Site Model (CSM)

Multifunctional Tool

- Overview Information
- Document Navigation

Source: J. McDonald

CSM: Point Sources

CSM: Non-Point Sources

Microplastics can be transported through the atmosphere and deposited far away from the source

(Macro)Plastic trash washes into the ocean, then breaks down into smaller and smaller pieces, eventually becoming microplastics

Microplastics generated through typical tire wear and breakdown of roadway materials

Microplastics may be present in household products such as toothpaste or facial cleaners. Microplastics can be generated through household activities such as laundering of clothing

Microplastics may be present in agricultural lands due to direct application of fertilizer pellets, biosolids from wastewater treatment plants, or due to breakdown of plastic sheeting

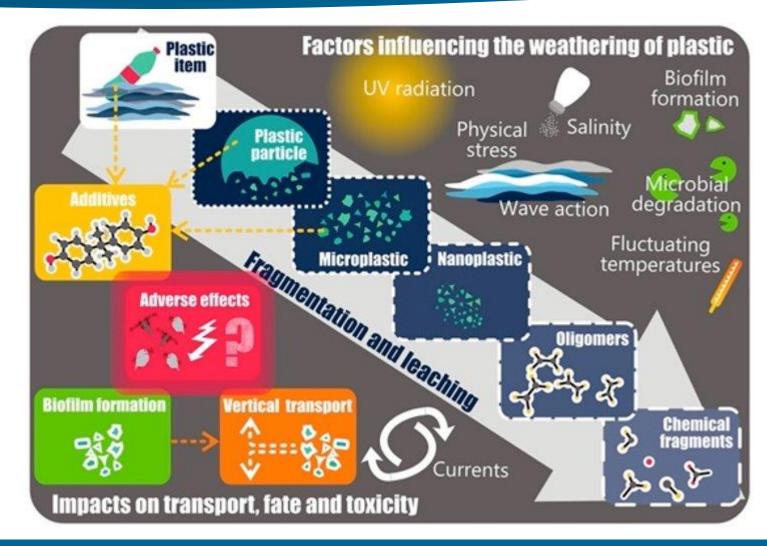
Case Study: Appendix A.5: Tire Wear Particles and Coho Salmon

Tire wear particles are a specific type of microplastic

Additive 6PPD can **leach** from these particles and transform into 6PPD-quinone

Coho salmon are uniquely sensitive to toxic effects of 6PPD-quinone

ITRC MP Figure A.5- 1


Source: Bureau of Land Management

How Microplastics are Generated

Environmental Distribution – MP in the Fluvial Environment

ITRC MP Figure 2-3, Source: J. McDonald and T. Miller

MP transport – rivers and streams

Prevalent at surface, throughout water column, and in sediments

MP sinks – lakes and inland areas of decreased flow velocity

Two-way transport affects distribution water ↔ land ↔ air

Environmental Distribution – Surface Water

Section 2.3.1 MP in Surface Water

Rivers, Lakes, and Streams

Stormwater

Bays and Estuaries

WWTP as sources

ITRC MP Figure 2-1

Environmental Distribution – Wastewater

Industrial and domestic product sources for MP entering WWTPs

WWTP processes remove MP—no standard treatments or analysis methods

Biosolid products, re-release by land application and landfilling

MP in wastewater effluent predominantly smaller then 0.5 mm

Section 2.3.2 MP in Wastewater

ITRC MP Figure 2-1

Environmental Distribution – Groundwater

Section 2.3.3 MP in Groundwater

ITRC MP Figure 2-1

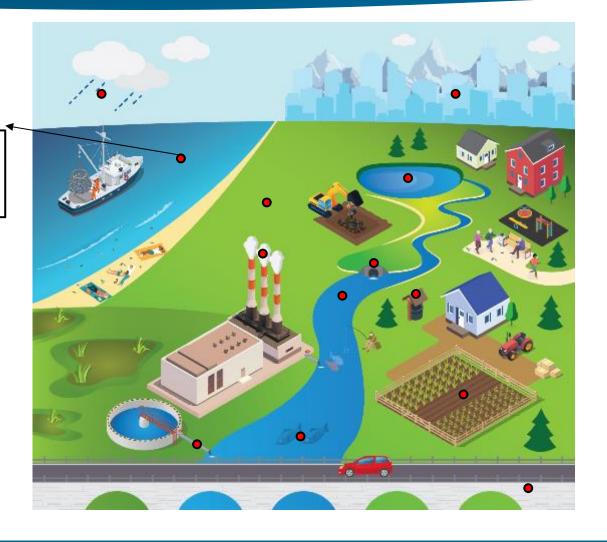
Limited studies indicate lower prevalence of MP than other water types

Current sampling obstacles due to plastic monitoring well construction

Movement affected by particle size, density, soil moisture, pH, salinity, and ionic strength – aided by preferential pathways

Reported presence in Illinois (US), as well as Germany, and South Africa – shallow and deep groundwater

Higher concentrations near WWTP, landfills, and agricultural sites



Environmental Distribution – Oceans

Section 2.3.4 MP in Oceans

ITRC MP Figure 2-1

Enter from estuaries, rivers, outfalls, and the atmosphere – move at surface by currents towards central, slower moving oceanic gyres

Denser MP sink, then distributed by subsurface currents – reported from all ocean depths – highest concentrations at depths 200 m to 600 m

Transport of floating debris – ocean currents, convergence zones, Stokes drift, tides, wind force, Langmuir circulation, ice formation and melt, drift, etc.

Vertical transport – Factors include degradation/aggregation, biofouling; positive, negative, neutral buoyancy

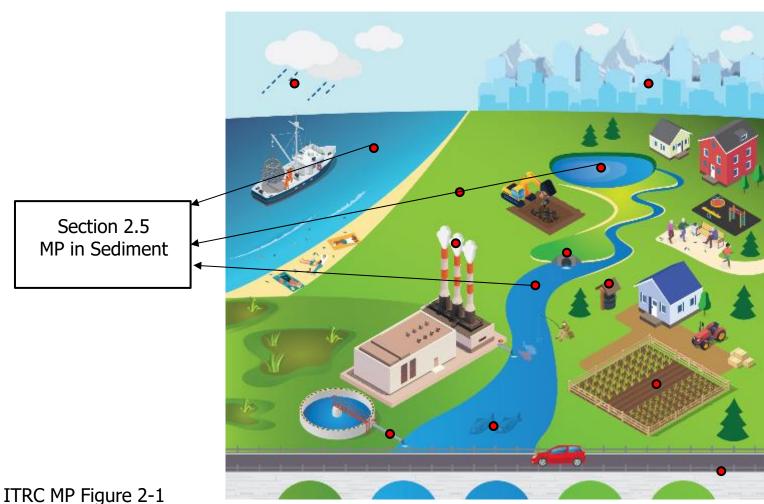
Environmental Distribution – Soils

Section 2.4 MP in Soils

ITRC MP Figure 2-1

Likely to be long term sinks for MP since most plastics are used and disposed of on land.

High MP abundance – Lands close to busy roads, waste management and agricultural areas, and home gardens


Other factors – soil type and management, plastic size and density, and precipitation

Potential to alter soil properties such as bulk density and water retention capacity — vary with type, fibers have distinctly negative impact compared to foams, films, or particles

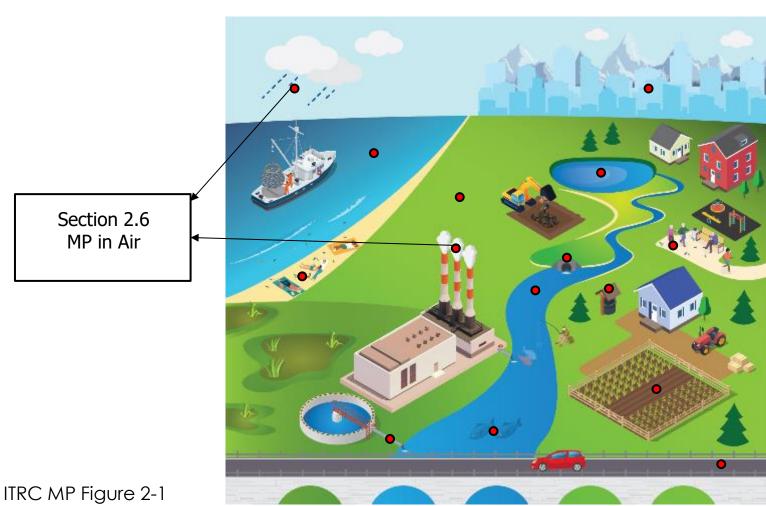
Environmental Distribution-Sediment

Suspended MP settle from the water column to combine with sediments found in marine and freshwater, flowing and non-flowing systems

Fibers and fragments common – higher density MP more likely to settle, abundance decreases with sediment depth

Research shows sediments higher in total organic carbon (TOC) tend to have more MP

Residence time in river headwaters is high especially in low flow conditions – rivers are a key pathway of transport to other areas


Resuspension and redistribution from sediment is a key process

Environmental Distribution – Air

Increased occurrence and transport of MP in densely populated areas – denser human populations and activities, industrialization

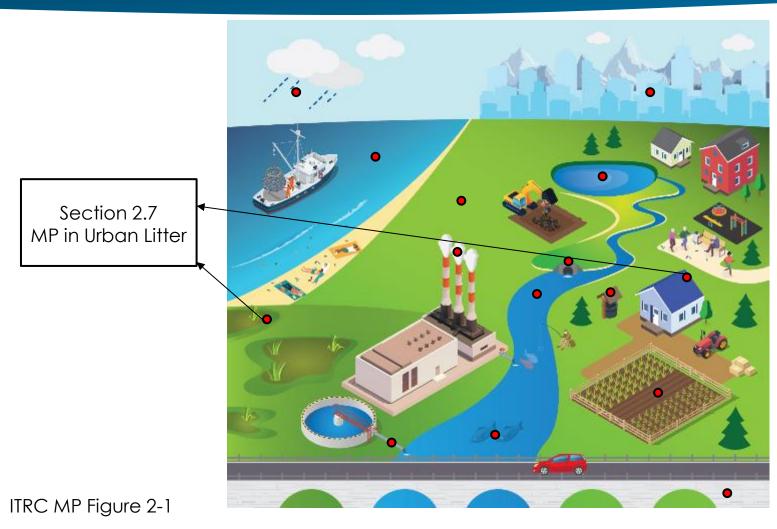
Atmospheric deposition – precipitation events; rain and snow

Emergent component of air pollution due to inhalation and combination with other pollutants (e.g., mercury, PAHs)

Transport – wind speed, up/down drafts, convection lift, and turbulence

Also affects distribution of plastic pollution in terrestrial and marine environments, potential for longdistance transport

Small MP sizes, various shapes; fibers, fragments, and films



Environmental Distribution – Urban Litter

Macroplastic litter breaks down to MP

Plastic portion of litter can vary dramatically
– San Francisco Bay area stormwater study
showed plastic items were 2.2% to 15.1% of
litter by volume, whereas a Mississippi River
basin study showed plastic accounted for
74% of litter

Storm events play important role – Los Angeles River study showed MP increased 7fold at the coast near Long Beach after a storm

A Great Lakes area study showed fragments, films, foams, and pellets, all found in urban watersheds at higher concentrations as result of rainfall or snowmelt events

Environmental Distribution – Biota

Section 2.8 MP in Biota

MP found in plants, invertebrates, birds, mammals, and fish

MP are being ingested

Plants – studies show uptake by crop plants through roots and transported to shoots

Marine biota – Filter feeders at greater risk due to suspension feeding

ITRC MP Figure 2-1

Environmental Distribution-Summary

Section 2.3: Fluvial Environment

Surface water

Wastewater

Groundwater

Oceans

Section 2.4: Soils

Section 2.5: Sediments

Section 2.6: Air

Section 2.7: Urban Litter

Section 2.8: Biota

ITRC MP Figure 2-1

Case Study – Step 2 – MP Transport Pathways and Media

Identify the possibly MP-impacted media:

Please use the chat function to type in your answers

Case Study – Step 2 – MP Transport Pathways and Media

Possible MP-impacted media

- Ambient air
- Subsurface Soils
- Surface soils
- Surface water
- Groundwater
- Beach sand
- Crops/Produce

Case Study – Step 2 – MP Transport Pathways and Media

Identify the possibly MP-Transport Pathways:

Please use the chat function to type in your answers

Case Study – Step 2 - MP Transport Pathways and Media

Possible MP transport pathways

- Urban runoff
- Rainfall
- Stormwater discharge
- Factory stack emissions
- Wind-blown wastes
- Wastewater discharge
- Agricultural soil disturbance

Today's Training Road Map

Introduction to Microplastics Introduce the Interactive Case Study Environmental Distribution, Fate & Transport **Sampling & Analysis Q&A Session** Human Health and Ecological Effects **Regulatory Context** Mitigation and Abatement Wrap-up Slides **Q&A Session**

Overview – Sampling & Analysis

Considerations for selecting appropriate methods

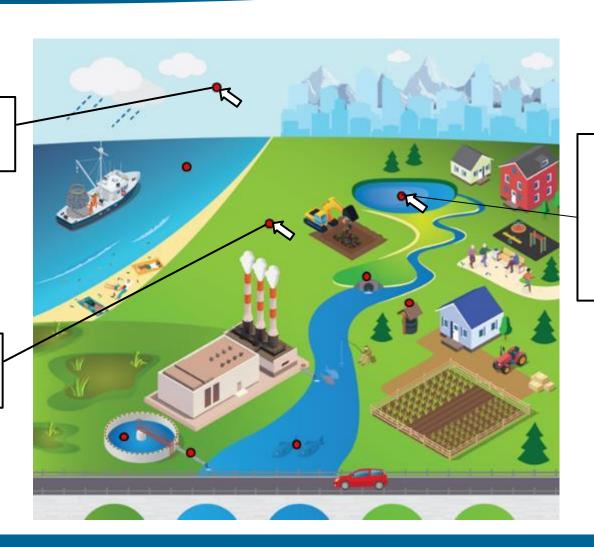
ITRC tools to help choose appropriate methods

- Sampling = Sample Collection Tool
- Analysis = Table 4-2. Characterization Techniques Summary

Standard/adopted methods

Minimizing sample contamination

CSM – Sampling & Analysis


Air

Section 3.4.3 sample collection Section 3.6.3 sample preparation

Soil

Section 3.4.2.1-sample collection Section 3.6.2 sample preparation

ITRC MP Figure 3-1

Surface Water - Freshwater

Section 3.4.1.2.1-sample collection Section 3.6.1.2-sample preparation **Sediment**

Section 3.4.2.2-sample collection Section 3.6.2-sample preparation

Selecting Appropriate Methods

What are your data quality objectives?

- sample media
- particle size
- minimum detectable amount
- data needed (size, shape, polymer, units, etc.)
- equipment/cost available

Sample Collection Tool

Select Sampling Methods

ASTM D8332-20 (July 2020)

- Drinking water, surface waters, wastewater influent and effluent (secondary and tertiary), and marine waters
- Pump or existing sample tap + series of sieves
- Large volume (400 1,400 gallons)

California Water Boards

- Drinking Water
- In-line sieve filtration (e.g. Yuan et al. 2022, Chemosphere)
- Large volume (1,000 L)

Analytical Methods

Description	Analysis Time/ Sample	Size Detection Limit	Measurement Preparation	Identifies Polymer Types	Detects Additives /Surface Chemicals	Detects Particles or Mass
Visual Methods						
NE Naked eye	Hours	1 mm	None	No	No	Particle
SM Stereo microscopy	Hours	100 μm	On filter	No	No	Particles
FM Fluorescence microscopy	Hours	50 µm (Possibly smaller based on objective lens used)	On filter	No	No	Particles
SEM Scanning electron microscopy	Hours	0.001 μm	On filter	Yes	No	Particles
Spectroscopic Methods						
FPA-FTIR Focal plane array-Fourier transform infrared spectroscopy (in	Hours	20 µm	On special filter	Yes	No	Particles

Excerpt From ITRC MP Table 3-1. Characterization Techniques Summary

Analytical Methods - California

ITRC MP Table 3-1. Characterization Techniques Summary Excerpt

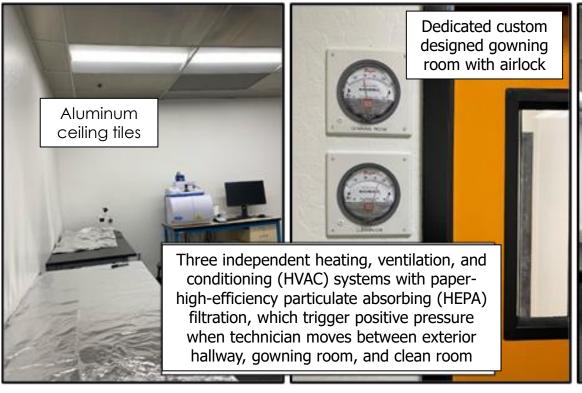
Description	Analysis Time/ Sample	Size Detection Limit	Measurement Preparation	Identifies Polymer Types	Detects Additives /Surface Chemicals	Detects Particles or Mass
FTIR Fourier transform infrared spectroscopy (in transmission mode)	Days	20 μm	On special filter	Yes	No	Particles
LIDR Laser direct infrared spectroscopy	Minutes particles/ hour	20 µm	Special microscope slide	Yes	No	Particles
NIR, vizNIR Near infrared spectroscopy, visible-near infrared spectroscopy	Hours	Unspecified	On filter	Yes	Surface Chemicals only	Particles
Raman Spectroscopy	Days	1 μm (Theoretically but challenging to achieve)	Extraction and placed on filter	All polymers	Yes	Particles

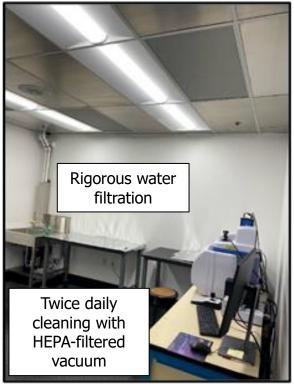
Recently, the California State Water Resources Control Board adopted FTIR and Raman methods for MP identification in drinking water samples.

Keep it "Clean"

Minimize contamination

- Eliminate or limit plastic products used for sampling/processing
- Set up a clean laboratory


Account for contamination


Collect air & procedural blanks to measure contamination introduced during processing

Example Laboratory Considerations

ITRC MP- Figure 3-2 Source: A. Enright Photos: Eurofins

Summary – Sampling & Analysis

Standardized sampling methods available for water

FTIR & Raman analytical methods adopted for drinking water in CA

For other media/scenarios, use ITRC tools to select methods

Minimize & account for contamination

Question and Answer Break

Today's Training Road Map

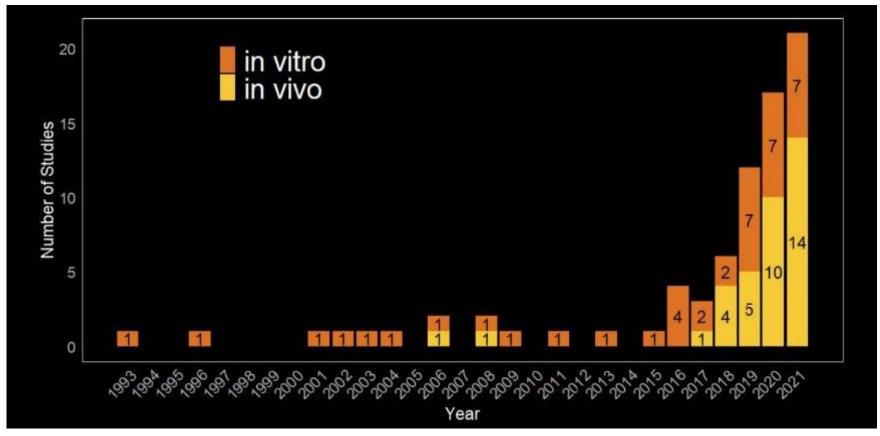
Introduction to Microplastics Introduce the Interactive Case Study Environmental Distribution, Fate & Transport Sampling & Analysis **Q&A Session Human Health and Ecological Effects Regulatory Context** Mitigation and Abatement Wrap-up Slides **Q&A Session**

Overview

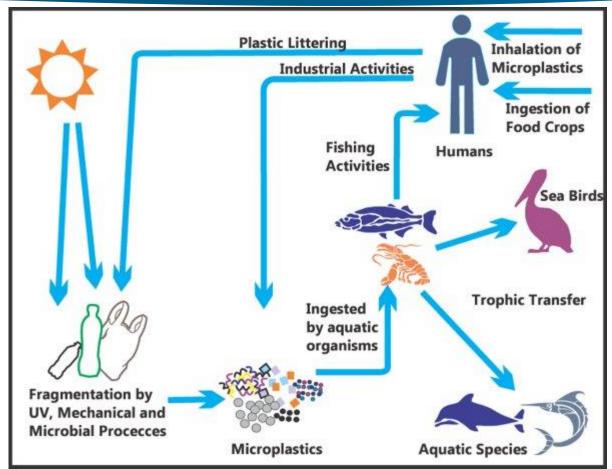
Human Health

- Exposure
- Effects
- Uncertainties

Ecological Receptors


- Effects
- Toxicity tools
- Interpretation

Increase in number of microplastics toxicity studies


ITRC MP Figure 1-4, Source: Coffin (2022)

Human Health – Exposures

Multiple media and pathways for human exposure to MP

Plastics and associated chemicals (MP focus)

Exposure varies by region and population

Current estimates: inhalation > dietary ingestion

> incidental ingestion > dermal

ITRC MP Figure 4-2 Source: A. MacDonald

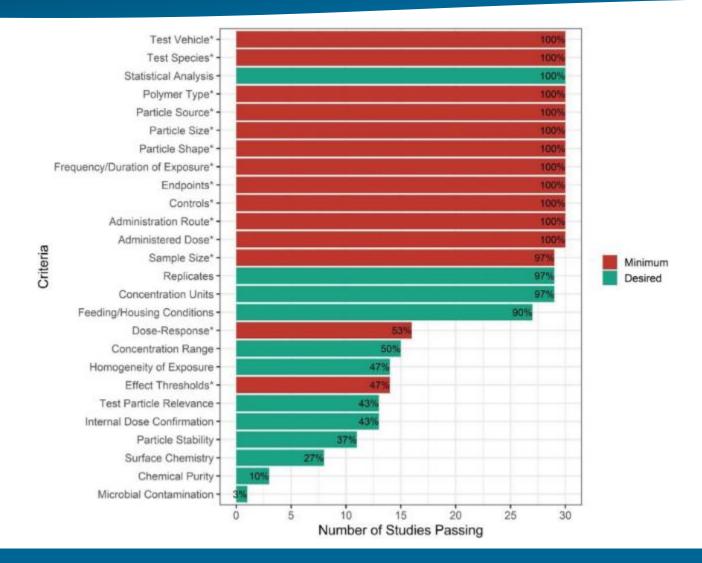


Challenges in Toxicity Research

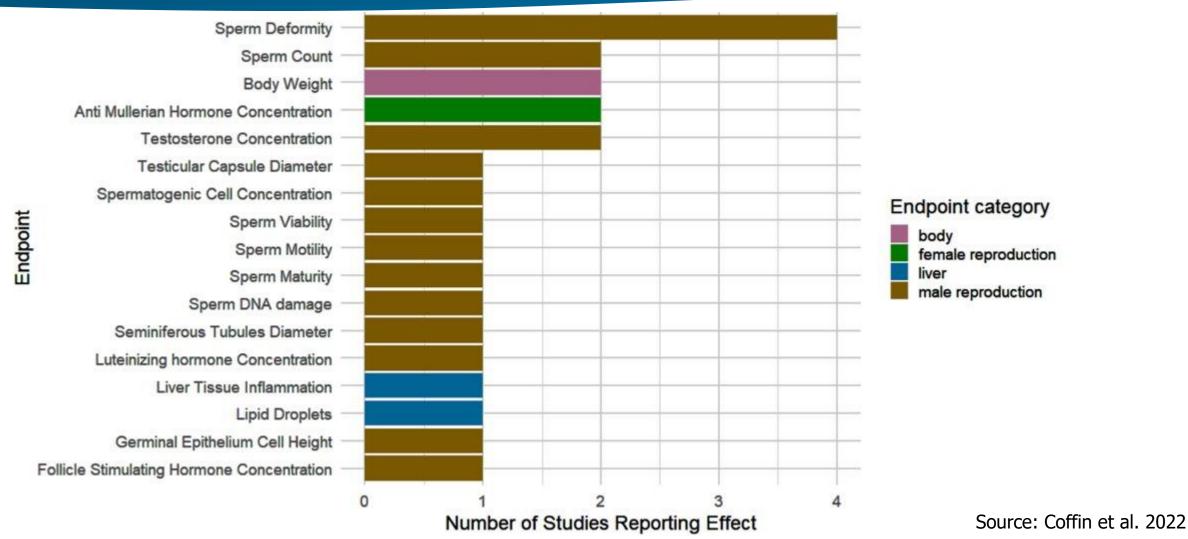
Numerous non-human mammalian studies available but usability varies

Uncertainties due to study design, exposure concentration, data quality, reporting, data gaps

Exposure # Adverse health effect

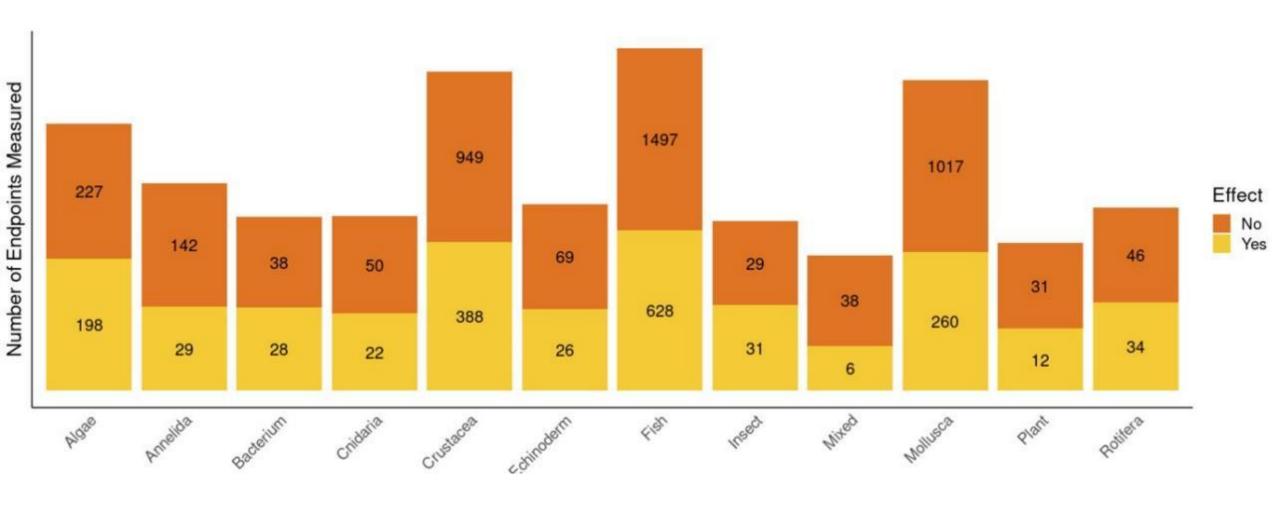

Source: Thornton Hampton et al. 2022

Human Health – Test Quality Criteria

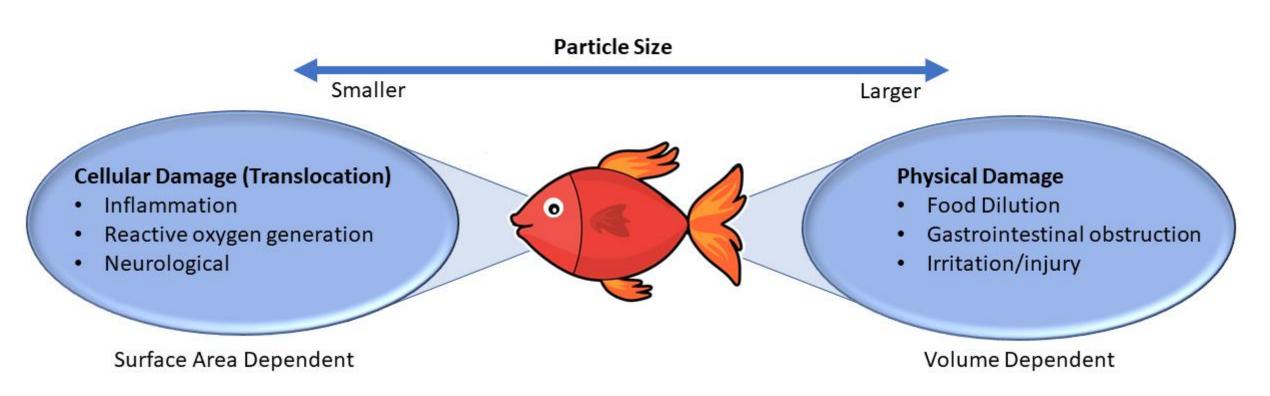


Source: Coffin et al. 2022

Reliable Human Toxicity Endpoints



Microplastics Studies By Ecological Group



Factors Affecting Aquatic Toxicity

ITRC MP Figure 4-3
Source: Microplastics Team, created using concepts described in Mehinto et al. (2022)

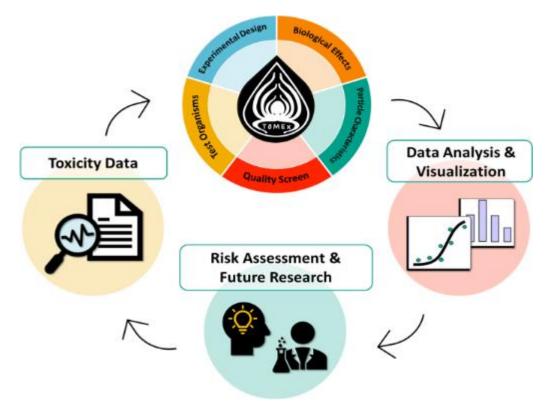
Influencing Factors

Cellular Damage

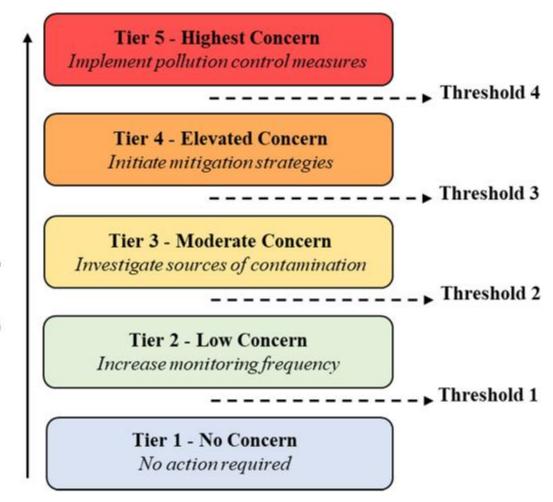
- Size ranges matter
- Particles <83 µm have ability to translocate
 - Fibers are the most commonly found microplastic but are understudied with regards to tissue translocation

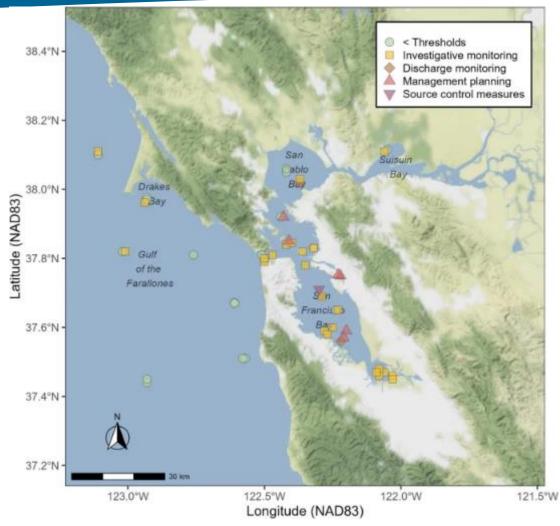
Nutritional Deficiencies

- Microplastics mistaken as food can cause nutritional deficiencies due to food dilution
- Preferential consumption of particles by size, shape, color


Source: Mehinto et al. 2022

Toxicity Microplastics Explorer (ToMEx) Application


ITRC MP Figure 4-4
Source: Thornton Hampton et al. 2022
https://microplastics.sccwrp.org/



Application of Aquatic Risk Threshold to San Francisco Bay, California

ITRC MP Figure A.1-5 Source: Mehinto et al. 2022

ITRC MP Figure A.1- 6 Source: Coffin et al. 2022

Case Study: Appendix A.2: Consequences of Microplastics on Various Ecological Endpoints in the Chesapeake Bay

ITRC MP Figure A.2-2 Source: NOAA

ITRC MP Figure A.2-1 Source: NASA/USGS Landsat 5

ITRC MP Figure A.2-3
Source: US Fish and Wildlife Service

Health Effects Summary

Physical, Chemical, Biological Hazards

Exposure characterization highly uncertain

Adverse outcome pathways needed

Particle size and shape strongly influence toxicity

We still have a lot more to learn

Case Study – Step 3 – MP Receptors

Identify the possible receptors (human and ecological):

Please use the chat function to type in your answers

Case Study – Step 3 – MP Receptors

Possible Human and Ecological Receptors

- Beach user
- Bay swimmer
- Agricultural worker
- Factory worker
- Urban residents
- Local anglers
- Produce/crop consumers

- Fish
- Aquatic birds
- Aquatic mammals
- Vegetation
- Cattle/herbivores
- Soil invertebrates

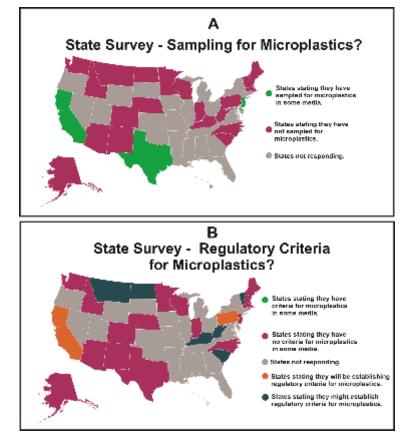
Case Study – Step 4 – Next Steps

Conceptual Site Model Development

Develop Sampling and Analysis Plan

Today's Training Road Map

Introduction to Microplastics Introduce the Interactive Case Study Environmental Distribution, Fate & Transport Sampling & Analysis **Q&A Session** Human Health and Ecological Effects **Regulatory Context** Mitigation and Abatement Wrap-up Slides **Q&A Session**



Survey of State Regulatory Efforts

Survey sent to states through ITRC points of contact (June 2021)

Key Results – Responses received from 25 states

- California, Texas, and New Jersey have sampled for microplastics
- No states had regulatory criteria and only two states, California and Pennsylvania, are looking at establishing criteria
- Six states stated that they may establish regulatory criteria

ITRC MP Figure 5-1

Regulatory Efforts - Examples

Most states have focused on plastics in general

Common efforts – recycling mandates; phase-out of plastic single-use bags, restaurant utensils and food packaging (primarily carry-out)

Some states have banned local implementation of these types of restrictions

Appendix C: Regulatory Context Tables

Summary of statutes and regulations

Tables for:

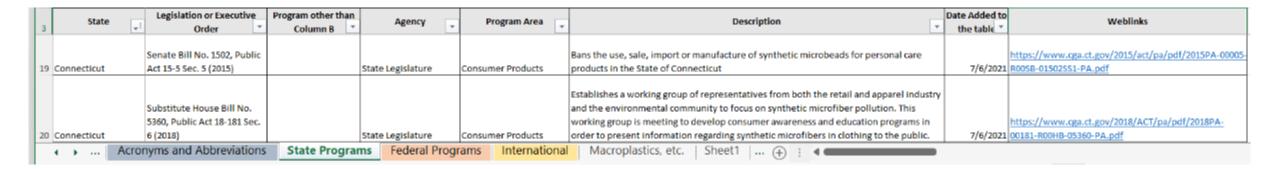
- State
- Federal
- International Regulations
- Macroplastics

Acronyms and Abbreviations

State Programs

Federal Programs

International


Macroplastics, etc.

State Regulatory Context

Summarizes state statutes or regulations

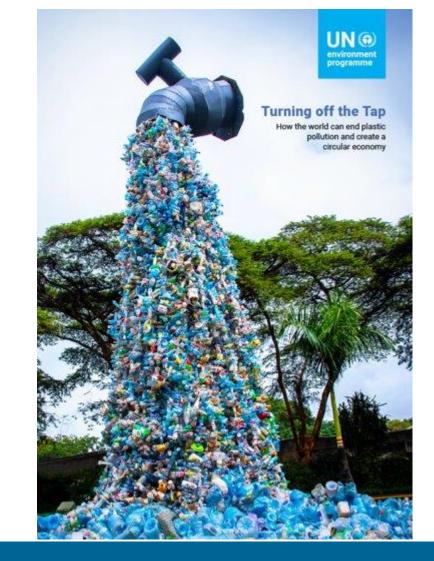
Provides links for more information

International Regulatory Context

Provides information on statutes and regulations from a number of different countries

Loc	cation 🔻	Legislation or Executive Ord	Agency	Program Area	Description	Date Added to the table *	Weblinks
Ireland		Microbeads Prohibition Act 2019	Irish Environmental Protection Agency	Consumer Products	Effective February 2020, the Act prohibites the manufacture or sale of cosmetic and cleaning products containing microbeads		https://www.irishstatutebook.ie/eli/2019/act/52/enacted/en/html
Japan		Bill to reduce use of	House of Councillors	Consumer products	Urges voluntary action by companies to reduce plastic microbeads in cosmetics, facial cleansers and toothpastes		https://www.nippon.com/en/news/yij2018061500400/;
Latin Am	200000000000000000000000000000000000000	Plastic litter and microplastics waste management	Varies by country	All plastics	Compendium of national and regional Strategies, Action Plans and Initiatives to monitor and manage plastic wastes and litter	9/14/2022	Marine_EN.pdf (unep.org)
Sweden		Roadmap for Sustainable Use of Plastics	Swedish EPA	All plastics	General plan for plastics, including microplastics	12/3/2021	https://visita.se/app/uploads/2021/06/Fardplan-Hallbar-plastanvandning_eng.pdf
Sweden		Legislation to prevent the spread of microplastics	Swedish Parliament	Tax	Tax on plastic bags, effective April 2020	VEHICLE IN	https://www.loc.gov/item/global-legal-monitor/2020-01-31/sweden-parliament-votes-to-adopt plastic-bags/

International Actions: European Union



International Actions- UN Plastics Treaty

"Microplastics, mostly from tyres, pellets, textiles, and personal care products, can be addressed by reducing automotive mileage, redesigning tyres and behavioural change, improved design and production of garments, introducing filters on washing machines, improved production and value chains of plastic pellets and facilitating their safe transport, and banning the use of intentionally added microplastics to personal care products."

Case Study: Appendix A.1: California Approach for Microplastics

Senate Bill 1422: Adopt a definition of microplastics in drinking water

Adopt a standard methodology to test drinking water for microplastics

Establish requirements for four years of testing and reporting microplastics in water

Senate Bill 1263: Adopt and Implement a Statewide Microplastics Strategy

Today's Training Road Map

Introduction to Microplastics Introduce the Interactive Case Study Environmental Distribution, Fate & Transport Sampling & Analysis **Q&A Session** Human Health and Ecological Effects **Regulatory Context Mitigation and Abatement** Wrap-up Slides **Q&A Session**

Overview: Mitigation and Abatement

Prevention and Mitigation

Remediation Technologies

The Best Defense is Good Offense

Preventing MP from entering the environment

More studies necessary to achieve removal of MP in different media

ITRC MP Figure 6-3 Source: Adapted from USEPA.

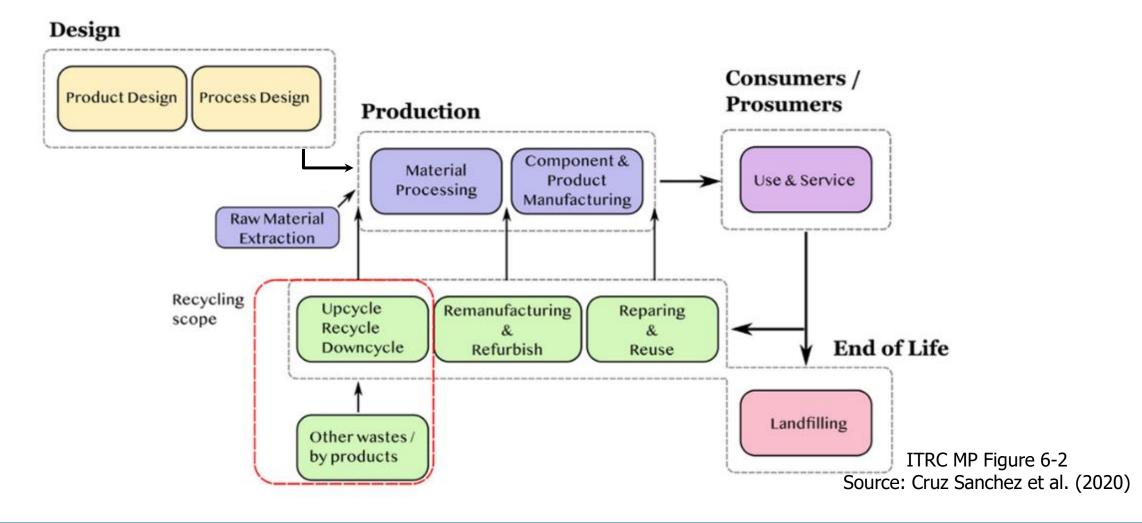
Mitigation and Prevention Strategies

Section 6.1.1
Manufacturing &
Packaging
Section 6.1.2
Improving
production

Reduction of plastic packaging and increasing the reuse

Improvements in plastics production at an industrial level including life cycle assessments (LCA)

ITRC MP Figure 6-1


efficiency

LCAs to Limit Plastics in Use

Mitigation and Prevention Strategies

Section 6.1.3Reducing
Consumption

Reduce consumption of plastics

- Product Substitution
- Education & Awareness

ITRC MP Figure 6-1

Mitigation and Prevention Strategies

Section 6.1.4Improving Disposal of Waste

Source Collection and Post-Separation
 Disposal

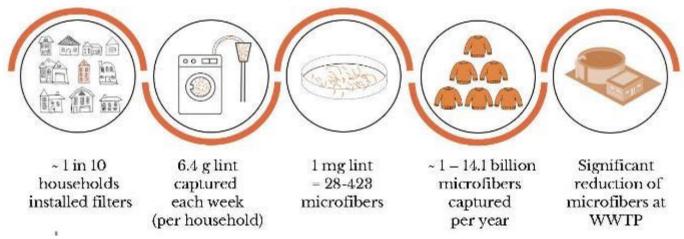
- Reuse &/or Repurposing
- Waste to Energy and Feedstock
- Landfilling
- Bio-based and Biodegradable Plastic
 Alternatives
- Electronic Waste Recycling
- EnhancingDistribution/Storage/Transportation
- Stormwater Control

ITRC MP Figure 6-1

Mitigation Wrap-Up

Prevention and Mitigation

Remediation Technologies



Case Study, Appendix A.6: Washing Machine Filters Reduce Microfiber Emissions to Aquatic Ecosystems

Source: Erdle, et al (2021)

Abatement Strategies

Section 6.2.1:

Water

Section 6.2.2

Soil

Section 6.2.3:

Sediment

Section 6.2.4:

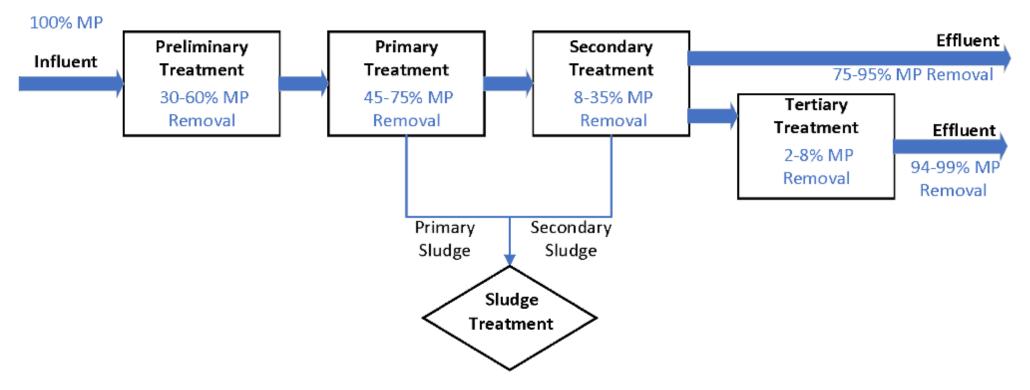
Air

ITRC MP Figure 6-1

Field Implemented

Demonstrated under full-scale conditions at multiple sites, by multiple practitioners and multiple applications, and are well documented in practice or peer-reviewed literature

Developing Technologies


Researched at the laboratory or bench scale, but have not been field demonstrated

Estimation of MP Removal in Wastewater Treatment Plants

ITRC MP Figure 6-5 (Modified)

Source: Renee Lu, modified from Ali et al. (2021)

Treatment Technologies by Media – ITRC MP Tables 6-3 and 6-4

Table 6-3. Treatment technologies for MP in water

Treatment Category	Treatment Technology	Media	Advantages/ Efficiencies	References		
	Field Implemented (for Select Media)/General Remediation Technology					
	Rain garden (bioretention cell)	Stormwater	Up to 98% MP removal efficiency	Werbowski et al. (2021) [683];-		
Ical	Developing Technology or at Lab Scale					
Biological	Biodegradation	Surface water, groundwater, wastewater, manne, soil, sediments	75–99% MP removal efficiency A consortium of organisms can be used as a treatment strategy	Gan and Zhang (2019), Han et al. (2017), Hu et al. (2021), Pathak and Navneet (2017)		
	Developing Technology or at Lab Scale					
	Dhemical degradation (oxidation, hydrolysis)	Surface water	Up to 56% MP weight loss for Fenton-like system Builds off treatment technologies used for other contaminants	Hu et al. (2021)		
Chemical	Electrochemical oxidation	Surface water, groundwater, marine, wastewater, soil	58% MP removal efficiency, and up to 86.8% with an additional oxident Quick treatment time; particularly effective for MP and MP destruction and effective for roducing MP size and mass and mineralizing NP	Kiendrebeogo et al. (2021) [322]		
	Field Implemented (for Sele	ect Media)/Genera	l Remediation Technology			

Table 6-4. Potential treatment technologies for MP in soil

Treatment Category	Treatment Technology	Media	Advantages/ Efficiencies	References			
Developing To	echnology or Lab Scale						
Biological	Biodegradation	Surface water, groundwater, wastewater, marine, soil, sediments	75–99% MP removal efficiency A consortium of organisms can be used as a treatment strategy.	Gan and Zhang (2019), Han et al. (2017), Hu et al. (2021), Pathak and Navneet (2017)			
Chemical	Electrochemical oxidation	Surface water, groundwater, marine, wastewater, soil	S8% MP removal efficiency, and up to 86.8% with an additional oxidant. Quick treatment time. Particularly effective for MP and NP destruction and effective for reducing MP size and mass and mineralizing NP.	Kiendrebeogo et al. (2021) [322] _{Ex}			
Physical	Thermal (that is, pyrolysis and gasification)	Surface water, soil	54% in MP weight loss for catalytic advanced oxidation process with hydrothermal hydrolysis.	Hu et al. (2021) [278]			
Phys	General Technology						
	Incineration	Sludge/biosolids, soil, air	Can be used for energy generation.	(Geyer, Jambeck, and Lavender Law 2017)			

Treatment Technologies by Media – ITRC MP Table 6-4

	Treatment Category	Treatment Technology	Media	Advantages/ Efficiencies	References			
De	eveloping T	ping Technology or Lub-Scale						
	Biological	Biodegradation	Surface water, groundwater, wastewater, marine, soil, sediments	75–99% MP removal efficiency A consortium of organisms can be used as a treatment strategy.	Gan and Zhang (2019), Han et al. (2017), Hu et al. (2021), Pathak and Navneet (2017)			
	Chemical	E ectrochemical olidation	Surface water, groundwater, marine, wastewater, soil	58% MP removal efficiency, and up to 86.8% with an additional oxidant. Quick treatment time. Particularly effective for MP and NP destruction and effective for reducing MP size and mass and mineralizing NP.	Kiendrebeogo et al. (2021) [322] ₅			
	Physical	hermal (that is, pyrolysis and gasification)	Surface water, soil	54% in MP weight loss for catalytic advanced oxidation process with hydrothermal hydrolysis.	Hu et al. (2021) [278]⊳			
	Phys	General Technology						
		Incineration	Sludge/biosolids, soil, air	Can be used for energy generation.	(Geyer, Jambeck, and Lavender Law 2017)			

Note:
Removal %
is based on
lab studies

Summary from Mitigation & Abatement

- Source reduction critical in reducing MP in the environment
- Improve disposal of waste
- Considering different strategies simultaneously
- Existing treatment technologies have varied success
- Management of wastes produced during the treatment of MPs
- Further research on existing and new technologies is necessary

Today's Training Road Map

Introduction to Microplastics Introduce the Interactive Case Study Environmental Distribution, Fate & Transport Sampling & Analysis **Q&A Session** Human Health and Ecological Effects **Regulatory Context** Mitigation and Abatement **Wrap-up Slides Q&A Session**

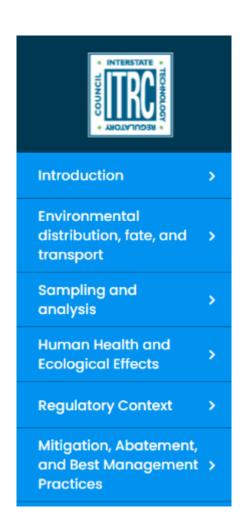
Web-based Document: ITRC MP-1

https://mp-1.itrcweb.org/

Figure 1-1, Microplastics in the environment.

Source: Jonathan McDonald

1.1 What Are Microplastics?


Various organizations, agencies, and researchers have defined MP in different ways. For the purposes of this document, MP are particles that are greater than 1 nanometer (nm) and less than 5,000,000 nm (or 5 millimeters [mm]) in their longest dimension and consist of solid polymeric materials to which chemical additives or other substances may have been added (CA SWRCB 2020 ^[59]c.) Polymers that are derived in nature (for example, cellulose, amber, proteins, wool, or silk) that have not been chemically modified (other than by hydrolysis) are excluded from the scope of this document. Plastic particles less than 1,000 nm in their longest dimension are also referred to as nanoplastics (NP); as such, some, but not all, NP fall within the range of MP defined herein. Although the definition of NP is still being debated, it is accepted in scientific literature that they are produced by the fragmentation of MP (or larger particles), measure between 1 nm and 1,000 nm in length, and demonstrate a colloidal behavior. Figure 1-2 shows the sizes of various items that fall within the MP size range, including a strand of DNA (approximately 2.5 nm), a red blood cell (7,500–10,000 nm), a fly ash particle (10,000–20,000 nm), the diameter of a human hair (60,000–120,000 nm), and a drinking straw (approximately 5,000,000 nm). This guidance document is not

Topics Covered

- Introduction to Microplastics
- Environmental Distribution, Fate & Transport
- Sampling and Analysis
- Human Health and Ecological Effects
- Regulatory Context
- Mitigation and Abatement

Conceptual Site Model (CSM)

Multifunctional Tool

- Overview Information
- Document Navigation

Section 7: Data Gaps and Future Research Needs

- Fate and Transport
- Sampling and Analysis
- Health Risks
- Trophic Transfer
- Ecological Exposure
- Mitigation and Abatement

Case Studies: Appendix A

- A.1: California Approach for Microplastics
- A.2: Consequences of Microplastics on Various Ecological Endpoints in the Chesapeake Bay and its Tributary Estuary, the Potomac River
- A.3: Impact of Disposable PPE and Single Use Plastic Items During the Pandemic
- A.4: Nurdles Along the Gulf Coast
- A.5: Effects of 6PPD-quinone on Coho and Chum Salmon
- A.6: Washing Machine Filters Reduce Microfiber Emissions to Aquatic Ecosystems

ITRC Microplastics Outreach Toolkit

General information on outreach

General Audience

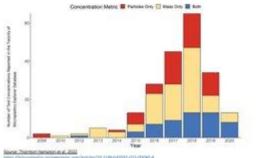
- Fact Sheets
- Social Media Materials

Scientific Community

- Fact Sheets
- Social Media Materials
- Presentations

Decision Makers

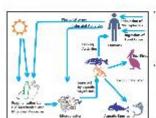
- Fact Sheets
- Social Media Materials
- Presentations



Examples from Draft Toolkit

A universally standardized method for reporting Microplastics (MP) laboratory results does not currently exist. However, a MP reporting guidelines checklist has been published and is available in Cowper et al. (2020).

Comparison of data between studies is complicated by variability in how MP are defined, a lack of standardized analytical methods, and differences in the units used to report the presence of MP in various media. MP can be quantified by mass, perticle count, or both, depending upon project goals.



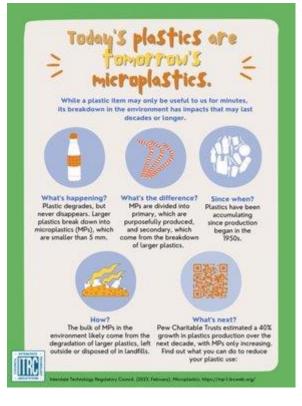
Learn More & Macadacha Coneditated

Microplantice are polymer-based particles that are research committee of bank bosters at the brown chronicr terral or then a strend of DAN up to the diameter of midmining show). Brow. issuer and crame only respond to the on action This diagram general paylors into uplastics in the executed regree work additions

· Inhelation: Harman con to expensed to miomplacator through involving of index and outdoor dust due to stress to to

Promisi agreeme participation are initializable

Inpution, and parend contact:


Occupational appropries (4.5, 15 priming and sed to make by are also see to documented.

ingenion - ingenion of contaminated that univalerant other trade and important course for company as to this order has been granters had or microbalics. in intaking their fee food. Other organisms are expressed in programment's instruction as.

whose in the chagners. Cornel contact. Harman are province through contact with impured water or by use of personal care products that partain minoplastics, bened begaves as know loss made of supposition against and ANNUALS SEQUENCES

To also des tradesis and trapid to found (TC), reach to down it is the Health. a sample conservation, but a segment we say the security and are purchased to a second point the gray day be a coming and of the mand of the common of

Question and Answer Session

