Housekeeping

This event is being recorded; Event will be available On Demand after the event at the main training page

<https://www.clu-in.org/conf/itrc/PFAS-BTB-FT/>

If you have technical difficulties, please use the Q&A Pod to request technical support

Need confirmation of your participation today?

Fill out the online feedback form and check box for confirmation email and certificate

ITRC – Shaping the Future of Regulatory Acceptance

Host Organization

Network - All 50 states, PR, DC

Federal Partners

ITRC Industry Affiliates Program **DOE DOD EPA**

Academia

Community Stakeholders

Disclaimer

<https://pfas-1.itrcweb.org/about-itrc/#disclaimer>

Partially funded by the US government

ITRC nor US government warranty material

ITRC nor US government endorse specific products

ITRC materials available for your use – see [usage policy](http://itrcweb.org/Documents/Policy/ITRC-Usage-Policy-for-ITRC-Materials-Final-11-5-12.pdf)

ltrcweb

ITRC PFAS Resources

ITRC PFAS: <https://pfas-1.itrcweb.org/>

Guidance Document

13 Fact Sheets

External Tables

PFAS Introductory Training

▪ Clu-In Archive: [https://www.clu](https://www.clu-in.org/conf/itrc/PFAS-Introductory/)[in.org/conf/itrc/PFAS-Introductory/](https://www.clu-in.org/conf/itrc/PFAS-Introductory/)

Other video resources

- **E** Available through links on: https://pfas-1.itrcweb.org
- **Quick Explainer Videos**
- **Example 1 Longer PFAS Training Modules**
- **EXECUTE: Archived Roundtable Sessions**

PFAS: Beyond the Basics Training

Fate and Transport Site Characterization Source Identification & Forensics

Today's PFAS Trainers

Robert Burgess

Alaska Department of Environmental Conservation robert.burgess@alaska.gov

Ryan Thomas Parsons Ryan.Thomas@parsons.com


```
Michael Bock
Verdantas
mbock@verdantas.com
```


Dina Drennan BEM Systems ddrennan@bemsys.com

Sandra Goodrow New Jersey DEP Sandra.Goodrow@dep.nj.gov

ITRC PFAS Team: 2024 "Beyond the Basics" Training Modules

Learning Objectives

Site Characterization

- Concerns for different source types
- Hydrogeological setting
- Sampling and Analysis
- Data interpretation and visualization

Fate and Transport

- Small-scale processes
- Movement in and between environmental media
- Differential transport of PFAS species (environmental fractionation)
- Precursor transformation

Forensics

- PFAS fingerprinting
- Identification of unknown sources
- Techniques for distinguishing between multiple or overlapping sources

Conceptual Site Model

Fate and Transport Considerations

Learning Objectives

Site Characterization

-
-
-
-

Fate and Transport

- Small-scale processes
- Movement in and between environmental media
- Differential transport of PFAS species (environmental fractionation)
- Precursor transformation

Forensics

-
-
-

Conceptual Site Model

F&T: What is Fate and Transport?

- Perfluorinated vs. polyfluorinated
- Fluorinated tail: chain length
- Non-fluorinated head: functional group and charge state

Fate & Transport

▪ Nature of Release

▪ Soil properties

- Groundwater depth/velocity
- Groundwater geochemistry
- Prevailing atmospheric conditions
- Co-contaminants

PFAA Compound Properties

PFAS figure source: M. Olson, Trihydro. Used with permission.

Energetically favorable Air Reduces the surface tension at the interface Water

PFAAs have a greater affinity than traditional surfactants

> PFAS-1, Figure 4-1. Source: D. Adamson, GSI. Used with permission.

Microscale Partitioning

Electrostatic Interactions

- pH (changing pH changes surface charges)
- Presence of polyvalent cations (Ca2+ Mg2+)
- Clay (positive surface charge)

Hydrophobic Interactions

- **Organic carbon sorption** consideration
	- ↑ Chain length ↑ Sorption to organic carbon
	- **PFSA sorb more strongly** than PFCA to organic carbon

Microscale Partitioning: Interfacial Behavior

The relative importance of phase partitioning changes between the source area and the plume.

PFAS-1, Section 5.2, Phase Partitioning. PFAS-1, Figure 5-1. Fate and transport processes relevant for PFAS. Source: D. Adamson, GSI. used with

PFAA Partitioning Depends on Amount of Interfacial Area

- Degree of water saturation affects the amount of interfacial area (nonlinear)
- Larger interfacial area enhances PFAA retention
- Factors affection A-W interfacial area:
	- Soil type
	- **•** Grain size
	- **EXEC** Heterogeneity
	- Organic Content

Microscale Factors Influencing Solid Phase Sorption

Microscale Partitioning Summary

Supramolecular Aggregations

- **EXECT:** At high concentrations, certain PFAS can aggregate due to surfactant properties
	- Forms micelles, hemi-micelles, and bilayers
- **If** May not be directly analogous to traditional micelle formation – more research needed.
- May be more complicated in environmental settings
	- Aggregations can occur well below CMC
	- **Interaction with charged or hydrophobic** surfaces can affect sorption
- **More research is needed to understand** how this affects fate and transport

PFAS-1, Figure 5-2. Source: D. Adamson, GSI. Used with permission.

F&T: PFAA Precursors (environmental conditions)

See PFAS-1, Section 2.2 for more detailed information regarding nomenclature & the PFAS family tree.

F&T: Transformation of Precursors to PFAAs

PFAA

PFAS figures source: M. Olson, Trihydro. Used with permission. PFAS-1, Section 5.4.4.2 Aerobic Biological Pathways.

Abiotic transformations (Oxidation reactions)

- Hydrolysis of fluoropolymers can form PFOA
- Hydroxyl radicals formed in natural systems oxidize precursors
- Fluorotelomers oxidize faster than sulfonamides
- PFAAs are not always formed (not complete oxidation)
- **Indirect photolysis in the atmosphere (ex.** $FtoH \rightarrow PFCAs$

Aerobic Biotransformation (Oxidation)

Sulfonamides (slower rates than Fluorotelomers, **mainly** form PFSAs)

PFAS-1, Section 5.4.4.2 Aerobic Biological Pathways. Figure source: Christopher Olivares, UC Irvine. Used with permission.

Anaerobic biotransformation

Fluorotelomer

Fluorotelomer acids + other PFAS formed under more reducing anaerobic conditions

Feammox (Acidimicrobium sp. Strain A6)

- **EXA** Anaerobic ammonium oxidation coupled to iron reduction
- **Reported defluorination of PFOA, PFOS with release of fluoride**

Macroscale Fate and Transport

Macroscale Transport: Air

- PFAS sources to air
	- Industrial facilities producing or using PFAS
	- Areas where fluorine foams are used/released
	- Waste management facilities (landfills, WWTPs, biosolids production)
- Fluorotelomer alcohols (FTOHs) and some other PFAS are volatile
- Stack emissions can include volatile PFAS and PFAS attached to particulate matter
- Atmospheric deposition (wet or dry) may result in PFAS contamination several miles from industrial emission sources
- Long-range transport processes and effects are similar to atmospheric transport of other recalcitrant contaminants

PFAS-1, Section 5.2.4, Partitioning to Air and Section 5.3.2 PFAS Transport in Air PFAS-1, Figure 5-1. Fate and transport processes relevant for PFAS. Source: D. Adamson, GSI. used with permission.

Macroscale Transport: Vadose Zone

- **PFAS source areas: vadose-zone** retention may be significant
	- Cationic/zwitterionic precursors may strongly sorb
	- Long-chain PFAA sorption
		- Depends on soil chemistry
	- PFAAs accumulate at air/water interfaces (may retard transport)
- **Most PFAS have low volatility (little to** no partitioning to vapor phase)
- Leaching may provide long-term source to groundwater

Macroscale Transport: Groundwater

- Readily transported once in groundwater
	- Same processes affecting sorption in vadose zone, but now with groundwater chemistry interactions
	- Dependent on chain length and functional group
	- \bullet K_{oc} important, but not sufficient to explain partitioning behavior
- Potential impacts of remedial activities targeting co-contaminants
	- Introduction of oxygen (e.g. air sparge, DO injection) can drive precursor transformation
	- Introduction of cations (e.g., ISCO) can lead to enhanced sorption/retardation of PFAA transport.

Macroscale Transport: Surface Water

- Type of water body is important
	- Fast moving, suspended sediments
	- Slow moving, deposition
- Uptake to biota (incl. fish)
- Stratification in water column
- Dissolved PFAS in SW can move downstream, back into GW
- PFAAs aggregate at surface microlayers
	- Foam formation with wind or turbulence

Transport in Surface Water: Foam

PFAS-Containing Foam Considerations

- **Example 1 Fransport** as "foam islands" to a new location
- Collapse of foam and **dissolution of PFAS** back into water column
- PFAS concentration in foam > water column
- PFAS in foam potentially leads to **additional exposure pathways** – both human and ecological receptors

*Note – foams can be produced by natural processes in the absence of PFAS as well; not all surface water foam is guaranteed to contain PFAS.

Photographs courtesy of R. Higgins, MPCA. Used with permission.

Transport Between Surface Water and Groundwater

Transitions zones between SW and GW tend to have changes in conditions

- \bullet Low oxygen GW \rightarrow oxygen-rich SW
	- Increased microbial activity
	- Increased precursor transformation
	- Increased proportion of PFAAs
- **Differences in organic and mineral content** between soils and sediments
	- Sorption to sediments and colloids
	- Changes in salinity affect sorption
- Potential for dilution and mixing depending on type of water body

Co-contaminant considerations

Petroleum co-contamination common at AFFF sites and can occur at other PFAS sites

PFAS may partition into LNAPL or accumulate at water/LNAPL interface

■ Can lead to greater retention of PFAS

Petroleum contamination leads to reducing conditions

- **EXECUTE: Slows down precursor transformation**
- **EXECUTE:** Shifts precursor transformation to anaerobic processes/pathways

If petroleum remediation has occurred, may alter redox to oxidizing conditions (e.g., air sparge) or change ionic concentrations (e.g., ISCO)

■ Can alter rates of precursor transformation

DNAPL co-contamination can also result in increased PFAS retention

Environmental Fractionation

- Differential transport and precursor transformation lead to environmental fractionation
- As PFAS move downgradient from source area, composition of PFAS changes
- Source type and hydrogeochemical parameters influence type and rates of change

Site Characterization

Learning Objectives

Site Characterization

- Concerns for different source types
- Hydrogeological setting
- Sampling and Analysis
- Data interpretation and visualization

Fate and Transport

-
-
-
-

Conceptual Site Model

Forensics

-
-
-

Work Plan and Conceptual Site Model (CSM)

Initial step in Site Characterization is CSM development to inform Data Quality Objectives

CSM development should consider:

- **E** Site characteristics
- Properties of contaminants

Use CSM to identify data gaps and sampling needs

Main Sources of PFAS Release to the Environment

CSM for AFFF Application Sites

PFAS-1, Figure 2-19, CSM for fire training areas. Figure Adapted from figure by L. Trozzolo, TRC, used with permission.

AFFF Contains Highly Diverse Mixtures

AFFF product chemistry has changed over time

Table 3-1 of the ITRC PFAS Technical Regulatory Guidance document presents types of foam and composition.

Barzen-Hanson et. Al 2017. Environ Sci Tecnol 51: 2047-2057 Figures used with permission from J. Field, Oregon State.

Forensic Analysis of PFAS from AFFF Sources

Forensic analysis of AFFF is based on fingerprinting the composition of unknown samples

Multiple lines of evidence and methods should be considered for site-specific fingerprinting:

• AFFF use history

- AFFF manufacturing processes
- Targeted PFAS analysis, TOP analysis for precursor transformation, and TOF analysis
- The effects AFFF source commingling and cocontaminants on fate and transport behavior

CSM for Industrial Sites

CSM for Landfills and WWTPs

*Leachate release from lined landfills could occur in the event of a liner leak

O Infiltration **O** Transformation of precursors (abiotic/biotic) KEY Atmospheric Deposition **O** Diffusion/Dispersion/Advection

PFAS-1, Figure 2-20, CSM for landfills and WWTPs. Figure Adapted from figure by L. Trozzolo, TRC, used with permission.

Source-specific considerations

AFFF

- Diverse mix of PFAS
- Manufacturing methods determine PFAS composition
- Fate and Transport affected by co-contaminants and historical remediation

Industrial

- **PFAS mixture may be less diverse**
- Site-specific process determines PFAS composition
- Air transport may be important (may cause diffuse soil sources from deposition)

Landfill

- 5:3 FTCA as "signature compound"
- May include volatile PFAS (FTOHs and PFBA; possible short-range deposition)
- Types of waste accepted determine PFAS composition and concentration

WWTP & Biosolids

- Short chains and terminal products may dominate (not always)
- Types of waste accepted AND treatment process determine PFAS mix

chate release from lined landfills could occur in:

PFAS-1, Section 2.6 Releases to the Environment.

Site Characterization: General Considerations

Conceptual Site Model

Review existing data and information

Site history, PFAS use/types, release locations, mixtures released, co-contaminants

Nature and location of potential receptors

Hydrogeologic setting

- Topography/Drainage
- Soil type
- Depth to water
- Nature of aquifer system & characteristics – unconfined/confined; permeability, porosity, velocity
- Nature of GW discharge seeps, tributaries, rivers, lakes, supply wells

Surface Water Relevant regulations, permits, standards

Site Characterization: General Considerations

Transport Pathways

- Release to GW
	- Vadose Zone Depth to water; soil type (sands vs. clays; clay layering); organic carbon content; pH; ion exchange capacity
	- Air-Water Interface Grain size; moisture content
	- GW System Soil type; pH; TDS/salts/divalent cations, cocontaminants; confining units
- Release to SW
	- **GW** discharge
	- **Storm runoff**

What to Analyze

VADOSE ZONE

- Soil type/particle size/porosity
- Moisture content
- Cation Exchange Capacity (CEC)
- **Example 2** Surface charge
- Multivalent cations
- Soil pH
- Organic Carbon
- Depth to GW

* Focus on air-water interface and clay lenses and layers

SATURATED GROUNDWATER SYSTEM

- pH, TDS, salts, turbidity, multivalent cations, co-contaminants
- GW gradient and velocity
- Depth to basement (unconfined vs confined conditions)
- Presence and depth to fractured rock, if applicable

* Focus on potential influences to GW movement (nearby pumping wells, GW-SW interactions, etc)

High Potential for PFAS Sample Contamination

Low PFAS screening or regulatory criteria

Inefficient decontamination procedures in source areas

Possible contamination from, or sorption to, equipment and materials

PFAS-Containing Foam – Four Layers

Foam – contains higher concentrations of PFAS than the underlying layers; as foam is formed, it removes PFAS from the water column.

Surface micro layer $-$ about 50 μ m thick - includes the airwater interface. Likely highest concentration of PFAS in water column

Neuston Layer – zone directly below surface micro layer. Rich in aquatic organisms

Underlying water column

Analytical Method Differences

PFAS-1, Section 11.2.1.3 Sample Analysis and Table 11-3.

TOP Assay (qualitative)

- **Estimate concentrations of oxidizable** precursors in sample.
- **Precursors can transform to** measurable PFAAs. TOP Assay oxidation forces transformation.
- **Predominant precursor transformation** products are perfluorocarboxylic acids (PFCAs).
- Increased concentrations of PFCAs after oxidation provide estimate of oxidizable precursors.
- Potential low biases:
	- Incomplete oxidation
	-

Data Visualization: PFAS Chemical Profiles

Many different methods to visualize PFAS profiles (all based on the same data)

Bar Charts

- Grouped by PFAS class and ordered by MW
- Y-axis allows consideration of concentrations
-

Pie Charts

- Grouped by PFAS class and ordered by MW
- Limited space to label compounds with large compound list
- Can be difficult to compare samples
- Easier to interpret with 10 or fewer compounds

- **Radar/Spider Charts** • Ordered by PFAS class ordered by MW PFMPA NEtFOSAA Limited space to label **NEtFOSE** PFUnA NMeFOSAA PEDoA compounds with a large NMeFOSE PFTrDA compound list **NEtFOSA** PFTeA • Easy to compare 3-5 samples, NMeFOSA PFHxDA 10.2FTS PFODA gets cluttered with more 8.2FTS 6.2FTS samples in a single plot
- Easier to interpret with 10 or fewer compounds

■ Can get cluttered with many samples | | Sar Chart figures adapted from PFAS-1 Figure 10-2. Source M. Benotti, NewFields. Used with 50 permission. Figures source: Michael Bock, Verdantas. Used with permission.

Data Visualization: Spatial Coordinates

Visual Representations of Data: Case Study 1

Example is from a site in Sweden where multiple fire training areas impacted groundwater

Rather than percent abundance, axes display a log-based 10 scale

Total PFCAS and PFSAS shown instead of individual compounds, to identify general group patterns

6:2 FTS differentiated from other precursors due to sitespecific considerations

Patterns in shape pertain to precursors vs. PFCA/PFSA relationships

Data Visualization: Case Study 1

- All chemical-specific precursors non-detect in main aquifer channel, attenuated near fire training areas.
- **PFSA and PFCA concentrations decline** along the main flow channel (for example, downgradient of G8 and G9).
- Concentrations of precursors in the vicinity of the fire training areas shown in the inset map are much higher than in the main groundwater flow channel.
	- Sorption
	- Biotransformation of 6:2 FTS and other precursors
	- Possibly groundwater $-$ surface water interactions
- Elevated PFCAs, PFSAs, and 6:2 FtS near at least two fire training areas: AFFFs produced using telomerization used at one point.

PFAS-1, Figure 15-3. PFAS composition in groundwater. Source: G. Carey, Porewater Solutions. Used with permission. 53

Data Visualization: Case Study 2

- Comparison of source zone concentrations (dark blue outline) vs. downgradient samples (light blue fill) show changes due to
	- **•** Migration
	- Dissolved Oxygen infusion wells
- Introduction of oxygen \rightarrow transformation of precursor compound FHxSA.
- Some differential transport of short and long chains.

Questions

Site Characterization

- Concerns for different source types
- Hydrogeological setting
- Sampling and Analysis
- Data interpretation and visualization

Fate and Transport

- Small-scale processes
- Movement in and between environmental media
- Differential transport of PFAS species (environmental fractionation)
- Precursor transformation

Conceptual

Site Model

Forensics

- PFAS fingerprinting
- Identification of unknown sources
- Techniques for distinguishing between multiple or overlapping sources

ECO_S

<https://pfas-1.itrcweb.org/> ⁵⁵

Understanding PFAS Sources

Learning Objectives

Site Characterization

-
-
-

Fate and Transport

-
-
-
-

Forensics

- PFAS fingerprinting
- Identification of unknown sources
- Techniques for distinguishing between multiple or overlapping sources

Conceptual Site Model

What is Environmental Forensics?

Environmental forensics is the application of the scientific method to answer questions about contamination events and their origin.

Link contamination to a source

Distinguish between multiple sources

Estimate the contribution from multiple individual sources to overlapping plumes

Evaluate effects of remediation or natural attenuation Predict or model sitespecific fate and transport of contaminants

PFAS Forensics Applications

- PFAS Forensics: application of environmental forensics to PFAS
	- Arguably in its nascent stages
- Applications so far include:
	- Source identification
	- Differentiation of overlapping sources
	- Evaluation of environmental fractionation
	- Identifying the types of AFFF used at a site
	- Identifying transport-related signatures
- Setting and history are very important

PFAS-1, Figure 15-2 Radial diagrams illustrating PFSA trends at an AFFF release site. Source: G. Carey, Porewater Solutions. Used with permission. PFAS Figure Source: M. Olson, Trihydro. Used with permission.

Source Identification: process of finding or identifying a source of contamination.

• Often applied when contamination is discovered without prior knowledge of source

Forensic methods can also be applied to source differentiation

- Two plumes from different sources overlap
- Anomalous data within known plume points to other undiscovered sources
- Distinguish between point and nonpoint (i.e., diffuse) sources – use caution

PFAS Forensics Techniques

- **Diagnostic ratios of PFAS mixtures** (e.g., PFOS:PFOA)
- Data visualization techniques (e.g., radial diagrams, bar charts)
- Specialized analytical techniques (e.g., non-target analysis, linear/branched speciation)
- Advanced multivariate statistics
	- (e.g., PCA, cluster analysis, receptor models)

PFAS-1, Figure 10-4 PCA scores plot of the analysis of a PFAS data set. Source: M. Benotti, NewFields. Used with permission. PFAS Figures Source: M. Olson, Trihydro. Used with permission. 61

PCA scores plot

Table 10-1. Example diagnostic ratios to compare PFAS signatures of Sample A or Sample B

PFAS Profiles: Bar Charts

- Comparison of PFAS signatures in individual samples using "unstacked" bar graphs
- Bars are scaled to show relative contributions, but y-axis can be used to ascertain concentrations
- Can be used as a quick way to compare PFAS profiles between one or several environmental samples

PFAS-1, Section 10.5.1.2 Figures adapted from PFAS-1 Figure 10-2. Source M. Benotti, NewFields. Used with permission. Figure source: Michael Bock, Verdantas. Used with permission.

Diagnostic ratios of PFAS mixtures: Stacked Bar Charts

- Stacked bar charts show compositional differences in PFAS.
- Removes the effect of total concentration, permitting similar fingerprints (e.g., potential sources) to plot together regardless of magnitude.
- Can be used as a quick way to compare PFAS profiles between few environmental samples

PFAS-1, Figure 15-1. Comparison of shallow and deep soil samples at an AFFF release site. Source: G. Carey, Porewater Solutions. Used with permission.

Data Visualization: Radial Diagrams

- Radial diagrams (a.k.a., radar charts, spider plots) – useful for quick visual reference
	- Can be useful beyond source differentiation.
	- Section 15.1 of ITRC PFAS-1 has two case studies showing environmental fractionation.
- Comparison of PFAS signatures in hypothetical Sample A and B using Radial Diagrams.
- **Plotting position is PFAS percent relative** abundance (concentration divided by total PFAS).
- Can be used as a quick way to compare PFAS profiles between few environmental samples on one graph, or many on a map.

Multivariate statistics

- In **PCA** correlated variables are transformed into a small number of uncorrelated variables. These principal components are used to simplify the visual representation of the variability in the dataset
- In **factor analysis/receptor models**, end member/factors that characterize the underlying structures in the dataset are identified. End/memebers/factors are used to simplify the visualization of the variability in the dataset.
- In **cluster analysis**, the similarity/dissimilarity between samples are calculated and used to define clusters of similar samples in a larger dataset.

Advanced multivariate statistics: Principal Component Analysis (PCA)

Advanced multivariate statistics: Clustering Analysis (CA)

Groups samples based on similarity/dissimilarity (i.e., chemical profile similarity)

- Not all clusters are sources. They may also reflect:
	- Site-specific fate-and-transport processes
	- Background/ambient
	- A mixture of sources found at similar proportions in large groups of samples

Advanced multivariate statistics: Factor Analysis (FA) and receptor models

Blind Source Separation

- **Estimate number of factors/end members**
- Estimate profiles for each factor/end member
- Estimate contribution of each factor/end member to each sample
- Not all end members are sources some may be weathering or transformation patterns, etc.

Advanced multivariate statistics: Limitations

No method, including multivariate statistics, is a silver bullet

- Factor analysis and clustering typically require user to specify number of factors or clusters.
- Iterative process to find a realistic solution.
- Practitioner must interpret results (clusters or factors don't inherently "mean" anything).

PFAS-1, Section 10.5 Source Identification. Illustration of generalized clustering. PFAS-1, Figure 10-4 PCA scores plot of the analysis of a PFAS data set. Source: M. Benotti, NewFields. Used with permission. Bar Chart figures adapted from PFAS-1 Figure 10-2. Source M. Benotti, NewFields. Used with permission. Bar charts and radar charts figure source: Michael Bock, Verdantas. Used with permission. bar charts and radar charts hydre source. Michael DOCK, verdantas. Osed with permission.
PFAS molecule diagrams. Christopher Olivares, UC Irvine. Used with permission.

Advanced multivariate statistics: Limitations

Site conditions often produce many non-source signatures:

- Diffuse (ambient) signatures or stable mixtures found in large numbers of samples
- Patterns due to environmental fractionation or differential transport
- Chemical (i.e., precursor) transformations

Always use multiple lines of evidence

- Other lab analyses
- Spatial / temporal trends
- Site-specific history and analytical records
- etc.

 $(\)$

Environmental Factors affecting PFAS Forensics

Sites typically contain mixtures of PFAS that exhibit wide range of physical and chemical properties

- **PFAS transported from source zones are redistributed** downgradient
- Groundwater transport depends on:
	- Soil characteristics (OM, pH, minerology, etc)
	- **PFAS characteristics (chain length, functional groups, molecular structure,** etc.)

PFAS Forensics Examples

Examples of fingerprinting studies for source identification include:

HRGCMS was used to assign the identity of 14 major compounds that accounts for a majority of the detectable PFAS in contemporary AFFF. (Ruyle et al 2021)

PFAS profiles have been developed for different sources, including various AFFF formulations. (Dasu et al 2022)

Review and Wrap Up

Site Characterization

- Concerns for different source types
- •Hydrogeological setting
- •Sampling and Analysis
- Data interpretation and visualization

Fate and Transport

- •Small-scale processes
- •Movement in and between environmental media
- •Differential transport of PFAS species (environmental fractionation)
- Precursor transformation

Forensics

- PFAS fingerprinting
- Identification of unknown sources
- Techniques for distinguishing between multiple or overlapping sources

Conceptual Site Model

ITRC PFAS Resources

ITRC PFAS: <https://pfas-1.itrcweb.org/>

Guidance Document

13 Fact Sheets

External Tables

PFAS Introductory Training

E Clu-In Archive: [https://www.clu](https://www.clu-in.org/conf/itrc/PFAS-Introductory/)[in.org/conf/itrc/PFAS-Introductory/](https://www.clu-in.org/conf/itrc/PFAS-Introductory/)

Other video resources

- Available through links on: https://pfas-1.itrcweb.org
- **Quick Explainer Videos**
- **Example 1 Longer PFAS Training Modules**
- **EXECUTE: Archived Roundtable Sessions**

Questions

Feedback Form & Certificate: www.clu-in.org/conf/itrc/PFAS-BTB-FT/

<https://pfas-1.itrcweb.org/>