## Starting Soon: TPH Risk Evaluation at Petroleum-Contaminated Sites



- TPH Risk Evaluation at Petroleum-Contaminated Sites (TPHRisk-1, 2018)
- Download PowerPoint file
  - CLU-IN training page at <u>https://clu-in.org/conf/itrc/TPHrisk/</u> Under "Download Training Materials"

Use "Join Audio" option in lower left of Zoom webinar to listen to webinar Problems joining audio? Please call in manually

> Dial In 301 715 8592 Webinar ID: 861 3049 0069#





Welcome – Thanks for joining this ITRC Training Class

2



#### TPH Risk Evaluation at Petroleum-Contaminated Sites



#### Prepared by The Interstate Technology & Regulatory Council TPH Risk Evaluation Team

Sponsored by: Interstate Technology and Regulatory Council (<u>www.itrcweb.org</u>) Hosted by: US EPA Clean Up Information Network (<u>www.cluin.org</u>)





- Course time is 2¼ hours
- This event is being recorded
- Trainers control slides
  - Want to control your own slides? You can download presentation file on CLU-IN training page

- Questions and feedback
  - Throughout training: type in the "Q & A" box
  - At Q&A breaks: unmute your phone with #6 to ask out loud
  - At end of class: Feedback form available from last slide
    - Need confirmation of your participation today? Fill out the feedback form and check box for confirmation email and certificate

Copyright 2019 Interstate Technology & Regulatory Council



# ITRC (<u>www.itrcweb.org</u>) – Shaping the Future of Regulatory Acceptance



- Host organization
- Network

4



ECOS

- State regulators
  - All 50 states, PR, DC
- Federal partners



 ITRC Industry Affiliates Program



- Academia
- Community stakeholders
- Follow ITRC



- Disclaimer
  - Full version in "Notes" section
  - Partially funded by the U.S. government
    - ITRC nor US government warranty material
    - ITRC nor US government endorse specific products
- ITRC materials available for your use – see <u>usage policy</u>
- Available from <u>www.itrcweb.org</u>
  - Technical and regulatory guidance documents
  - Online and classroom training schedule
  - More...



### **Meet the ITRC Trainers**





#### Usha Vedagiri

Wood. Oakland, CA 510-663-4218 usha.vedagiri@woodplc.com



Ross Steenson San Francisco RWQCB Oakland, CA 510-622-2445 ross.steenson@waterboards.c a.gov



Pat Locklin Maine DEQ Augusta, ME Patricia.A.Locklin@maine.gov



Diana Marquez Burns & McDonnell Kansas City, MO 816-822-3453 dmarque@burnsmcd.com



Rachel Mohler Chevron ETC Richmond, CA 510-242-4939 RMohler@chevron.com



Franics Ramacciotti GHD North Wales, PA 215-853-3281 francis.ramacciotti@ghd.com

Read trainer bios at <u>https://clu-</u> in.org/conf/itrc/TPHrisk/



#### TPH Risk Evaluation at Petroleum-Contaminated Sites (TPHRisk-1, 2018)



#### TPH Risk Evaluation at Petroleum-Contaminated Sites

HOME



Navigating this Website

1 Overview

- 2 Introduction
- 3 Regulatory Framework
- 4 TPH Fundamentals
- 5 Conceptual Site Models
- 🔻 6 Human Health Risk
- 7 Ecological Risk Assessment
- 8 Risk Calculators
- ▼ 9 TPH Special Considerations
- 10 Stakeholder Concerns
  11 TPH Risk Case Studies
- Additional Information



TPH Risk Evaluation at Petroleum-Contaminated Sites (TPHRisk-1)

#### **1** Overview

The Interstate Technology and Regulatory Council (ITRC) <u>Total Petroleum Hydrocarbons (TPH)</u> Risk Evaluation team has developed this guidance to assist state regulators and practitioners with evaluating risk and establishing cleanup requirements at <u>petroleum</u> release sites. This guidance focuses on factors that are unique to petroleum hydrocarbon releases and builds on other available documents published by the TPH Criteria Working Group (TPHCWG) (<u>1997a</u>, <u>1997b</u>, <u>1997c</u>, <u>1998a</u>, <u>1998b</u>, <u>1999</u>), ITRC Risk-3 (<u>2015</u>), Massachusetts Department of Environmental Protection (MADEP) (<u>2014</u>), California State Water Board–San Francisco Bay Region (CASWB-SFBR) (<u>2016a</u>), and Texas Commission on Environmental Quality (TCEQ) (<u>2017b</u>).





#### ► Why the Guidance?

- Learn What TPH is
- Learn TPH Analytical Methods
- Questions and Answers
- Environmental Fate of TPH
- Assessing Human and Ecological Risk from TPH
- Stakeholders Considerations
- Closing
- Questions and Answers





#### Purpose

8

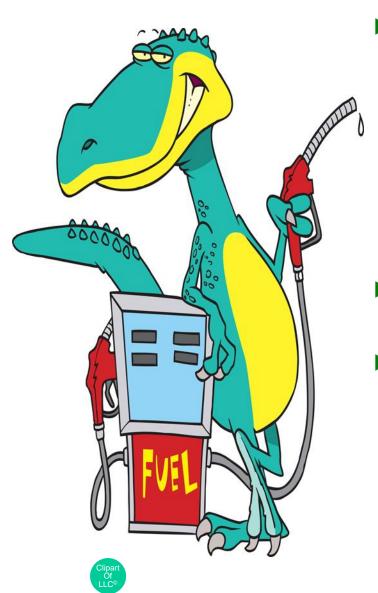
 Facilitate better-informed decisions relating to the evaluation of TPH risk at petroleum-contaminated sites, help regulators and project managers, who may not be skilled in risk assessment, interpret results

#### Goal

 Create better TPH guidance to help states develop consistent methodology for establishing risk-based cleanup levels and for establishing methods for riskbased corrective actions






After participating in this ITRC training course you will:

- Recognize the ITRC document as a go-to resource for evaluating TPH risk at petroleum-contaminated sites
- Recognize how TPH can change over time
- Select appropriate analytical method(s) to match site objectives
- Apply the decision process to determine when a sitespecific target level may be more appropriate than a generic screening level for TPH



## **Regulatory Framework for TPH**

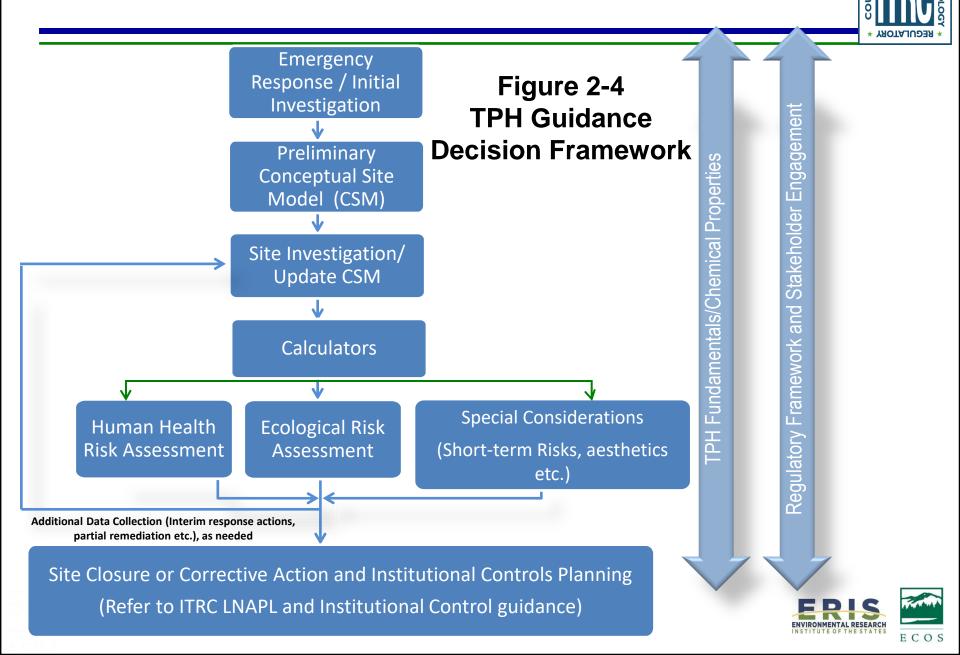




- Remedial Approaches & Risk Management
  - are not consistent;
  - may not address long- and short-term concerns with petroleum contaminant mass;
  - petroleum cleanups were based on laboratory concentrations to non-detect; and
  - the States Survey (Appendix C) shows a trend to a risk-based approach.
- Federal & State TPH Regulations
  - challenges
- State Underground Storage Tank Program Contacts:
  - <u>https://www.epa.gov/ust/underground-</u> <u>storage-tank-ust-contacts#states</u>






- Provides practical, applicable guidance on evaluating TPH for risk assessors
  - Regulators

- Consultants
- Industry
- Stakeholders



#### How to Use This Document

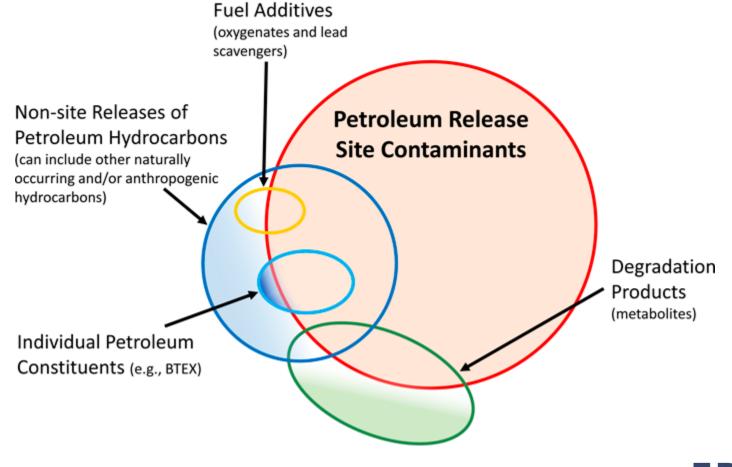
INTERSTATE







- **Site Status:** Inactive, Commercial Redevelopment
- Petroleum Release Type: Gasoline & Diesel
- Impacted Media: Soil, Soil Vapor, & Groundwater


HIDOH Case Study #1 (HIDOH 2018)



13



#### **Contaminants at Petroleum Release Sites**





14

ITRC TPHRisk-1 Figure 2-2

#### **Road Map**



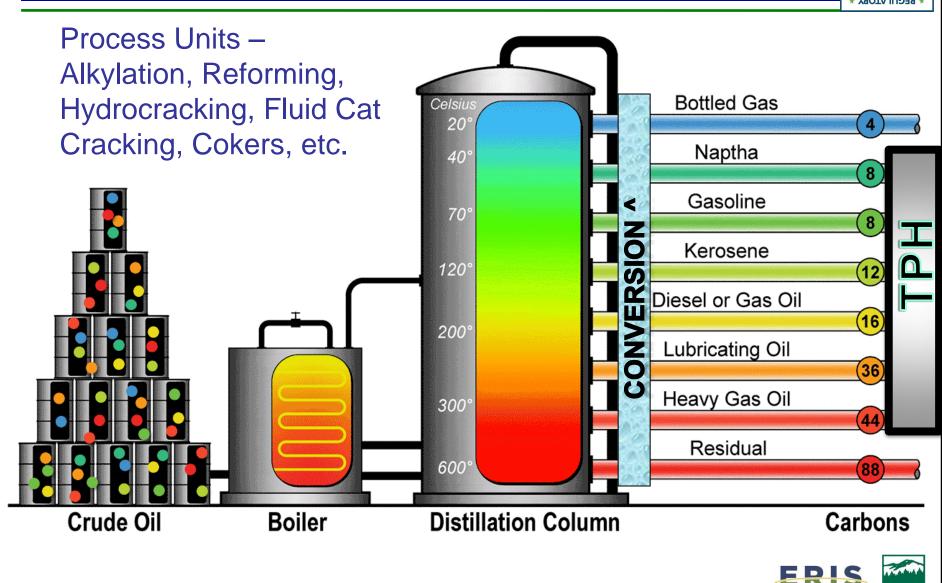
- ► Why the Guidance?
- Learn What TPH is
- Learn TPH Analytical Methods
- Questions and Answers
- Environmental Fate of TPH
- Assessing Human and Ecological Risk from TPH
- Stakeholders Considerations
- Closing
- Questions and Answers



#### Learn What TPH is








Know TPH sources and releases

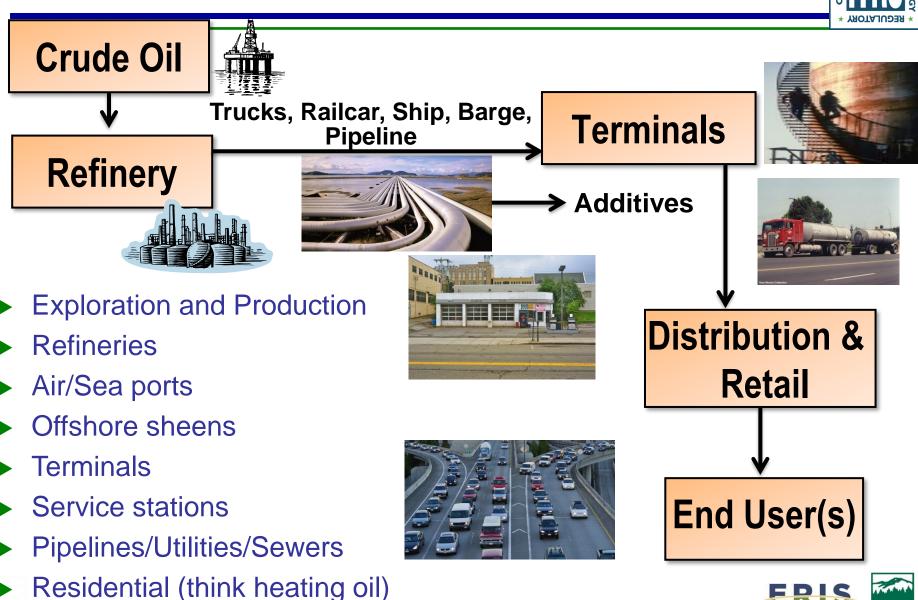
- Identify TPH constituents and properties
- Understand bulk TPH and challenges
- Provide considerations for TPH specific CSM using the case study
- Be familiar with common pitfalls with CSM development



### **TPH – Where does it come from?**



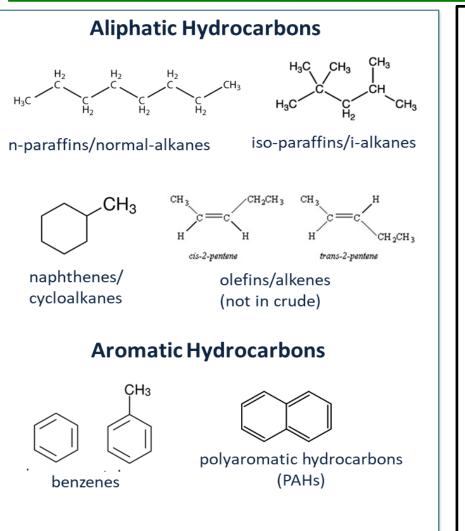
INTERSTATE


NVIRONMENTAL RESEARCH

ECOS






#### **TPH – Where does it come from?**



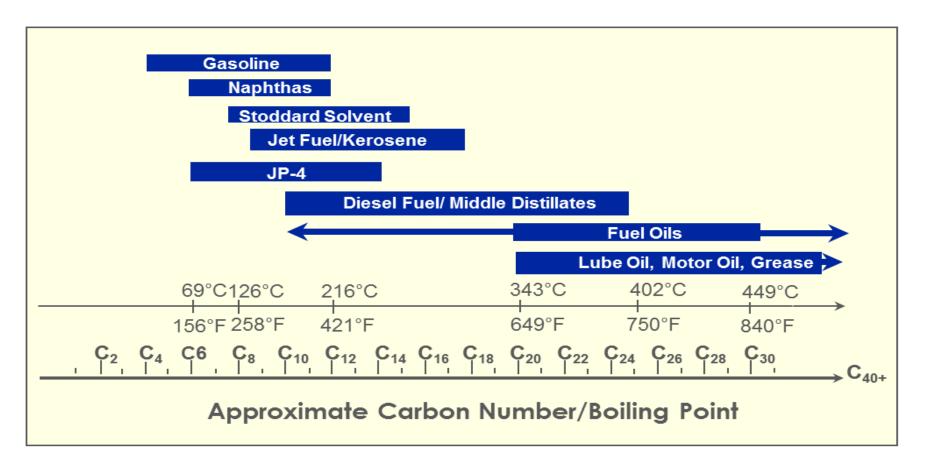
RONMENTAL RESEARCH ITUTE OF THE STATES E C O S

#### **TPH Constituents – Key Properties**





#### Aliphatic Hydrocarbons:


- Straight, branched and cyclic
- Non-polar
- Low water solubility

#### • Aromatic Hydrocarbons:

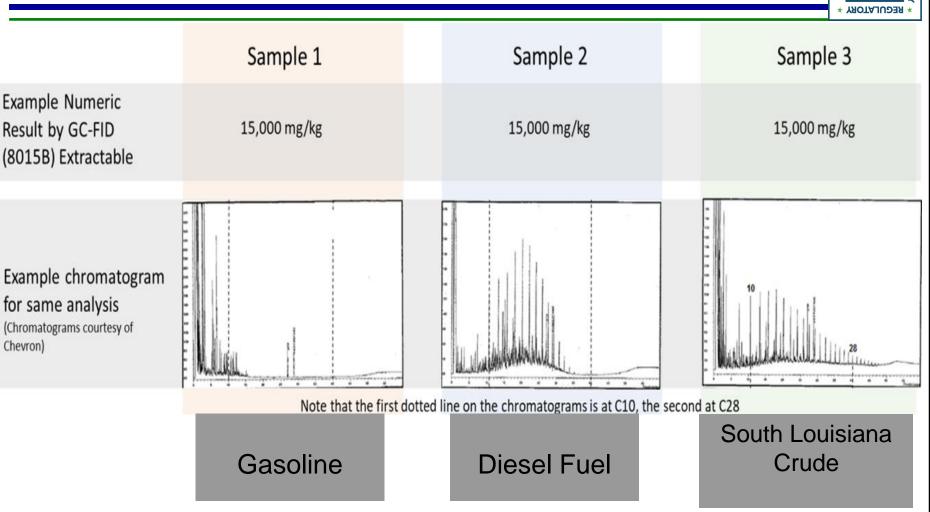
- Ring structures
- Some polarity
- Increased solubility in water



### What is in that petroleum release?



#### Bulk TPH Analysis is not composition specific. Products overlap in carbon ranges.


ITRC TPHRisk-1 Figure 4.2 (TPHCWG 1998)

JP – Jet Propellant



INTERSTA

## Bulk TPH – What's in that number?



X-AXIS: Elution Time/Carbon Number Y AXIS: Relative Concentration

ITRC TPHRisk-1 Figure 2-3

INTERSTA'



- TPH in environmental media is a measurement that is:
  - Defined by the analytical method used to measure it
  - Provides an <u>approximate</u> concentration of the total hydrocarbons in a complex mixture
  - Provides information about the size and distribution of the hydrocarbons
  - Not necessarily "total", not necessarily all from petroleum and not necessarily all hydrocarbons

# TPH data can only be properly interpreted with a good CSM!





- Composition changes with time and space due to weathering, influenced by site-specific conditions
- Impractical to analyze for hundreds of individual compounds
- Limited toxicity data

#### Group hydrocarbons with similar characteristics (e.g., environmental fate, toxicity, etc.)



ITRC TPHRisk-1 Chapters 4 and 6

#### **Case Study: Tank Farm**







Case Study



Reliance on BTEX and PAH data for CSM development

26

- CSM development allied with human direct exposure only
- Incorrect consideration for natural degradation data (e.g., consideration for TPH metabolites)
- Failure to incorporate nature, location and concerns from residual contamination



Poll Question



#### ► What is TPH?

- 1. TPH is defined by the analytical method
- 2. TPH is an accurate measure of the total hydrocarbons
- 3. TPH concentration does not include biodegradation products and metabolites
- 4. None of the above



#### **Road Map**



- Why the Guidance?
- Learn What TPH is
- Learn TPH Analytical Methods
- Questions and Answers
- Environmental Fate of TPH
- Assessing Human and Ecological Risk from TPH
- Stakeholders Considerations
- Closing
- Questions and Answers

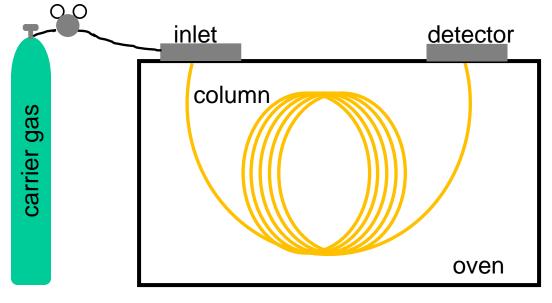




- Select the appropriate TPH Analytical Method based on data quality objectives
- Properly interpret analytical results
- Recognize when to question analytical results
- Recognize uses for field methods






- Considerations in selecting the analytical method include:
  - Project Objectives
  - Regulatory Requirements
  - Application (detection, delineation, monitoring, risk assessment, etc.)
  - Petroleum type (if known)
  - Media

#### No method can do everything!





- Laboratory method for TPH analysis: Gas Chromatography
  - For separating mixtures into components
  - Based on volatility of molecules
  - Several options for detectors





#### Selecting appropriate TPH Lab Methods Table 5-4)



- Site Assessment, determination of extent of impacts, total extractable organics
  - EPA Methods 8015 and 8260

32


- Transport, RSLs, Sinere are cological Risk assessment Lab if there are Ecological Risk
  - -ssessment of hydrocarbons only. determination of extent of hydrocarbon impacts
    - EPA Method 3630C with 8015, 8260
    - EPA Method 3630C with TX1005

For additional details see Table 5-4 of guidance document, Zemo, 2016 Whitepaper



- USEPA Method 3630C
  - Removes non-hydrocarbons
  - Column cleanup is most effective
  - Should request that lab surrogate be added to ensure efficient cleanup
  - Used with Bulk TPH method
- Uses include:
  - Determination of extent of hydrocarbon impact
  - Delineation of true hydrocarbons or what could be natural occurring organics in background or metabolites
- Not to be used for TPHg or Air samples





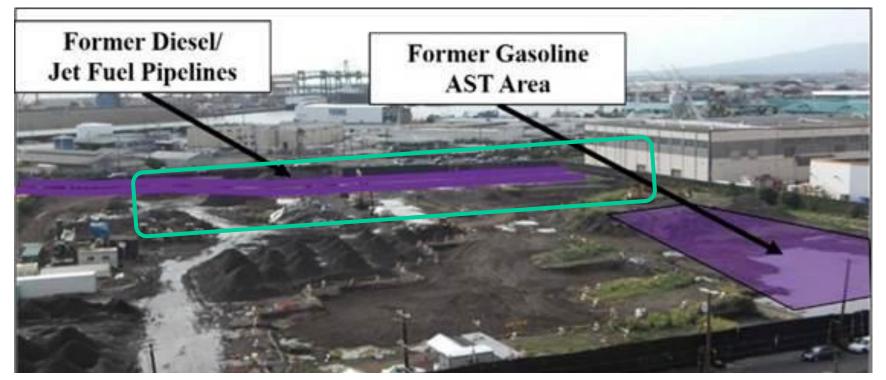






- Fractionation typically relies on the use of silica gel to separate the sample into aliphatic and aromatic classes\* Volatile?
- The fractions are then injected into a GC for separation into carbon ranges
- ► However, they
  - Cost more than bulk TPH
  - Raise the reporting limits
  - Non-hydrocarbons will be removed from analysis (results)

\* Class separation in the volatile range does not rely on use of silica gel




Hydrocarbons?

Soluble?

Toxicity?

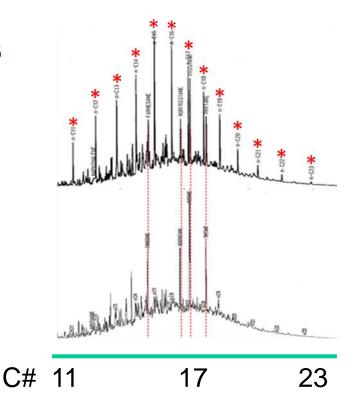
#### Case Study: Tank Farm Application of Analytical Methods



- Soil: Bulk TPH collected across the site
- Soil Vapor: Fractionation data collected at select locations in the diesel plume to determine site specific screening levels
- Groundwater: Bulk TPH with silica gel cleanup collected in select areas along downgradient edges of diesel plume to assess the degradation state and determine locations requiring active remediation

HIDOH Case Study #1 (HIDOH 2018)

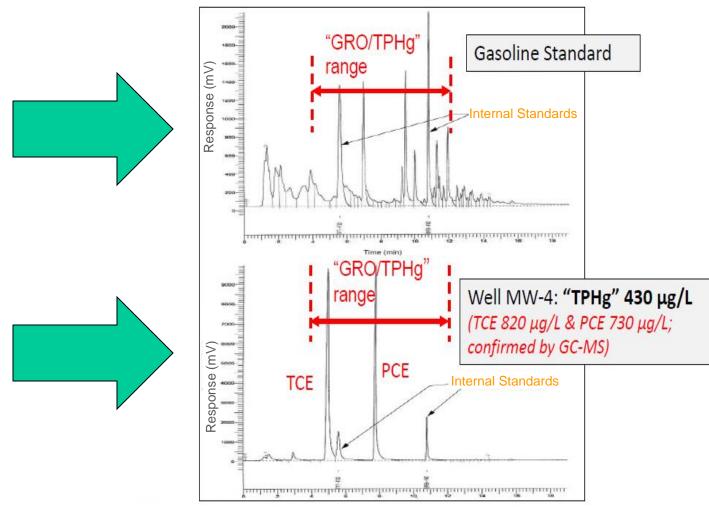



35

# Chromatograms are not just pretty pictures (Fact Sheet A.6)



#### Provide information on


- Type of material
- Presence of non-hydrocarbons
- Presence of solvents
- Presence of non-dissolved hydrocarbons
- Poor integration
- Weathering
  - Degree of weathering
  - Type of weathering

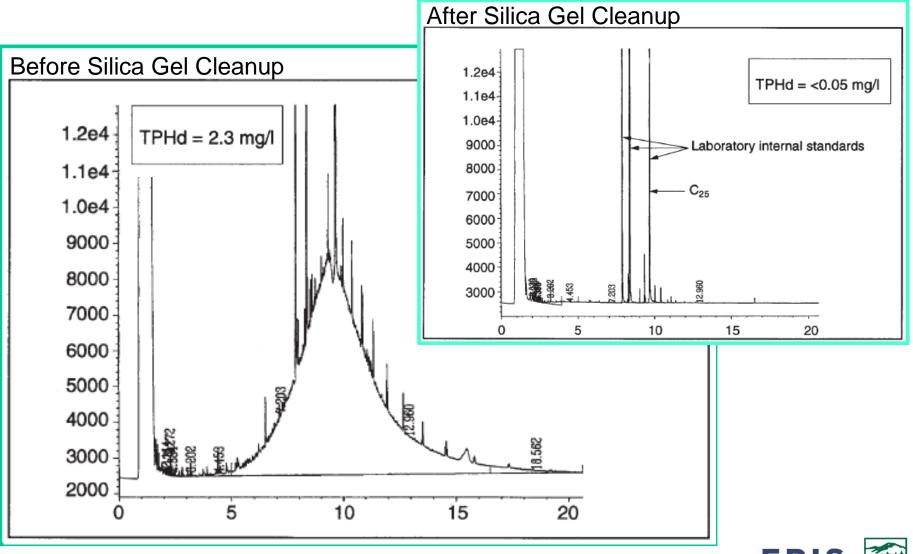




#### Practical Example #1 of Measurement Interferents (as determined by chromatograms)






Zemo & Associates, Inc.



ITRC TPHRisk-1 Figure A5-6

#### Practical Example #2 of Measurement Interferents (as determined by chromatograms)





ITRC TPHRisk-1 Figure A5-5 (Zemo 2016)

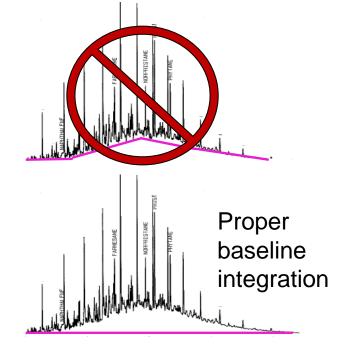
38





# All USEPA Method 8015 results are directly comparable, regardless of lab

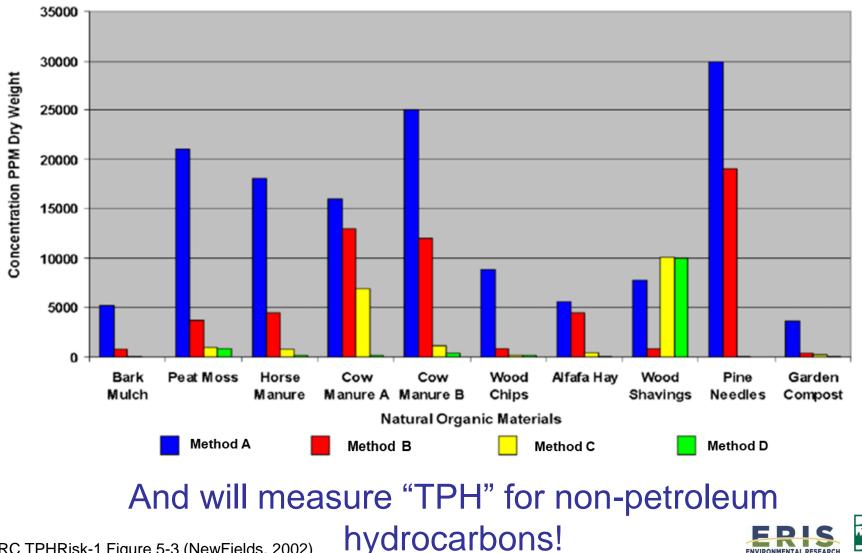
- 1. True
- 2. False
- 3. Not Sure




#### Not all TPHd by EPA method 8015 is Equal

#### Extraction Solvent

- n-pentane
- dichloromethane
- Baseline Correction
- Carbon Ranges
  - C6-C10 vs. C6-C12
  - C12-C26 vs. C12-C28
- Calibration Standard


Don't assume a change has occurred at a site if the TPH value suddenly changes!







#### Four TPH Methods will Yield Four **Different Results**



ITRC TPHRisk-1 Figure 5-3 (NewFields. 2002)

ENVIRONMENTAL RESEARCH ECOS



# **TPH Field Methods**

- ► When do field methods make sense
  - During initial field screening
  - During plume delineation
  - While excavation is open
- Which field methods make sense
  - Is product known
    - Volatiles
    - Semi-volatiles
    - Wet chemistry vs meter
- Appendix D
  - Pros and Cons

#### Follow up with laboratory methods to confirm your conclusions!

http://www.buygasmonitors.com/rae-systems-minirae-3000

www.hach.com/test-kits/immunoassay-test-kits

Oil-in-soil collected by Maine DEP











## **Road Map**



- ► Why the Guidance?
- Learn What TPH is
- Learn TPH Analytical Methods
- Questions and Answers
- Environmental Fate of TPH
- Assessing Human and Ecological Risk from TPH
- Stakeholders Considerations
- Closing
- Questions and Answers



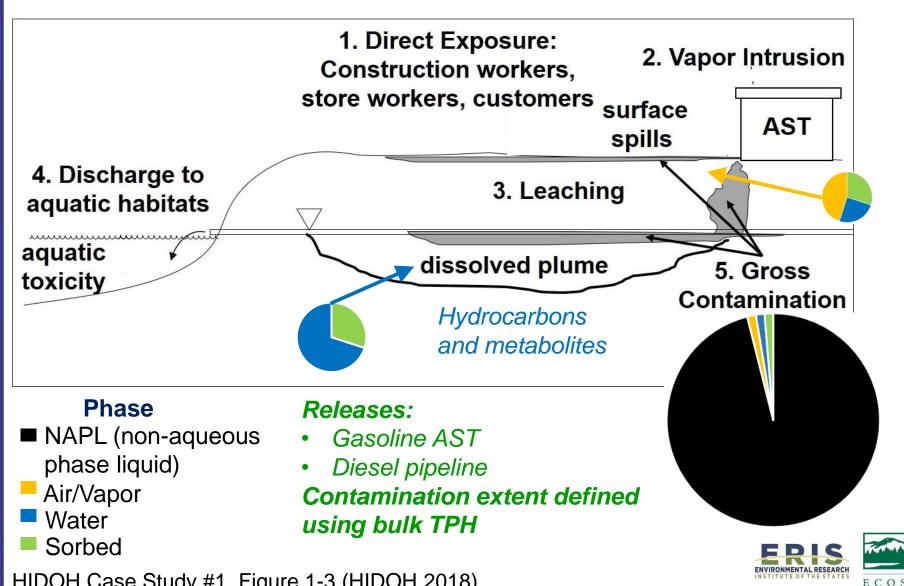
## **Road Map**



- ► Why the Guidance?
- Learn What TPH is
- Learn TPH Analytical Methods
- Questions and Answers
- Environmental Fate of TPH
- Assessing Human and Ecological Risk from TPH
- Stakeholders Considerations
- Closing
- Questions and Answers



### Learning Objectives – Environmental Fate of TPH


45



- Key Message: TPH composition changes after release to the environment and composition affects risk.
- Understand how physical weathering changes TPH composition
- Understand biological weathering also changes TPH composition and generates petroleum metabolites
- Anticipate TPH composition changes throughout a site

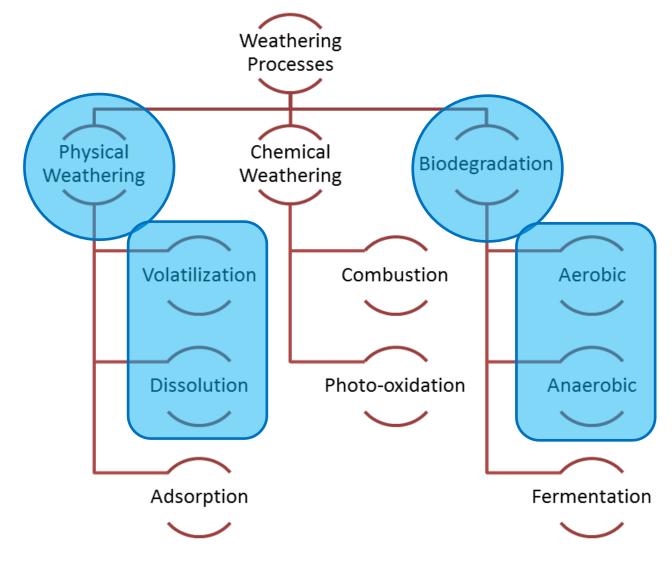


#### **Conceptual Site Model: Source and Migration Pathways**

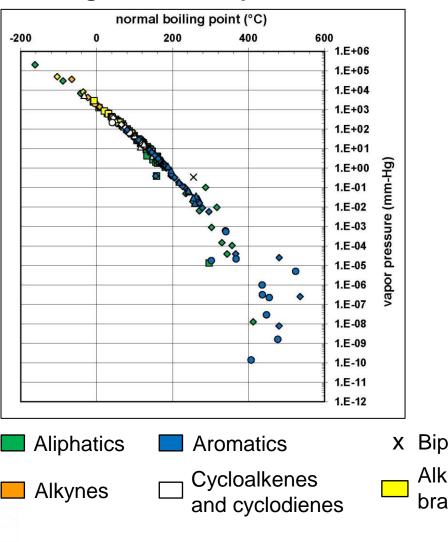


HIDOH Case Study #1, Figure 1-3 (HIDOH 2018)

Study


Case

## **Weathering Processes Overview**


**\* INTERSTATE** 

ENVIRONMENTAL RESEARCH

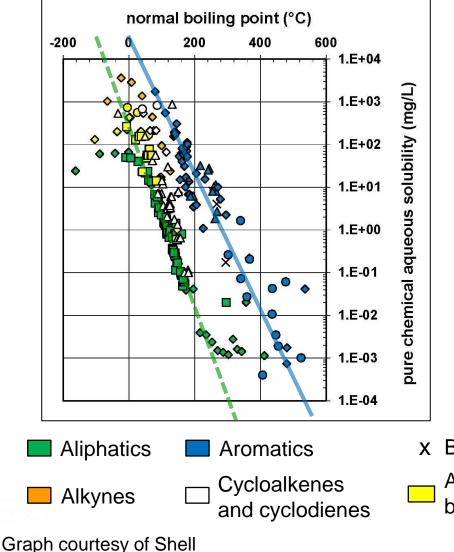
ECOS



ITRC TPHRisk-1 Figure 4-8



Graph courtesy of Shell


#### **Boiling Point vs. Vapor Pressure**

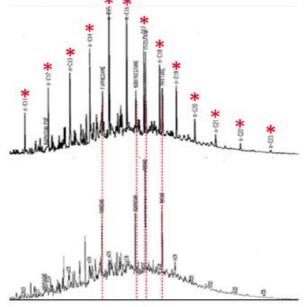
- All classes plot along single curve
- Smaller hydrocarbons have greater volatilization potential and likely dominate TPH vapor composition
- Note: Scatter at lower vapor pressure is related to measurement difficulty
- X Biphenyls
  Alkenes (straight and
  - branched) and Dienes





#### **Boiling Point vs. Aqueous Solubility**




- Smaller hydrocarbons are more soluble
- Hydrocarbon structure differences:
  - Aromatics (solid line/right) most soluble
  - Aliphatics (dashed line/left) least soluble
- TPH water composition likely dominated by aromatics
- x Biphenyls

Alkenes (straight and branched) and Dienes



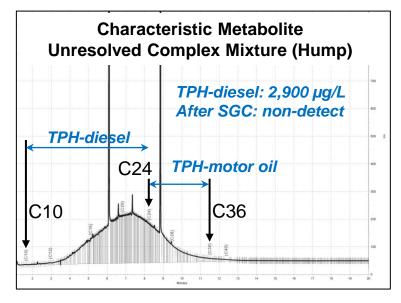
# **Biodegradation (Biological Weathering)**

- Biodegradation of hydrocarbons well documented for +100 years
- Hydrocarbons readily undergo biodegradation under aerobic conditions
  - Some hydrocarbons degrade more readily than others (see figure)
- Biodegradation is a stepwise process – each step leads to new metabolites
- Anaerobic biodegradation typically is slower and more prone to buildup of petroleum metabolites



Highly Branched Alkanes Remain After Biodegradation




# **Petroleum Metabolites**



- Are intermediate biodegradation products
- Molecules include oxygen and have properties different from hydrocarbons (e.g., polar)
- Commonly detected as extractable TPH when silica gel cleanup (SGC) not used. Identify using:
  - Chromatogram pattern
  - Analysis with and without SGC
  - Understanding of solubility
  - Conceptual site model

#### Solubility of n-Hexane vs. Two n-Hexane Metabolites

| Chemical      | Formula                        | Boiling<br>Point<br>(°C) | Solubility<br>(µg/L) |
|---------------|--------------------------------|--------------------------|----------------------|
| n-Hexane      | C <sub>6</sub> H <sub>14</sub> | 69                       | 9.5E+03              |
| 2-Hexanone    | $C_6H_{12}O_1$                 | 128                      | 7.7E+06              |
| Hexanoic Acid | $C_6H_{12}O_2$                 | 205                      | 5.8E+06              |



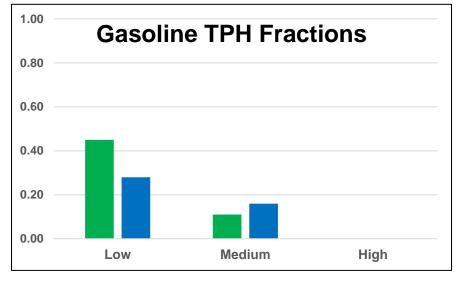




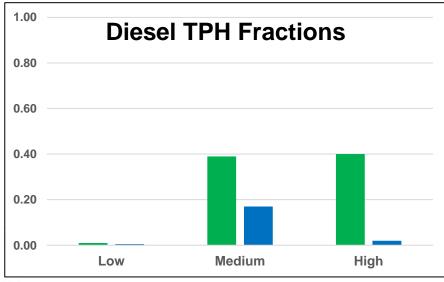
| <b>Structure</b><br>Aliphatic | EC5-6 | o<br>ترو | ۵-07<br>۲     | EC8-10 | EC10-12 | EC12-16 | EC16-21 | EC21-35<br>(same properties as EC16-21)<br>not considered a transport fraction | TPH<br>Criteria<br>Working            |
|-------------------------------|-------|----------|---------------|--------|---------|---------|---------|--------------------------------------------------------------------------------|---------------------------------------|
| <b>Molecular</b><br>Aromatic  | EC5-7 | Benzene  | EC7-8 Toluene | EC8-10 | EC10-12 | EC12-16 | EC16-21 | EC21-35                                                                        | Group<br>13<br>Transport<br>Fractions |

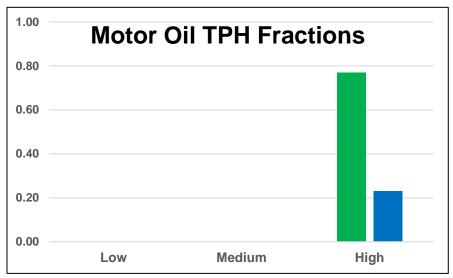
Increasing Equivalent Carbon (EC) Number

| Structure        | ec5-8 | EC8-16 | EC16-35 | EPA       |
|------------------|-------|--------|---------|-----------|
| Aliphatic        | Low   | Medium | High    | 6         |
| <b>Molecular</b> | EC6-9 | EC9-22 | EC22-35 | Toxicity  |
| Aromatic         | Low   | Medium | High    | Fractions |


Increasing Equivalent Carbon (EC) Number




## TPH Composition in Non-Aqueous Phase Liquid (NAPL)




#### **Example TPH Fraction Proportions in Three Unweathered NAPLs**



53





Aliphatic

Aromatic

Y-Axis: Mass fraction (1.00 = 100%)

Using 6 EPA TPH Fractions

Fraction compositions estimated from ATSDR documents



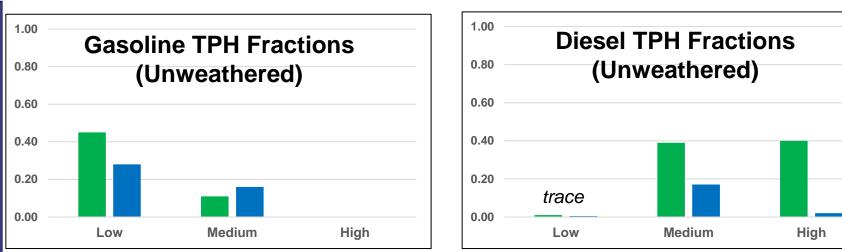
# NAPL: TPH Composition Change Due to Weathering



Weathering of NAPL is also known as Natural Source Zone Depletion (NSZD) – see ITRC LNAPL-3 (2018)

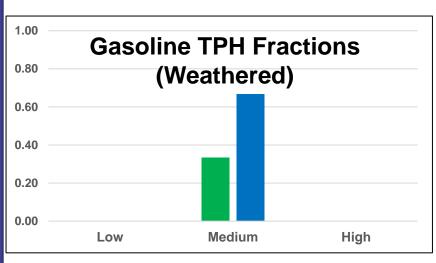


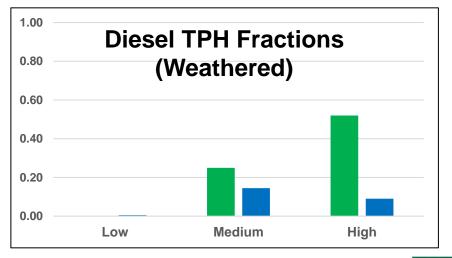
54


Printed from: Interstate Technology & Regulatory Council (ITRC). 2018. Light Non-Aqueous Phase Liquid (LNAPL) Site Management: LCSM Evolution, Decision Process, and Remedial Technologies. LNAPL-3. Washington, D.C. https://lnapl-3.itrcweb.org.

Appendix B-Natural Source Zone Depletion (NSZD) Appendix

- Over time, weathering changes the remaining NAPL composition (and therefore risk)
  - Mobile hydrocarbons partition out, depleting the remaining NAPL
  - While biodegradation continues, metabolites will be generated





## Weathered NAPL: TPH Composition Change Example



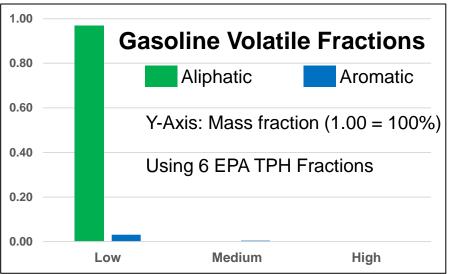
Case Study

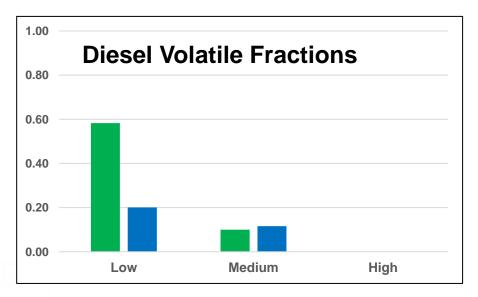
55



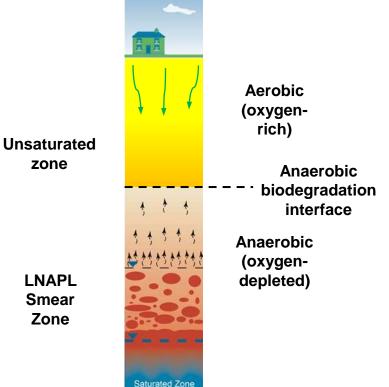


Aliphatic


Aromatic


Composition: weathered gasoline from IRhodes weathered diesel based on TPHCWG data





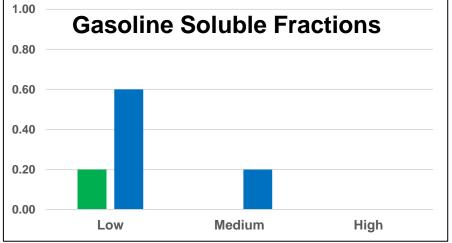

## Vapor: TPH Fraction Composition Near NAPL and Fate/Exposure



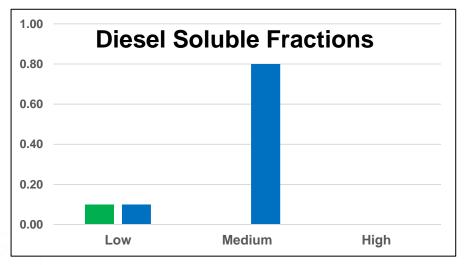


#### TPH Vapor Attenuation to Surface in Presence of Oxygen



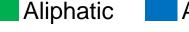

Source: ITRC PVI Guidance 2014




**INTERSTA** 

Composition based on Uhler et al. 2010

# Example TPH Fraction Proportions in Water from Two NAPLs (Unweathered)




57



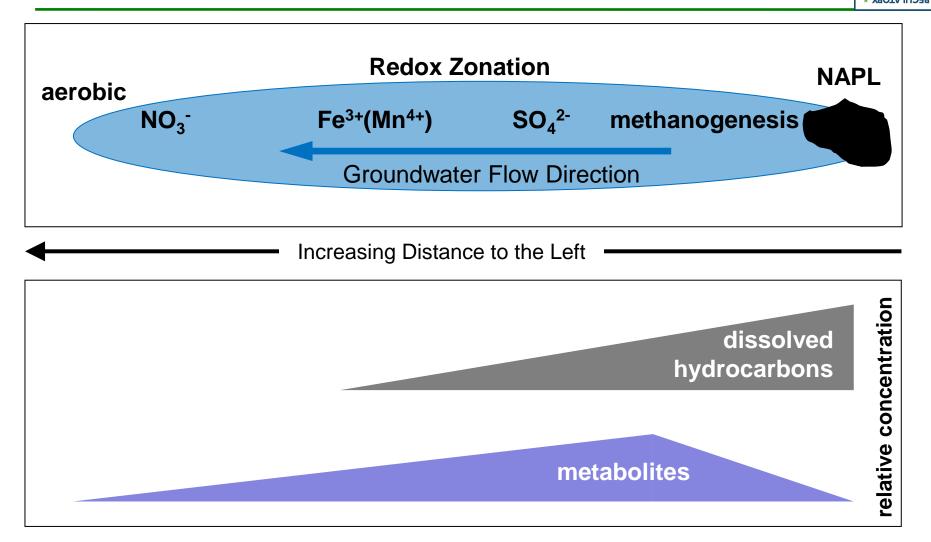
Composition based on Zemo and Synowiec (1995)

Groundwater: TPH Fraction Composition (Near NAPL)



Aromatic

Y-Axis: Mass fraction (1.00 = 100%) Using 6 EPA TPH Fractions


#### Fate of TPH Groundwater Plumes

- Dissolved hydrocarbons attenuate with increasing distance from release
- TPH-Gasoline Plume Length (Shih et al. 2004):
  - Median: about 220 feet
  - Max: about 600 feet





# **Groundwater: Fate and Exposure**



Information on relative hydrocarbon/metabolite concentrations based on Zemo et al. 2016. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface (Wiedemeier et al. 1999)



#### **Poll Question**



- CSM: 30-year old, large diesel spill at bulk terminal site, where diesel is about EC8-EC26.
- What soluble TPH fractions or petroleum-related compounds are more likely present in a groundwater sample downgradient of the source area?
  - 1. All fractions/chemicals
  - 2. Low aromatics (EC6-EC9)
  - **3.** High aliphatics (EC16-EC35)
  - 4. Petroleum metabolites
  - 5. None of the above





#### ► TPH is a complex mixture

- The mass and composition of TPH change after release in a site-dependent manner depending on:
  - Individual hydrocarbon properties
  - Site conditions

60

Understanding how TPH mass and composition change at a site leads to understanding how TPH risk changes at a site



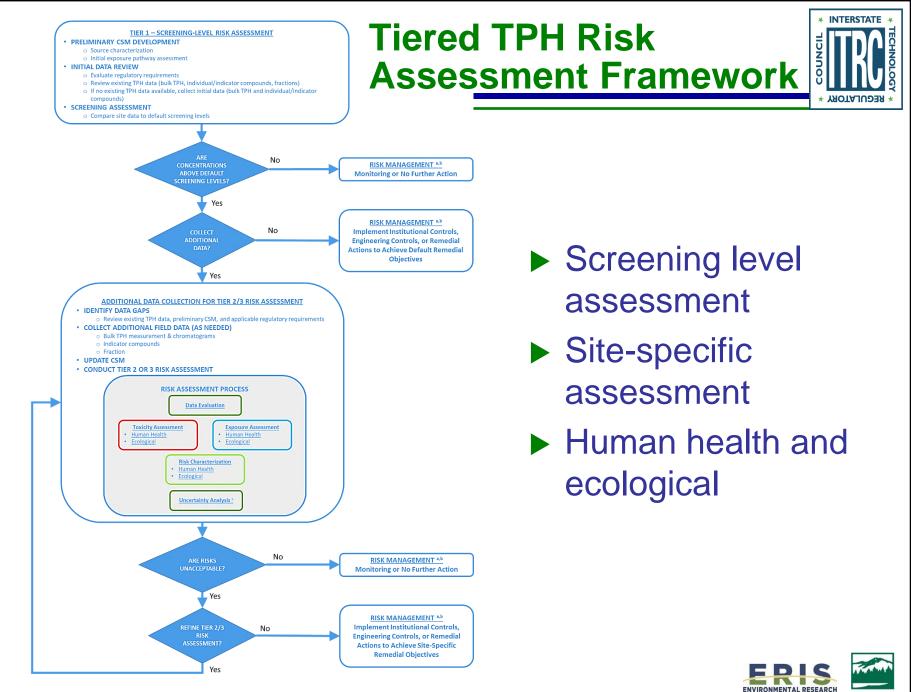
# **Road Map**



- ► Why the Guidance?
- Learn What TPH is
- Learn TPH Analytical Methods
- Questions and Answers
- Environmental Fate of TPH
- Assessing Human and Ecological Risk from TPH
- Stakeholders Considerations
- Closing
- Questions and Answers



## Learning Objectives – Assessing Human and Ecological Risk from TPH

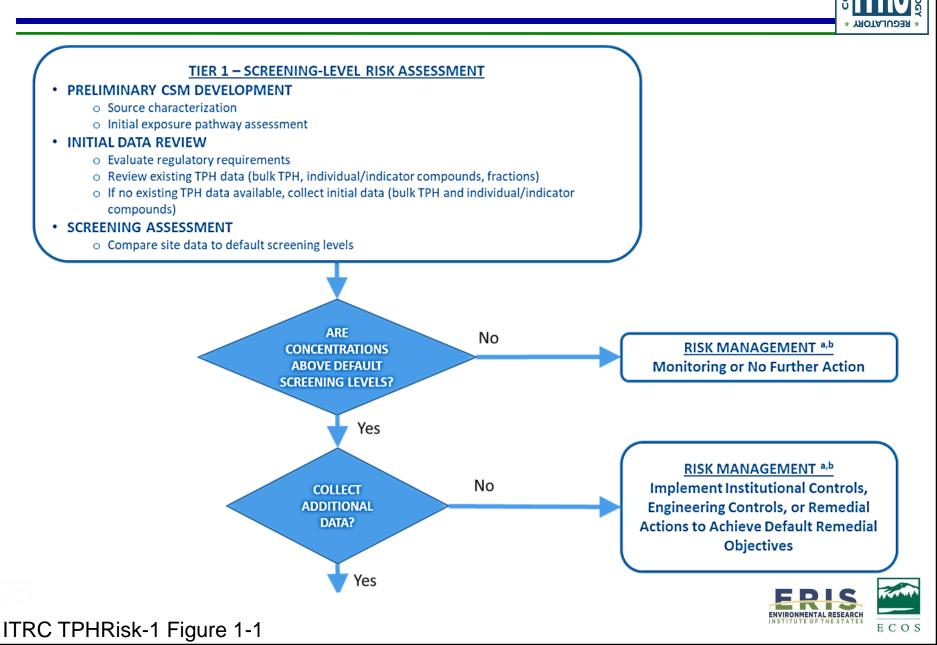



- Learn how tiered screening-level and site-specific approaches can be applied to human health and ecological TPH risk assessments
- Recognize how the unique analytical and fate and transport characteristics of TPH as a mixture affect risk assessment
- Determine whether your existing data is sufficient to estimate TPH risk
- Gain an appreciation for the uncertainties specific to TPH risk assessment



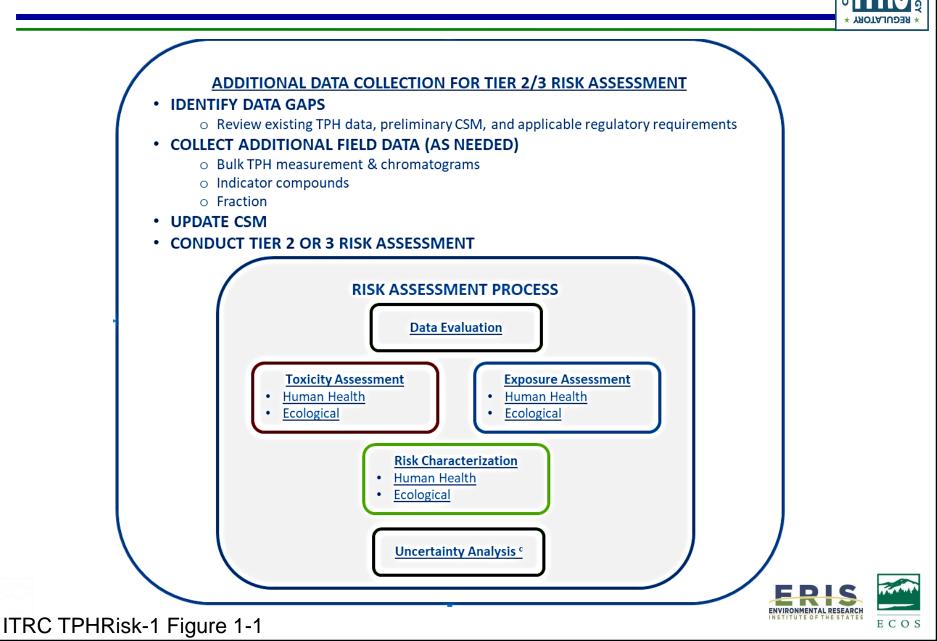
62






INSTITUTE OF THE STATE!

ECOS

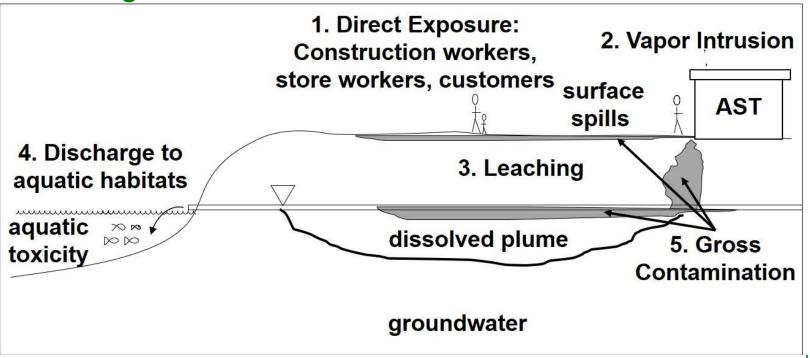

ITRC TPHRisk-1 Figure 1-1

## **Screening-Level Assessment**



INTERSTATE

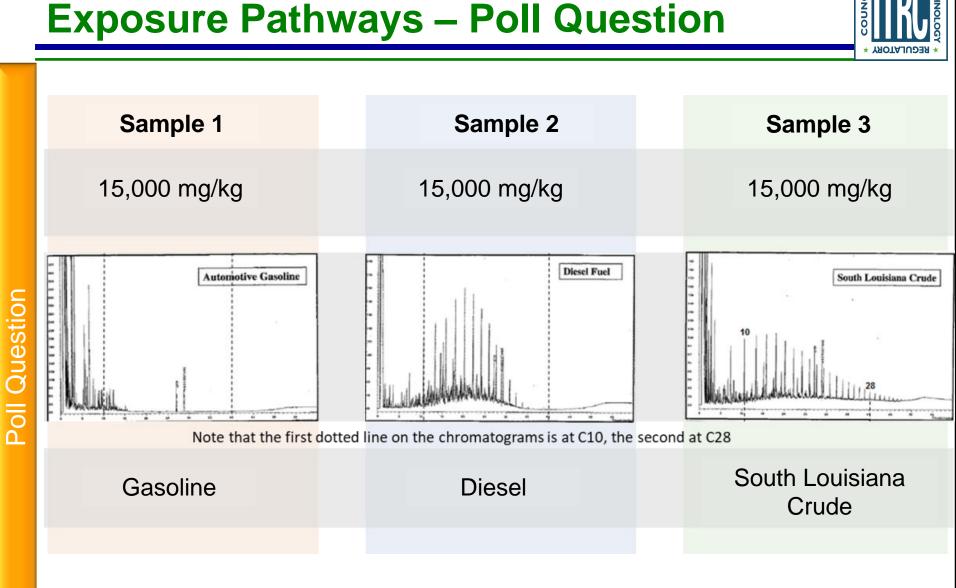
## **Site-Specific Assessment**




INTERSTAT

#### **Conceptual Site Model: Exposure Assessment**




- Unique characteristics of TPH effect exposure assessment
  - Partitioning across media
  - Changes over time

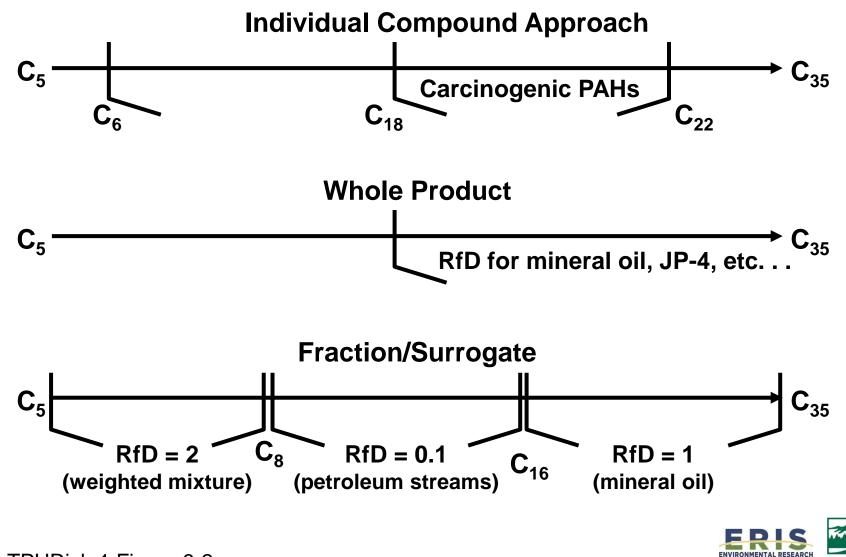




66

HIDOH Case Study #1 (October 2018)

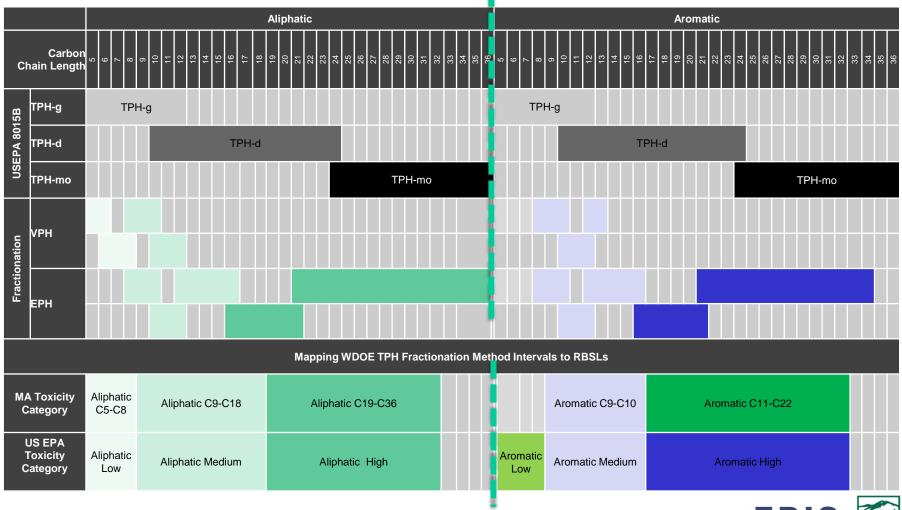





INTERSTAT

**ITRC TPHRisk-1 Figure 2-3** 

#### **Human Health**






ITRC TPHRisk-1 Figure 6-2



#### Group TPH Fractions intervals to be consistent with TPH toxicity values





ECOS

#### Example Toxicity Values Under TPH Fraction Approach



| Fractions                                              | tions TPHCWG (1997)  |                                                             | MA DEP<br>(2003) |                       | USEPA PPRTV<br>(2009) |                      | TCEQ<br>(2010)   |                       |
|--------------------------------------------------------|----------------------|-------------------------------------------------------------|------------------|-----------------------|-----------------------|----------------------|------------------|-----------------------|
|                                                        | RfD<br>(mg/kg-<br>d) | Surr (s)<br>Comp (c)                                        | RfD<br>(mg/kg-d) | Surr (s)<br>Comp (c)  | RfD<br>(mg/kg-d)      | Surr (s)<br>Comp (c) | RfD<br>(mg/kg-d) | Surr (s)<br>Comp (c)  |
| Aliphatics<br>Low Carbon<br>Range (C5-C8)<br>(EC5-EC8) | 5                    | (s) Commer-<br>cial hexane<br>where n-<br>hexane is<br>≤53% | 0.04             | (s) n-hexane          | 0.3                   | (s) n-hexane         | 0.06             | (s) n-hexane          |
| Aromatics<br>Low Carbon                                | 0.2                  | (s) toluene                                                 | NA               | (c) benzene           | 0.004                 | (c) benzene          | 0.1              | (s) ethyl-<br>benzene |
| Range(C6-C8)<br>(EC6-EC<9)                             |                      |                                                             | 0.2              | (c) toluene           | 0.08                  | (c) toluene          |                  | 00120110              |
|                                                        |                      |                                                             | 0.1              | (c) ethyl-<br>benzene | 0.1                   | (c) ethyl-           |                  |                       |
|                                                        |                      |                                                             | 2                | (c) xylenes           |                       | benzene              |                  |                       |
|                                                        |                      |                                                             | 0.2              | (c) styrene           | 0.2                   | (c) xylenes          |                  |                       |

TPHCWG – Total Petroleum Hydrocarbon Criteria Working Group MA DEP – Massachusetts Department of Environmental Protection USEPA = United States Environmental Protection Agency TCEQ – Texas Commission on Environmental Quality PPRTV – Provisional Peer-Reviewed Toxicity Values

70



Study

Case



#### Started with bulk TPH data

|       |                      | TPH Screening Level |          |                        |  |  |
|-------|----------------------|---------------------|----------|------------------------|--|--|
|       | Example<br>Soil Data | Direct<br>Exposure  | Leaching | Gross<br>Contamination |  |  |
| COPC  | (mg/kg)              | (mg/kg)             | (mg/kg)  | (mg/kg)                |  |  |
| TPHg  | 12,000               | 2,400               | 400      | 500 (5,000)            |  |  |
| TPHmd | 48,000               | 500                 | 500      | 500 (5,000)            |  |  |
| TPHrf | 17,000               | 140,000             | 1000     | 2,500 (5,000)          |  |  |

Uncertainty in nature of product in diesel range prompted fraction analysis for soil gas

| Carbon Range       | Assumed<br>Subslab Vapor<br>Concentration<br>(mg/m <sup>3</sup> ) | Subslab Vapor<br>Screening Level<br>(mg/m <sup>3</sup> ) |
|--------------------|-------------------------------------------------------------------|----------------------------------------------------------|
| C5-C8 aliphatics   | 3,200                                                             | 350                                                      |
| C9-C12 aliphatics  | 5,500                                                             | 59                                                       |
| C13-C18 aliphatics | 130                                                               | 59                                                       |
| C9-C10 aromatics   | 32                                                                | 59                                                       |
| C11-C16 aromatics  | ND (<4)                                                           | 59                                                       |



HIDOH Case Study #1 (October 2018)



#### Challenge assessing risk

- Limited toxicity information for individual metabolites and mixtures
- Options for evaluating metabolite toxicity
  - Exclude from evaluation
  - Use the RfD from the Rogers et al. (2002) study
  - Adopt the toxicity ranking model from Zemo et al. (2013, 2016)
  - Treat the bulk metabolites and bulk hydrocarbons as having similar toxicity (HIDOH, 2017) and (CSWB-SFBR, 2016)





- Primary pathway of concern was vapor intrusion
- Acute safety/explosive concern
- Addressed stakeholder concerns
  - Vapor mitigation systems
  - Asphalt cover to address direct contact
  - Emergency hazard management plans for safety concerns



## Now let's move on from humans...

















#### Three different sites:

- Site A gas station release from a UST, paved site, depth to groundwater at 100 feet below land surface
- Site B gas station release, paved with channeled groundwater discharge to a creek a half-mile away
- Site C continuing release from an oil refinery with terrestrial and aquatic habitats nearby





- Absence of viable habitats (e.g., paved sites)
- Contamination found below the root zone and burrowing zones of ecological receptors
- No release to nearby, viable (or protected) aquatic and terrestrial habitats
- Policies and regulations on exclusion criteria (see Table 5-3)





- State or local regulations require an ERA
- Screening Level values are available
- Screening levels are appropriate for site conditions and type of release
- Data Requirements for Screening ERA
  - Consider data for bulk TPH (TPH-g, TPH-d) and indicators (BTEX, PAHs)
  - TPH fraction data usually not available or necessary
  - See Tables 7-12 and 7-13 for analytical data choices and uses



ITRC TPHRisk-1 Tables 7-12 and 7-13



 CA Water Board Whole Product Screening Levels for Water (Table 7-1)

|       | Fresh (ppb) | Marine (ppb) | Estuarine (ppb) |
|-------|-------------|--------------|-----------------|
| TPH-g | 500         | 3,700        | 500             |

Canadian Soil Guidelines for Fraction F1

|                 | Plants and<br>Invertebrates (ppm) | Wildlife (ppm) |
|-----------------|-----------------------------------|----------------|
| TPH F1 (C6-C10) | 210-320                           | 11,000         |

More details on available screening levels in Section 7.2 and Table 7-1





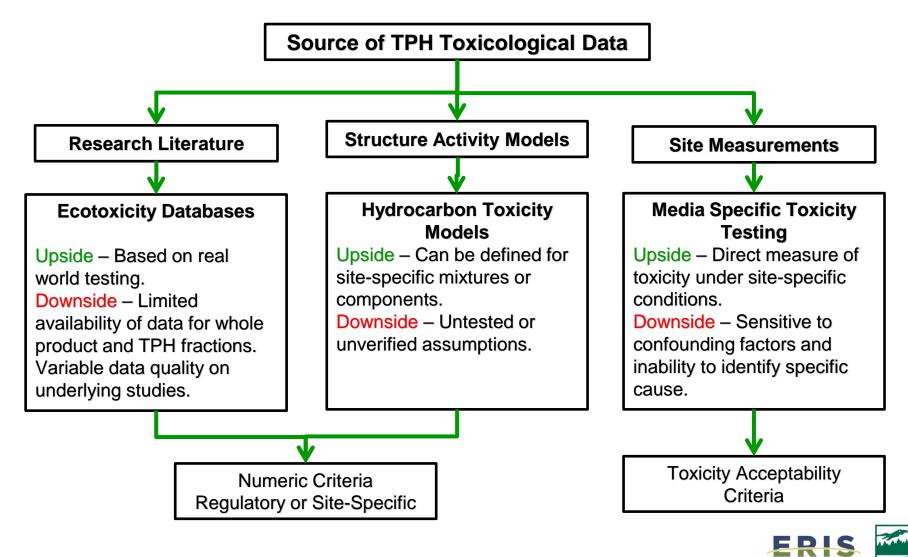
- When screening levels are lacking or exceeded
- At complex sites with multiple media, sensitive habitats and receptors
- Data needs for Site-Specific ERA
  - Consider combination of useful data types
    - Whole product and indicators
    - Water soluble and water accommodated fractions for aquatic habitats
    - Aliphatic/Aromatic fractions primarily available for aquatic assessment
    - See Tables 7-2,7-3 and 7-4 for analytical data choices and uses



## **Scoping a Site-Specific ERA**

#### Exposure Assessment

- Focus on direct exposure
- Bioaccumulation
  - Primarily PAHs
- Toxicity Assessment
  - Aquatic and terrestrial biota
  - Physical toxicity
    - (not included in this guidance)
  - Chemical toxicity
    - Multiple approaches
  - Metabolites
    - Emerging concern under study




INTERSTA



NVIRONMENTAL RESEARC

ECOS



ITRC TPHRisk-1 Figure 7-1

## Characterizing HH and Eco Risk and Uncertainties

**Key Uncertainties** 

Representativeness of fractions, components and/or surrogates of TPH

Screening levels (representative of TPH mix, risk based source, applicable endpoints

Non-additivity of TPH risk and TPH component double-counting

Toxicity value/test representativeness to underlying exposure mechanisms, especially when TPH + non-TPH mixtures

Additional direct or indirect impacts from TPH (oiling, direct contact, indirect changes to habitat)

Use of field data

Type of data used (bulk vs fractionated)



ITRC TPHRisk-1 Table 7-15

### **Road Map**



- ► Why the Guidance?
- Learn What TPH is
- Learn TPH Analytical Methods
- Questions and Answers
- Environmental Fate of TPH
- Assessing Human and Ecological Risk from TPH
- Stakeholders Considerations
- Closing
- Questions and Answers





- Recognize what groups can be potential stakeholders
- Know what stakeholder engagement tools are available
- Approach some common sources of confusion and concern about TPH risk assessment and decision-making for stakeholders – e.g., fires, explosions, health, appearance, odor, taste
- Chapter 10 in the guidance document







- Who are Stakeholders?
- Important Components of Risk Communication
  - Empathy and respect
  - Understandable facts and conclusions about TPH
- Required Public Notifications
  - Notify owners and tenants before sampling
  - Provide TPH data with appropriate explanation
- Appropriate Communication Tools
  - Conveying technical concepts (Table 10-2)
  - Factsheets, posters, outreach meetings
  - Websites and links to TPH information





- Community Engagement Plan (CEP)
  - Town Hall meeting scheduled several years before remediation began
  - Built credibility and trust through targeted remedial actions, mitigation and monitoring
  - CEPs should be appropriate for the site





HIDOH Case Study #1 (HIDOH 2018)

# Stakeholder Concerns Associated with TPH – Property Values



- Property Devaluation Concerns
  - Not unique to TPH

- Devaluation may be real or perceived
- Concern is often related to residual TPH and a Monitored Natural Attenuation (MNA) remedy
- Addressing Property Devaluation Concerns
  - Explain why selected remedy is protective and effective, especially for MNA
  - Describe how all activities are done with agency oversight
  - Address individual property owners concerns too



# Stakeholder Concerns Associated with TPH – Technical Issues



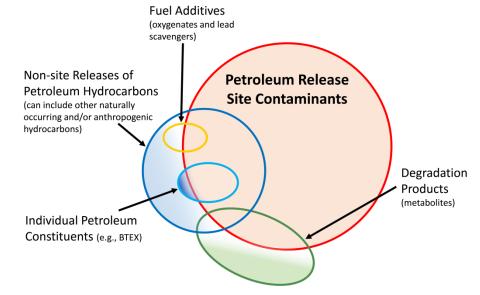
- ► Household sources of TPH/ "Background" TPH
  - There are many potential sources of TPH
  - Paint thinners, cosmetics, natural oils, urban air (Table 10-3)
  - We can only manage site-related TPH
- TPH and methane explosions?
  - Potential degradation product, see ITRC PVI guidance (2014) and ASTM methane standard
- Credibility/Comfort level with risk assessment
  - Including TPH means the whole mixture is addressed, not just the very small mass of indicator compounds (BTEX, and PAHs)
- Nuisance concerns vs health risks?
  - Taste and odor are not health risks but covered in some states
- Project Success
  - Technical approach + stakeholder engagement



### **Road Map**



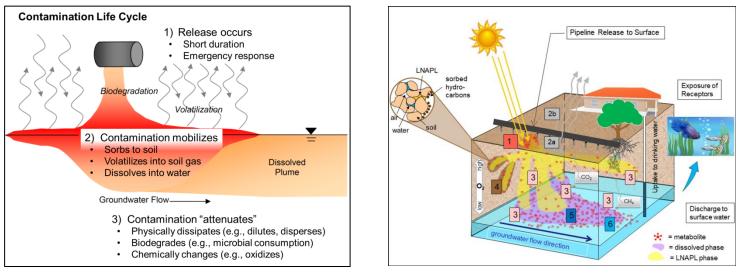
- ▶ Why the Guidance?
- Learn What TPH is
- Learn TPH Analytical Methods
- Questions and Answers
- Environmental Fate of TPH
- Assessing Human and Ecological Risk from TPH
- Stakeholders Considerations
- Closing
- Questions and Answers





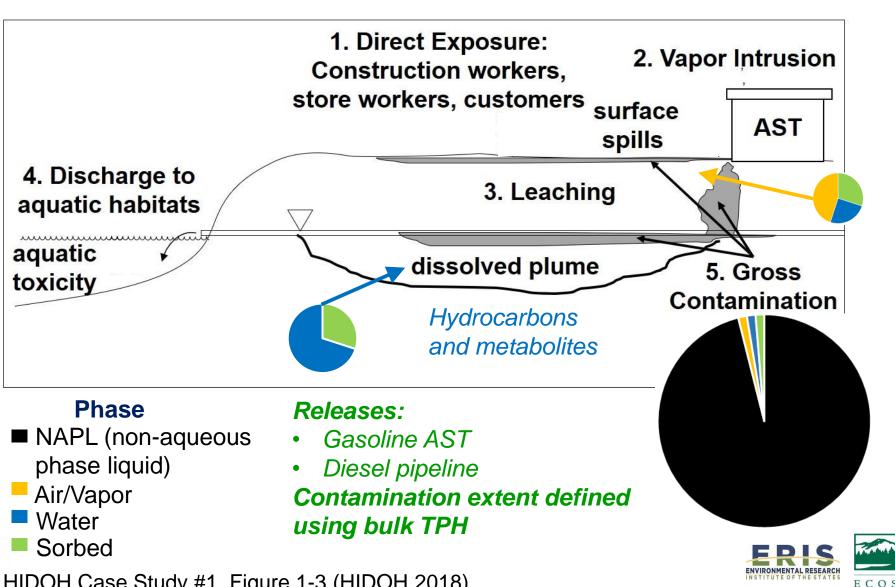

- What does your TPH site data really represent?
  - Have you considered the following:
    - Reviewing your chromatograms?
    - Fractionating your TPH results?

ITRC TPHRisk-1 Figure 2-2


 Using the silica gel cleanup method to understand the metabolite fraction? (USEPA Method 3630C)








- Are there data gaps or lifecycle considerations?
- Did you modify the CSM to integrate TPH?
- How do TPH metabolites affect your CSM?
- Old bulk TPH data at re-opened sites?
  - Should you resample and update the CSM?





### **Conceptual Site Model:** Where is the Source Mass?



Study

Case

HIDOH Case Study #1, Figure 1-3 (HIDOH 2018)



- Seek to build trust and credibility with communities by addressing real and perceived TPH concerns:
  - Potential Health and Ecological Impacts
    - Assessment of indoor air and sub-slab vapors
      - See ITRC Vapor Intrusion Guidance
  - Aesthetic Criteria
    - State-specific nuisance ordinances
      - Especially odor, visual complaints
  - Potential property devaluation



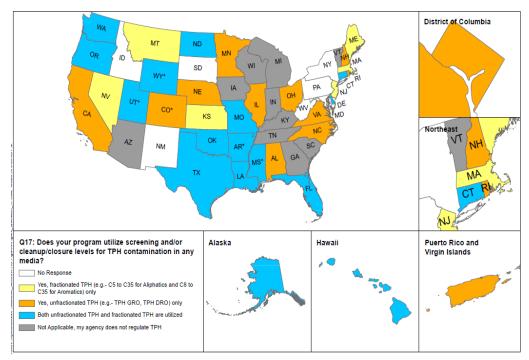

**ITRC TPHRisk-1** 

Figure Q17

## **Use this Guidance!**



- ► Where can I find help?
  - On-line calculators (ITRC TPH Risk Chapter 8)
  - Examples of Case-Studies using TPH data (HI)
  - What are States currently doing with TPH data? (see "TPH State Survey – Screening and/or Cleanup Levels")







Ind question and answer break

### Links to additional resources

http://www.clu-in.org/conf/itrc/TPHrisk/resource.cfm

### Feedback form – please complete

• http://www.clu-in.org/conf/itrc/TPHrisk/feedback.cfm

| CLU-IN              | Content of the second states Technology Innovation Program                                                                                                                 |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ••••                | U.S. EPA Technical Support Project Engineering Forum<br>Green Remediation: Opening the Door to Field Use Session C (Green<br>Remediation Tools and Examples)               |  |  |  |
| Go to<br>Seminar    | Seminar Feedback Form                                                                                                                                                      |  |  |  |
| <mark>Li</mark> nks | We would like to receive any feedback you might have that would make this service more<br>valuable.<br>Please take the time to fill out this form before leaving the site. |  |  |  |
| Feedback            | Tunited States                                                                                                                                                             |  |  |  |
| eedback             | Daytime Phone Number:                                                                                                                                                      |  |  |  |
| Home                | Email Address:                                                                                                                                                             |  |  |  |
| CLU-IN<br>Studio    | certificate and feedback confirmation to this address.                                                                                                                     |  |  |  |
|                     | Thank you for participating in an online technology cominar. We hope this was a valuable use of your time.                                                                 |  |  |  |
|                     | Submit Ciear Form                                                                                                                                                          |  |  |  |

View Your Participation Certificate (PDF)

Need confirmation of your participation today?

 Fill out the feedback form and check box for confirmation email and certificate.

