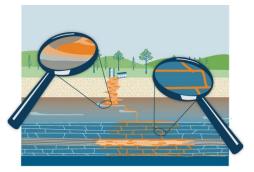
Starting Soon: Integrated DNAPL Site Characterization

- Integrated DNAPL Site Characterization and Tools Selection (ISC-1, 2015)
 - <u>http://www.itrcweb.org/DNAPL-ISC_tools-selection/</u>
- Download PowerPoint file

1

- http://www.clu-in.org/conf/itrc/IDSC/
- Download files for reference during the training class
 - Flowcharts: <u>http://www.cluin.org/conf/itrc/IDSC/ITRC-ISC-Figures.pdf</u>
 - Excel file: <u>http://www.itrcweb.org/documents/team_DNAPL/DNAPL.xlsm</u>

Follow ITRC f in


Use "Join Audio" option in lower left of Zoom webinar to listen to webinar Problems joining audio? Please call in manually

> Dial In 301 715 8592 Webinar ID: 871 3043 8755#

Welcome – Thanks for joining this ITRC Training Class

Integrated DNAPL Site Characterization and Tools Selection

Integrated DNAPL Site Characterization and Tools Selection (ISC-1, 2015)

Sponsored by: Interstate Technology and Regulatory Council (<u>www.itrcweb.org</u>) Hosted by: US EPA Clean Up Information Network (<u>www.cluin.org</u>)

Housekeeping

3

- Course time is 2¼ hours
- This event is being recorded
- Trainers control slides
 - Want to control your own slides? You can download presentation file on Clu-in training page

- Questions and feedback
 - Throughout training: type in the "Q & A" box
 - At Q&A breaks: unmute your phone with #6 to ask out loud
 - At end of class: Feedback form available from last slide
 - Need confirmation of your participation today? Fill out the feedback form and check box for confirmation email and certificate

Copyright 2019 Interstate Technology & Regulatory Council

ITRC (<u>www.itrcweb.org</u>) – Shaping the Future of Regulatory Acceptance

- Host organization
- Network

- State regulators
 - All 50 states, PR, DC
- Federal partners

- ITRC Industry Affiliates
 Program
 - Academia
- Community stakeholders
- Follow ITRC

Disclaimer

- Full version in "Notes" section
- Partially funded by the U.S. government
 - ITRC nor US government warranty material
 - ITRC nor US government endorse specific products
- ITRC materials available for your use – see <u>usage policy</u>
- Available from <u>www.itrcweb.org</u>
 - Technical and regulatory guidance documents
 - Online and classroom training schedule
 - More...

Meet the ITRC Trainers

Alex MacDonald California Water Boards Rancho Cordova, CA 916-464-4625 amacdonald@ waterboards.ca.gov

Jeremy MUsson Pinyon Environmental, Inc Littleton, CO 303-980-5200 musson@pinyon-env.com

Heather Rectanus Geosyntec Columbia, MD 410.910.765 hrectanus@geosyntec.com

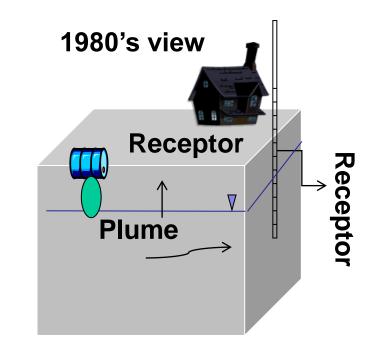
Read trainer bios at https://clu-in.org/conf/itrc/IDSC/

The Problem: Dense Non-Aqueous Phase Liquid (DNAPL) Sites

- Not achieving cleanup goals
- Spending time and money, but substantial risk remains
- Common site challenges
 - Incomplete understanding of **DNAPL** sites
 - Complex matrix manmade and natural
 - Unrealistic remedial objectives
 - Selected remedy is not satisfactory

- For sites that you work on, when did cleanup activities begin?
 - 2010 current year
 - 2000-2009
 - 1990s
 - 1980s
 - 1970s
 - 1960s
 - before 1960

7

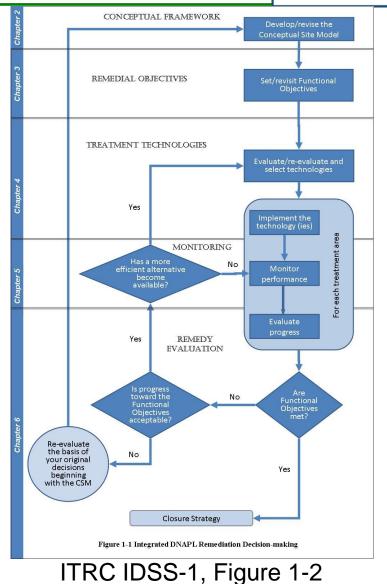

The Problem: Outdated DNAPL Site Characterization Concepts

- Considered contaminant flow was similar to groundwater flow
- Simplifying assumptions in equations based on Darcy flow led to inadequate characterization of
 - Site geologic heterogeneity
 - Contaminant

8

- Distribution
- Characteristics
- Behavior
- This approach limited success of site remediation activities

The Solution: An Integrated DNAPL Site Strategy


ITRC Technical and Regulatory Guidance Document: Integrated DNAPL Site Strategy (IDSS-1, 2011)

- Comprehensive site management
- Use at any point in site lifecycle
- Key topics

9

- Conceptual site model (CSM)
- Remedial objectives
- Remedial approach
- Monitoring approach
- Evaluating your remedy

Associated Internet-based training

¹⁰ Adding to the Solution: Integrated DNAPL Site Characterization Handout

ITRC Technical and Regulatory Guidance Document: Integrated DNAPL Site Characterization (ISC-1, 2015)

Benefits

- More accurate conceptual site models (CSMs)
- Improved predictability of plume behavior and risks
- More defensible knowledge of contaminant distribution
- Facilitates communication
- Reduced uncertainty
- Better performing remedies

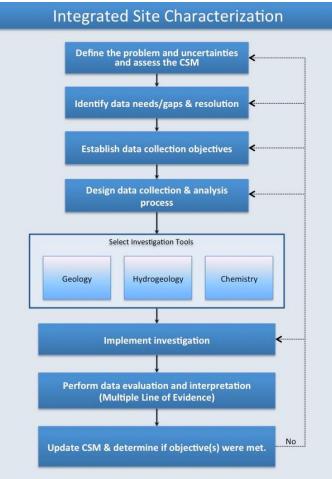


Figure 4-1 Integrated Site Characterization

ITRC ISC-1, Figure 4-1

Incorporated into the Solution: New DNAPL Site Characterization Approaches

OUNCII

- Heterogeneity replaces homogeneity
- Anisotropy replaces isotropy

11

- Diffusion replaces dispersion
- Back-diffusion is a significant source of contamination and plume growth
- Non-Gaussian distribution
- Transient replaces steady-state conditions
- Nonlinear replaces linear sorption
- Non-ideal sorption replaces ideal sorption

¹² After this training you should be able to:

- Apply the ITRC document to develop and support an Integrated DNAPL Site Characterization approach
- Understand what characteristics of site conditions must be considered when developing an informative DNAPL conceptual site model (CSM)
- Defining an integrated DNAPL characterization strategy
- Understand what tools and resources are available to improve the identification, collection, and evaluation of appropriate site characterization data
- Navigate the DNAPL characterization tools table and select appropriate technologies to fill site-specific data gaps

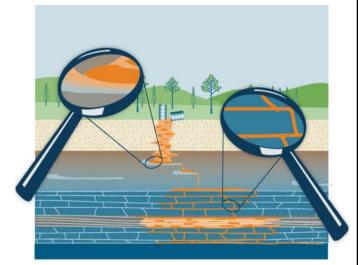
¹³ If you gain nothing else: Geology Controls DNAPL Mobility!

- Soil heterogeneity leads to differences in subsurface pore structure and capillary properties
- Significant variations can occur over very small distances/ intervals
- NAPL migration is strongly influenced by the topography of geologic layers

ISC-1, Chapter 2

Photo Courtesy of Fred Payne, Arcadis, Inc

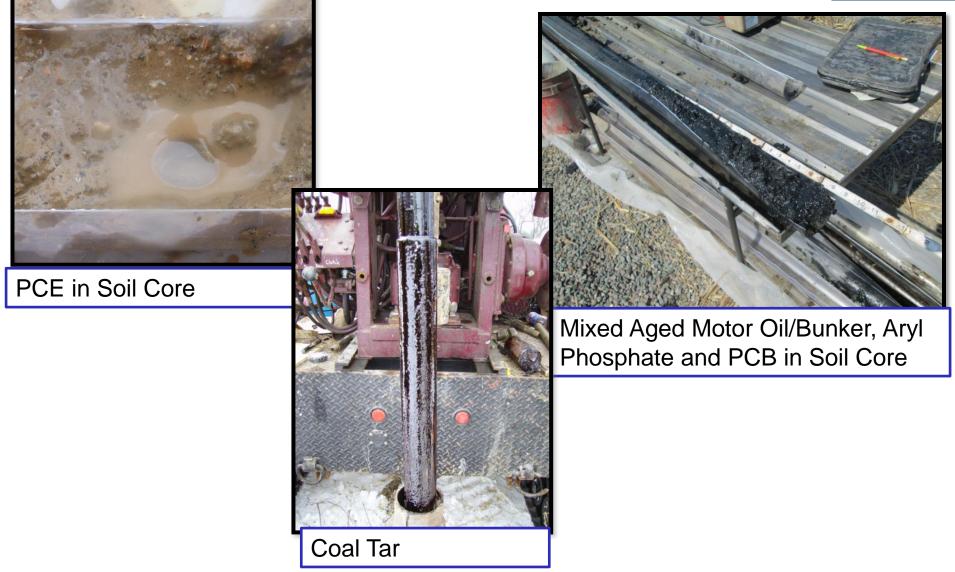
Training Overview


DNAPL Characteristics

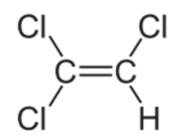
- Life Cycle of a DNAPL Site
- Integrated Site Characterization
 - Plan

14

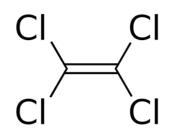
- Tools Selection
- Implementation
- Summary


ISC-1, Chapter 2

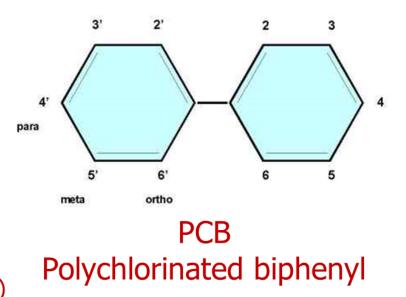
¹⁵ DNAPLs – Not Just Chlorinated Solvents!



¹⁶ **DNAPL Types**

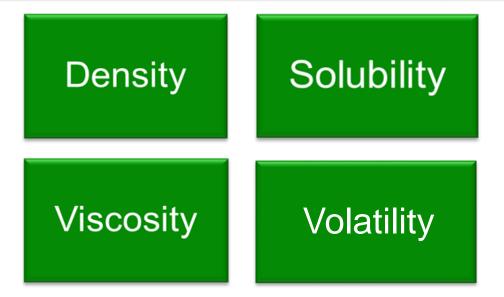


Common types of DNAPLs


- Chlorinated solvents
- Coal tar
- Creosote
- Heavy petroleum such as some #6/Bunker fuel oil products
- Oils containing Polychlorinated biphenyls (PCBs)

TCE (C₂HCl₃) trichloroethene trichloroethylene

PCE (C₂Cl₄) Tetrachloroethene Tetrachloroethylene perchloroethylene (perc)


- What DNAPLs do you have at your sites? (select all the apply)
 - Chlorinated solvents
 - Coal tar
 - Creosote
 - Heavy petroleum hydrocarbons
 - PCBs
 - Pesticides
 - Mercury
 - Other
 - None

See <u>Table 2.1 Physical</u> properties of example NAPLs & reference fluids

¹⁸ Important DNAPL Properties Affecting Mobility

Composition

Modified from ISC-1, Chapter 2

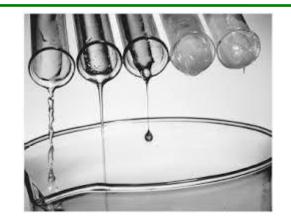
19

- Describes the mass per unit volume of the DNAPL and is sometimes expressed as specific gravity (SG), which is the density relative to water
- By definition, all DNAPLs have a SG greater than 1.0
 - Some DNAPLs have a SG >1.5 (e.g., PCE)
 - While others have a SG barely greater than water

KEYGravitational forces overwhelmPOINT:hydraulic gradients

20

Amount of a compound that dissolves in water at equilibrium

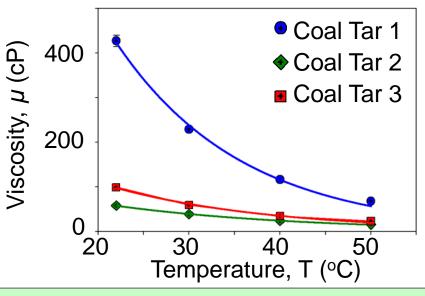

DNAPL Component	Density	Solubility	Types of Sites
	(g/mL)	(mg/L)	Siles
Trichloroethylene (TCE)	1.46	1,100	Solvent
Pentachlorophenol	1.98	20	Wood
(PCP)			Treatment
Acid Tar	1.84	Miscible	Refineries
(H ₂ SO ₄ & Hydrocarbons)			

• Often different in site groundwater than in the laboratory

KEYInfluences loss of mass to plumePOINT:and trapped soil water

DNAPL Viscosity (Dynamic)

Represents the resistance to shear (flow) of the fluid


INTERSTATE

YROTAJUDE

► Temperature dependent

KEY

- μ_w = 0.894 cP 25 °C
- $\mu_w = 1.002 \text{ cP} 20 \text{ °C}$

Influences mobility in the subsurface POINT:

21

DNAPL Volatility

22

See also <u>ITRC's Vapor Intrusion Pathway: A Practical</u> <u>Guideline (VI-1, 2007)</u>

KEY Influences mass loss in the unsaturated **POINT:** zone and risk of vapor intrusion (VI)

DNAPL Composition

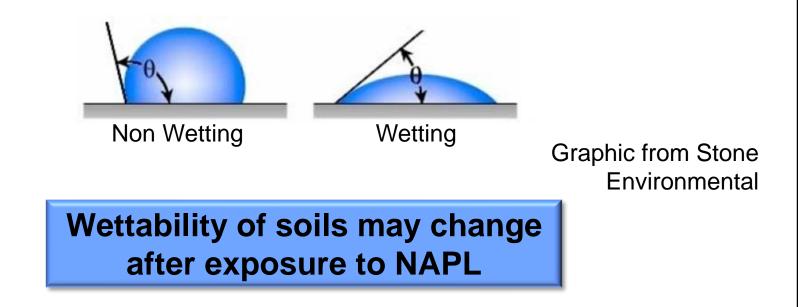
23

- Properties of mixed DNAPL are different from pure component properties
 - Chlorinated solvents often include other compounds such as grease, oils or stabilizers
 - For mixed sources, chlorinated compounds from DNAPL could partition into LNAPL
 - NAPL weathering occurs in subsurface
 - Coal Tar Water Interfacial Films
 - Loss of the soluble fraction of the NAPL

KEY Analysis of both the chemical and physical properties of your NAPL is recommended, if a NAPL sample can be collected

²⁴ DNAPL Interactions with the Sub-Surface Media Affecting Mobility

The following properties significantly affect the interactions between DNAPLs and sub-surface media:


Modified from ISC-1, Chapter 2

Interfacial Tension and Wettability

25

Interact to control the capillary forces that govern NAPL migration

KEYInfluences capillary pressure and
POINT:POINT:vertical migration

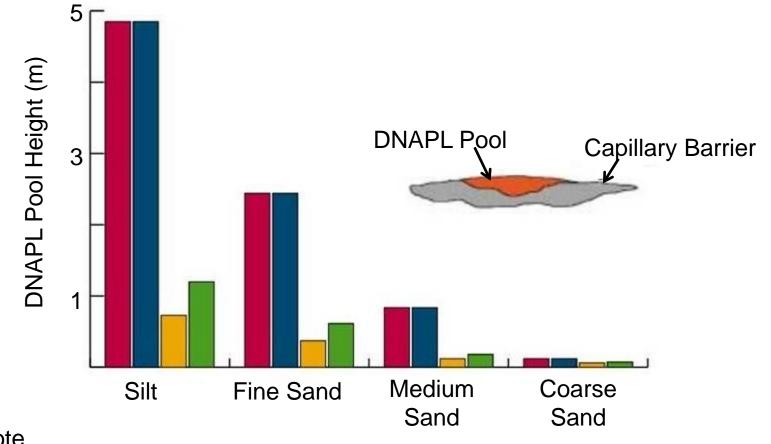
Capillary Pressure (P_c)

26

Represents the pressure difference between two fluids sharing pore space

$$P_{c} = P_{n} + P_{w}$$

(Bear, 1972)


Where P_n is the NAPL pressure and P_w is the water pressure

P_c is a non-linear function of S, with P_c increasing at greater saturation of the non-wetting fluid

(Lenhard and Parker, 1987)

KEY Variance of pore spaces within geologic media **POINT:** can dictate vertical DNAPL migration

²⁷ Capillary Pressure of Coarser Layers and DNAPL Entry

Creosote
 Coal tar
 Chlorinated Solvent
 Mixed DNAPL

Kueper et. Al. 2003, An illustrated Handbook of DNAPL Transport and Fate in the Subsurface

 INTERSTATE

REGULATORY

IDNUOD

ECHNO

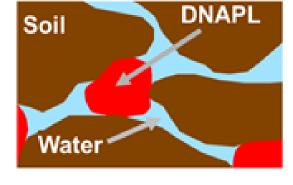
28

Saturation, Relative Permeability, and Capillary Pressure

- ► Saturation (*S*)
 - S is the proportion (percentage) of the pore space occupied by a fluid (NAPL, air, or water)
 - Ranges from 0 to 1.0 (0 to 100%)
- Residual Saturation (S_r)
 - S_r is the saturation of NAPL remaining when NAPL is no longer mobile

KEY POINT: Strongly affected by geologic heterogeneity

NAPL Saturation and Mobility


\blacktriangleright When S < S_r

NAPL will be immobile unless NAPL or solid phase properties change

\blacktriangleright When S > S_r

- NAPL may be mobile or potentially mobile
- NAPL may be potentially mobile but not moving

(Pennell et al., 1996, ES&T)

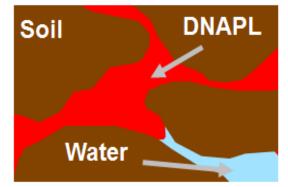
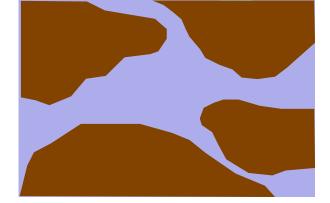


Figure modified from ISC-1, Chapter 2

KEY A continuous NAPL phase must be connected to **POINT:** transmit pressure head that overcomes the entry pressure and allows DNAPL to migrate


Groundwater Movement Through a DNAPL Zone

Relative permeability (k_r)

30

The value of k_r , ranges from 0 to 1.0 as a non-linear function of saturation (S)

- k_r for groundwater = 1.0 at DNAPL
 S = 0
- k_r for DNAPL approaches 1 at as DNAPL S approaches 1
- (Parker and Lenhard 1987)

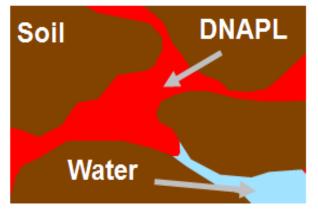


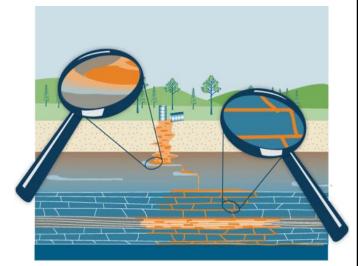
figure modified from ISC-1, Chapter 2

KEYThe presence of NAPL reduces the effectivePOINT:hydraulic conductivity of the media

ULAIOKY

Training Overview

Life Cycle of a DNAPL Site

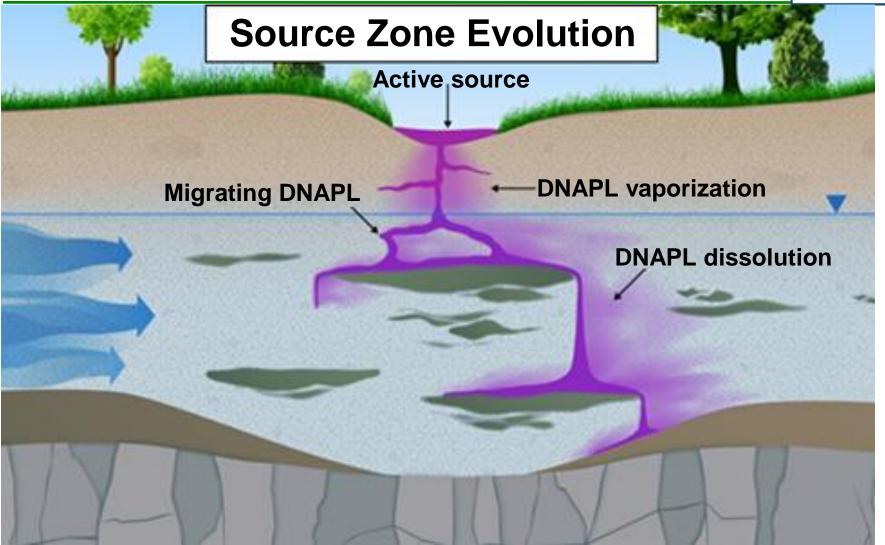

Integrated Site Characterization

• Plan

31

- Tools Selection
- Implementation
- Summary

ISC-1, Chapter 3

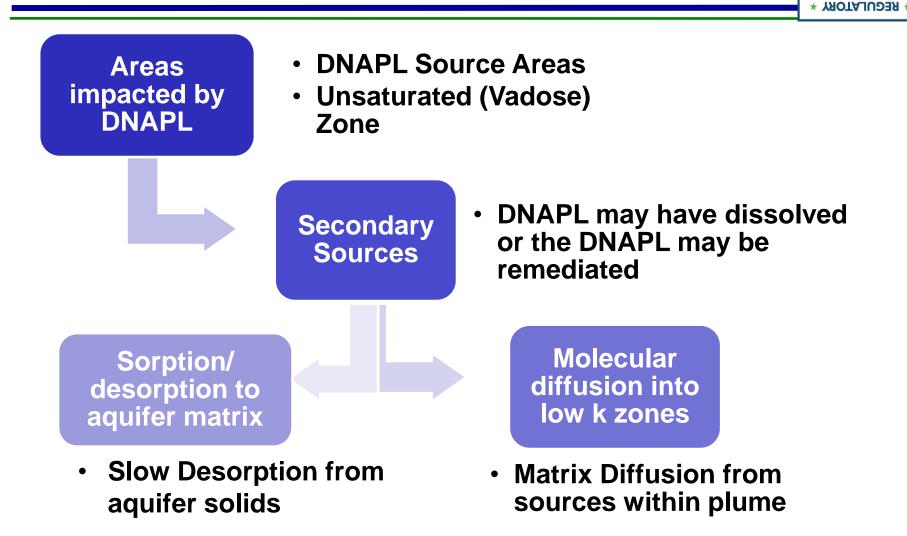


DNAPL Life Cycle – Classical Model

32

Kueper et al., 2013

³³ Secondary Sources within Groundwater Plumes


We are now revising our definition of "DNAPL Source Zone"

- The hunt for DNAPL is often distracting
- DNAPL is no longer considered the only source of groundwater contamination
 - Sorption/desorption from aquifer matrix
 - Matrix diffusion into/out of low K zones

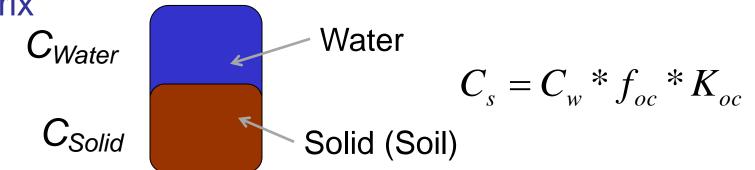
KEY
POINT:These mechanisms may control the longevity of
dissolved phase plumes at DNAPL or former
DNAPL sites

Redefining the DNAPL Source Term: Apparent Secondary Sources

34

Modified from ISC-1, Chapter 2

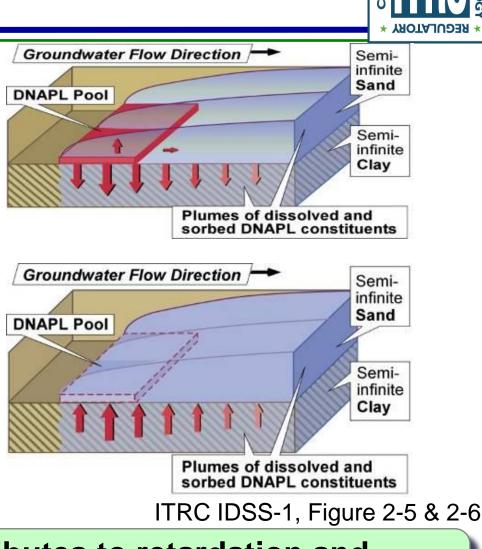
¥ INTERSTATE


OUNCI

"Sorption" - Adsorption & Absorption

35

A portion of the contaminant mass will adsorb/sorb to the aquifer matrix at equilibrium based on contaminant concentration and the contaminant's affinity to the matrix

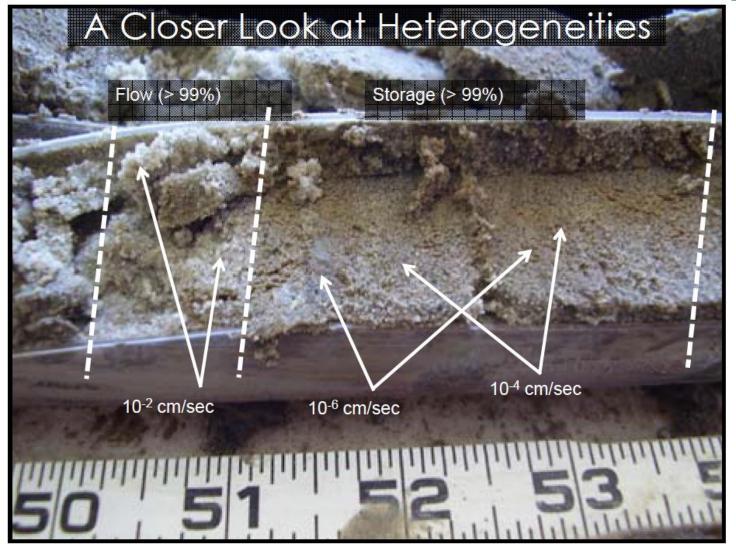

Contaminant mass will desorb from matrix into groundwater as "cleaner" groundwater migrates through system

KEY
POINT:Desorption contributes to retardation and
longevity of dissolved phase contaminant plumes

Matrix Diffusion: "Back Diffusion"

Early time

- Molecular Diffusion into low permeability zones in the aquifer matrix: "Matrix Diffusion"
- Late time
 - "Back Diffusion" out of low permeability zones into higher permeability zones


★ INTERSTATE

OUNCI

KEY Back Diffusion contributes to retardation and **POINT:** Iongevity of dissolved phase contaminant plumes

³⁷ Controlling Role of Geology in Matrix Diffusion

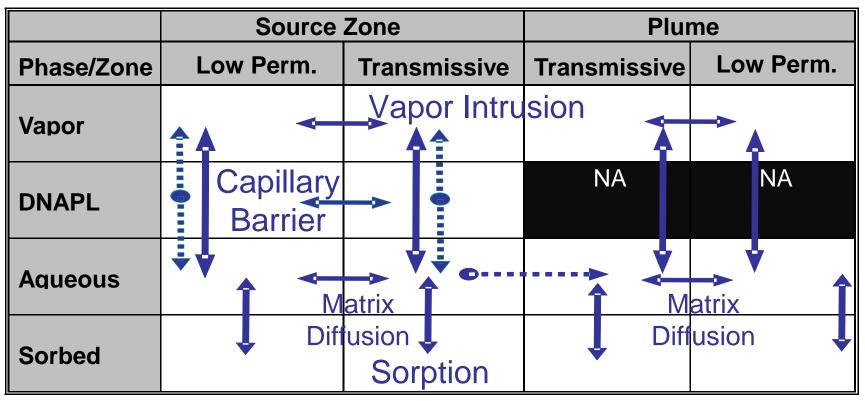
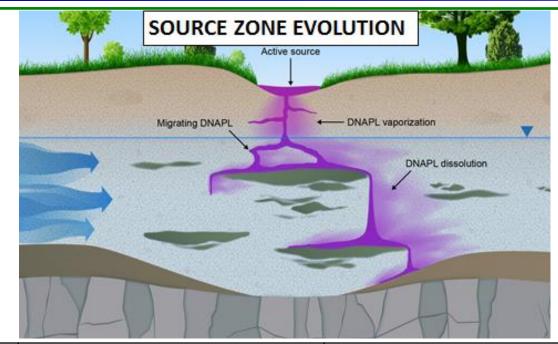


Figure courtesy of Fred Payne, Arcadis

³⁸ 14-Compartment Model: Phase Distribution and Mass Transfer



ITRC IDSS-1, Table 2-2 from Sale and Newell 2011

KEYThe 14-Compartment Model helps StakeholdersPOINT:align on the Life Cycle of the Site and
Characterization Objectives

DNAPL Life Cycle – Early Stage

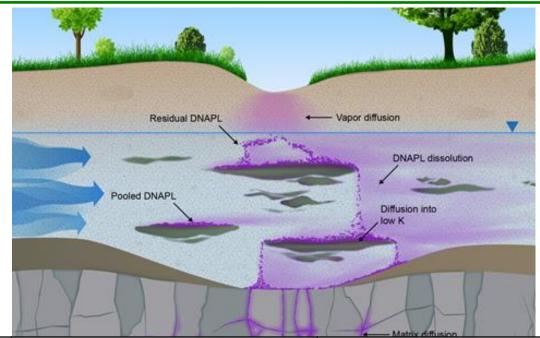
ZONE	SOURCE		PLUME	
	Lower-K	Transmissive	Transmissive	Lower-K
Vapor	LOW	MODERATE	LOW	LOW
DNAPL	LOW	HIGH		
Aqueous	LOW	MODERATE	MODERATE	LOW
Sorbed	LOW	MODERATE	LOW	LOW

Kueper et al., 2013

Prolonged Early Stage Behavior

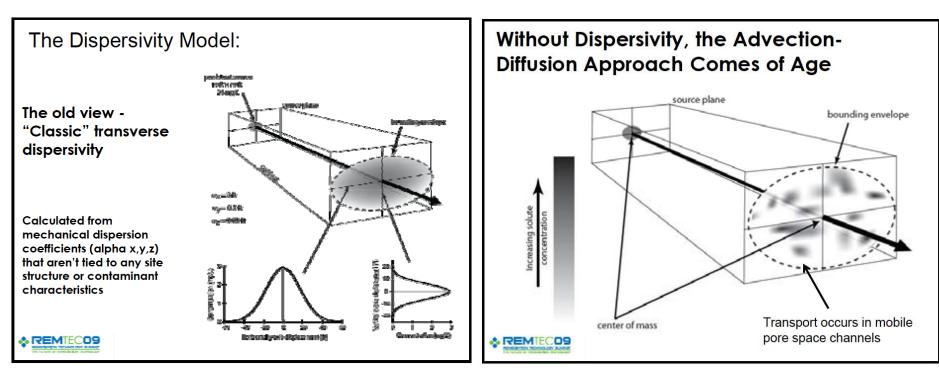
- Low solubility and high viscosity DNAPLs
- High DNAPL saturations and still immobile.

40


Highly DNAPL saturation causes flow by-passing

KEYCoal tar and creosote sites may remainPOINT:as Early Stage for generations

DNAPL Life Cycle – Middle Stage


ZONE	SOURCE		PLUME	
	Lower-K	Transmissive	Transmissive	Lower-K
Vapor	MODERATE	MODERATE	MODERATE	MODERATE
DNAPL	MODERATE	MODERATE		
Aqueous	MODERATE	MODERATE	MODERATE	MODERATE
Sorbed	MODERATE	MODERATE	MODERATE	MODERATE

Kueper et al., 2013

⁴² Diffusion Replaces Dispersion in Dissolved Phase Plumes

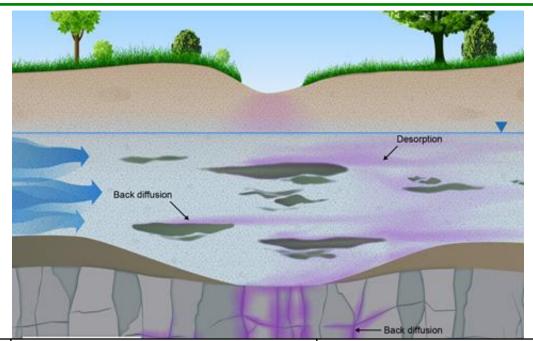
- As the length scale of interest decreases Diffusion replaces Dispersion in plume behavior
- Geologic heterogeneity and anisotropy also lead to numerous small plumes within each groundwater plume

Figures courtesy of Fred Payne, Arcadis

Heterogeneity Replaces Homogeneity

- Simplifying the subsurface as homogeneous & isotropic has not worked well for remediation-scale plume geometry
- Anisotropy replaces isotropy
- Non-ideal behavior is as pronounced in the vertical

Borden Tracer Simulation – Combined Heterogeneity and Diffusivity Effects


Distance (m)

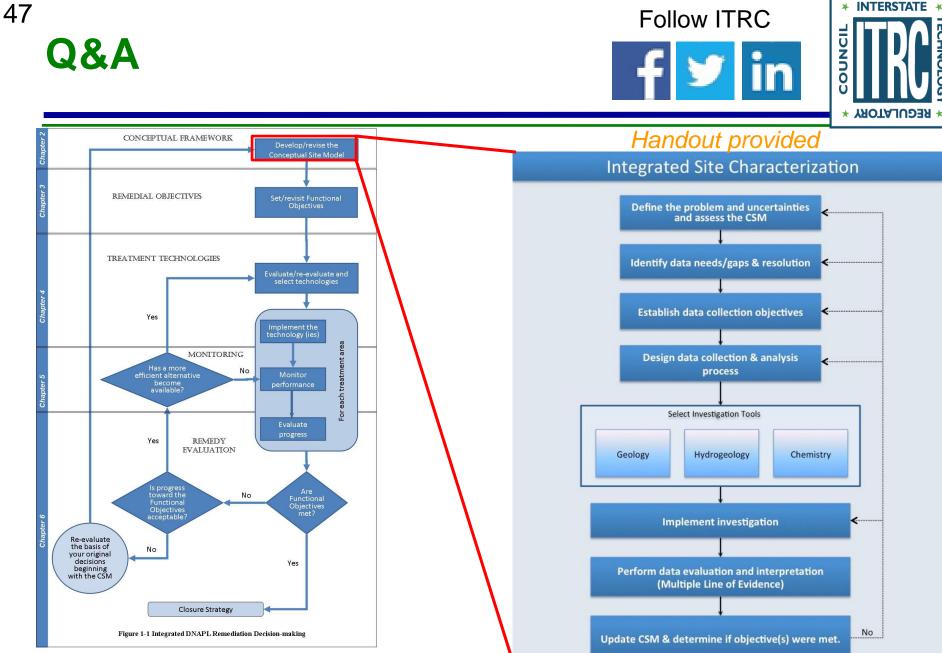
DNAPL Life Cycle – Late Stage

44

ZONE	SOURCE		PLUME	
	Lower-K	Transmissive	Transmissive	Lower-K
Vapor	LOW	LOW	LOW	LOW
DNAPL	LOW	LOW		
Aqueous	MODERATE	LOW	LOW	MODERATE
Sorbed	MODERATE	LOW	LOW	MODERATE

Kueper et al., 2013

- Based on what we have just presented, and remembering that life-cycle phase is not only dependent on age of the site; what phase is your site?
 - Early
 - Middle
 - Late
 - Select more than one if you have multiple sites in different phases



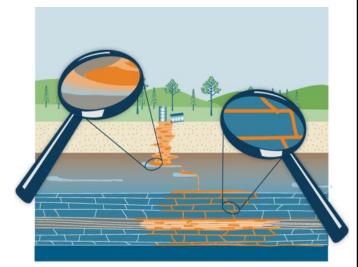
Characterizing sites contaminated with DNAPLs needs to take into account

Geology

46

- Depositional environment, media properties
- Orientation of fractures, bedding planes
- Characteristics of the released DNAPL
- Distribution DNAPL in Subsurface Media
- Life-cycle of your DNAPL site
 - Roles of Matrix Diffusion and Non-ideal Sorption
- The objectives of the characterization and decisions that need to be made

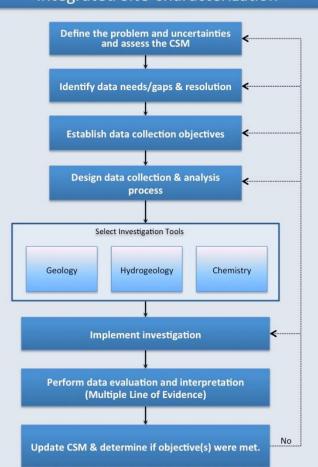
ITRC IDSS-1, Figure 1-2


TECHNOLO

Training Overview

- DNAPL Characteristics
- Life Cycle of a DNAPL Site
- Integrated Site Characterization
 - Plan

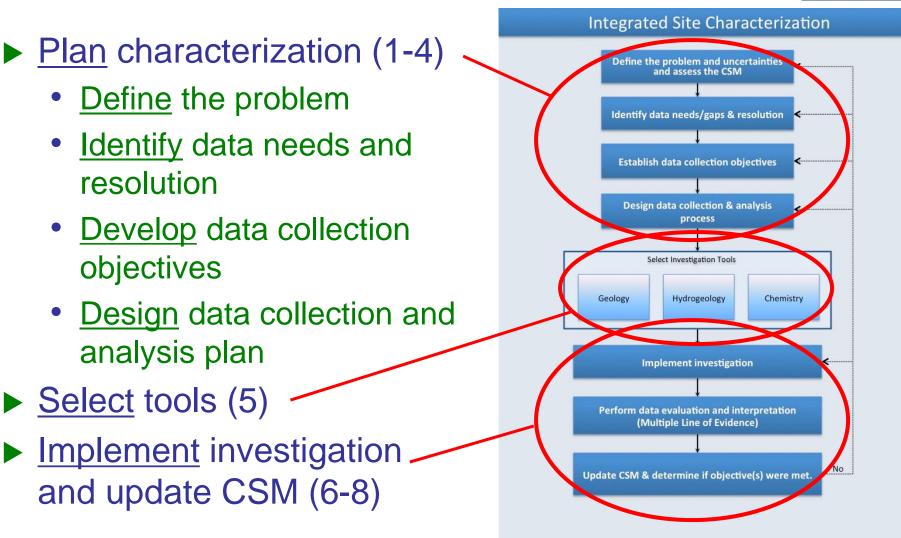
48


- Tools Selection
- Implementation
- Summary

Integrated Site Characterization

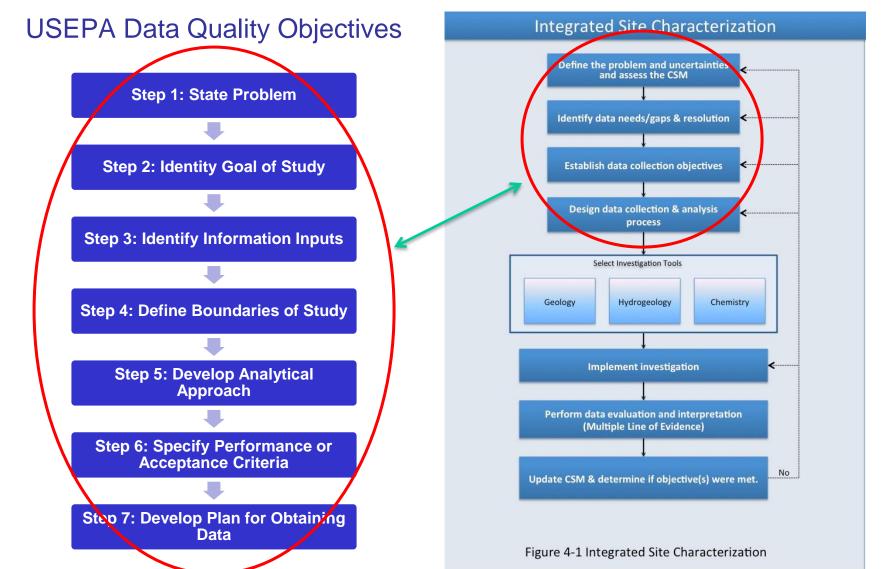
- Flexible, iterative 8-step process for CSM refinement
- Focus areas
 - Data resolution matches scale of heterogeneity
 - Objectives are clear and actionable
 - Tools are optimal for site conditions and data needs

Integrated Site Characterization


⁵⁰ Benefits of Integrated Site Characterization

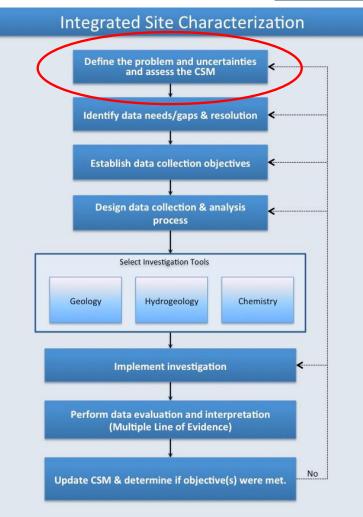
- Reduces uncertainties to improve CSM
- Enables more efficient remedies
 - <u>ITRC Integrated DNAPL Site Strategy (IDSS-1, 2011)</u>
- Avoids costly do-overs
- Supports stakeholder needs and confidence

Integrated Site Characterization



- Do you have a DNAPL site that is being characterized for the first time or where prior characterization was insufficient?
 - Yes first time
 - Yes insufficient
 - No

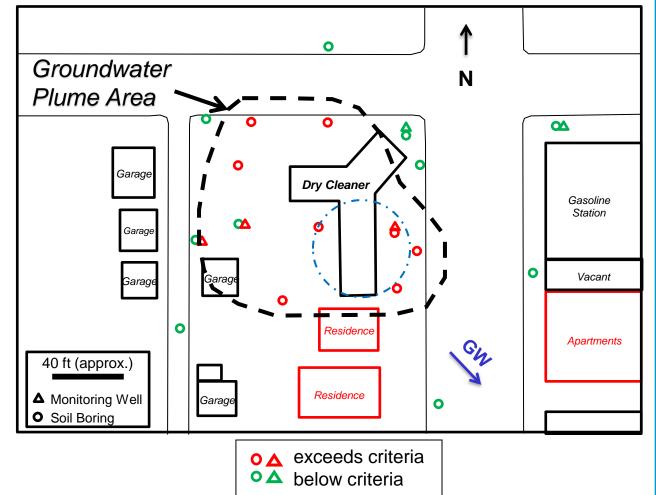
Data Quality Objectives are "Built in"



⁵⁴ Step 1: Define Problem and Assess CSM Uncertainties

- Assess existing CSM
- Define problem
- Define uncertainties

Case Example – Dry Cleaner Site

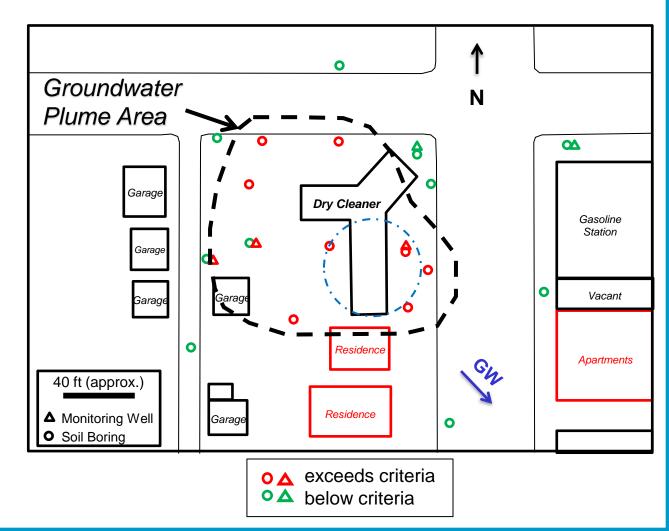

OUNCI REGULATORY

INTERSTATE

1. Commercial & residential location

55

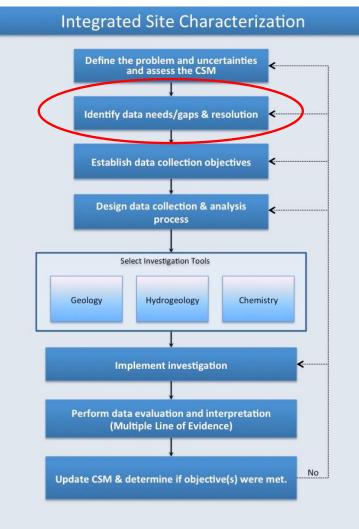
- 2. Shallow groundwater (<20' bgs)
- 3. Five MWs; 10-ft screens
- 4. 18 soil borings; 5-ft Case Example samples
 - 5. No soil-gas evaluation
 - 6. In situ chemical oxidation (ISCO) & enhanced in situ bioremediation (EISB) injections in source area & plume


⁵⁶ Step 1: Define Problem and Assess Uncertainties

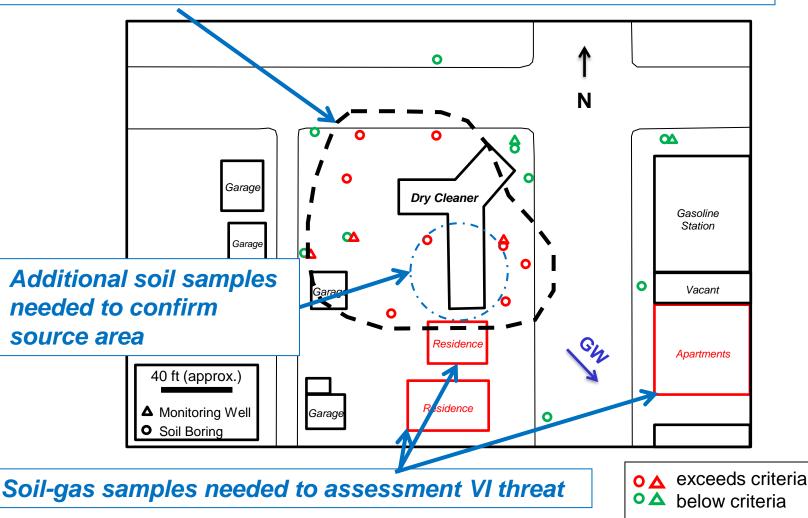
- Uncertain plume delineation; no down-gradient control
- 2. Source area inferred, not confirmed
- 3. No remedy evaluation

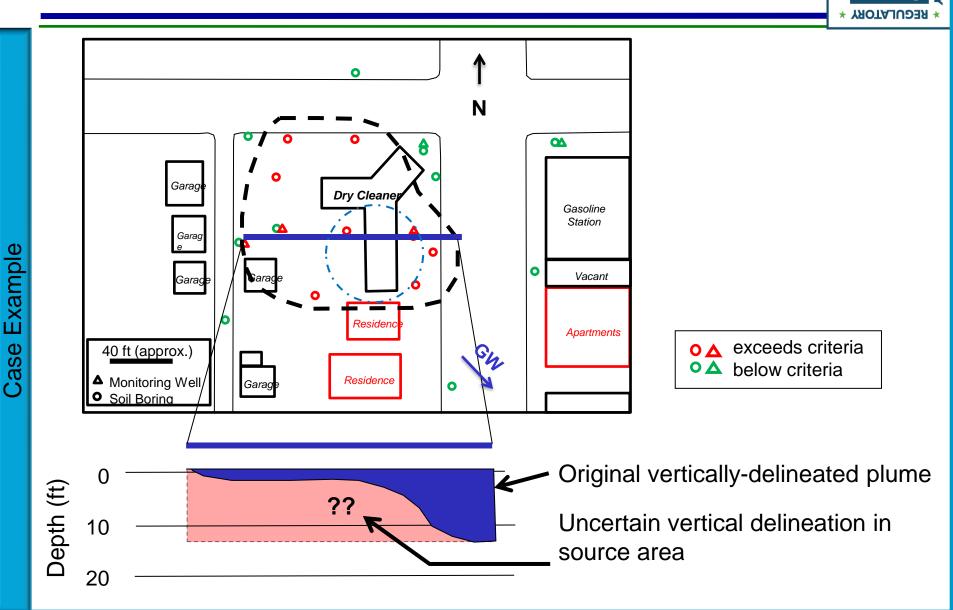
Example

Case


4. No soil gas or VI assessment

⁵⁷ Step 2: Identify Data Needs & Spatial Resolution

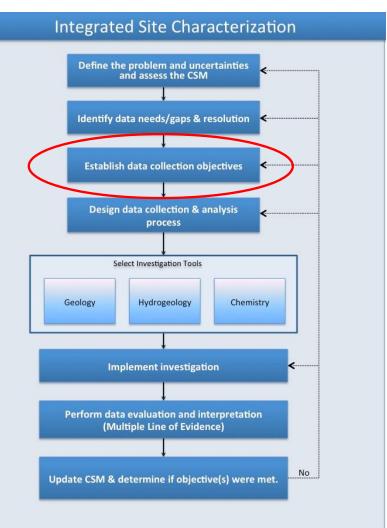

- Translate uncertainties into data needs
- Determine resolution needed to assess controlling heterogeneities


⁵⁸ Step 2: Identify Data Needs & Spatial Resolution

Additional groundwater samples needed to define plume extent

⁵⁹ Step 2: Identify Data Needs & Spatial Resolution

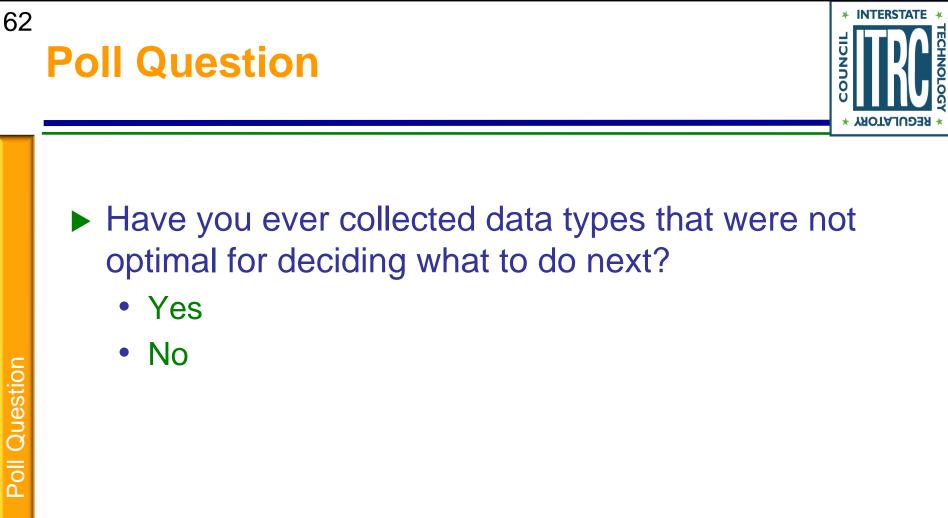
*** INTERSTATE**


CHNO

OUNCII

⁶⁰ Step 3: Establish Data Collection Objectives

- Specific, Clear, Actionable
- Consider data types, quality, density, and resolution


Step 3: Example Data Collection Objectives

61

Delineate extent of dissolved-phase plume; determine stability and attenuation rate

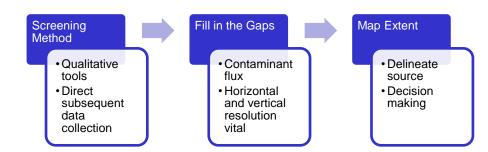
- Grab groundwater samples at X and Y depths
- Soil borings every X feet to capture subsurface variability
- Delineate to drinking water standards
- Install three to five wells; monitor along axis of flow
 - Quarterly for two years
 - Evaluate C vs T and C vs. distance trends
 - Specify COCs and geochemical parameters

63 Step 3: Drycleaner Site Data Collection Objectives

Objectives

- Define plume extent exceeding standards
- Assess remedy progress soil and GW samples
- Assess shallow soil vapor & VI threat
- Streamline assessment days not weeks
- Data types & resolution
 - Continuous cores; samples at lithologic boundaries
 - Groundwater samples every 4'
 - Soil gas at 5 and 10 feet

⁶⁴ Step 4: Data Collection & Analysis Plan


Write work plan

- Recognize data limitations
- Select data management tool

 Develop data analysis process

Consider real-time analysis

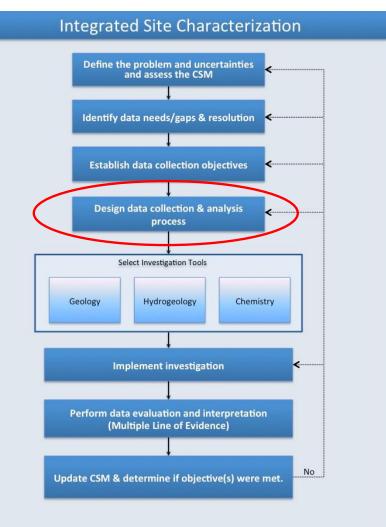


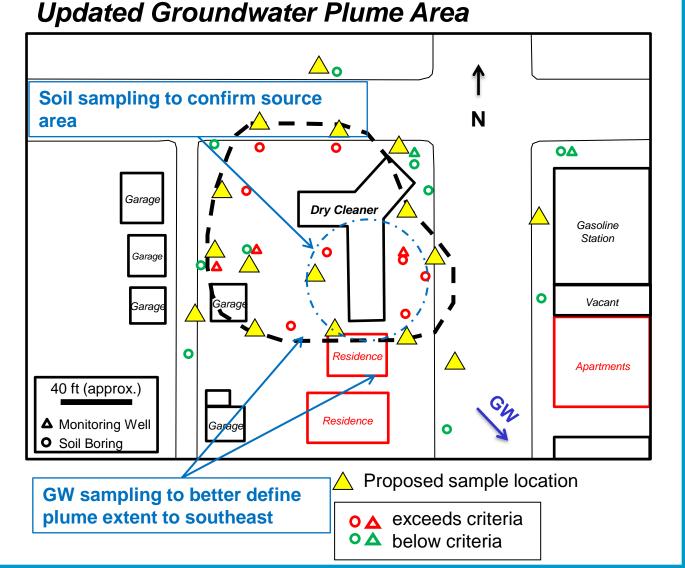
Figure 4-1 Integrated Site Characterization

65 Step 4: Drycleaner Site Data Collection & Analysis Plan

Soil vapor sampling

Triad ES mobile lab and Geoprobe

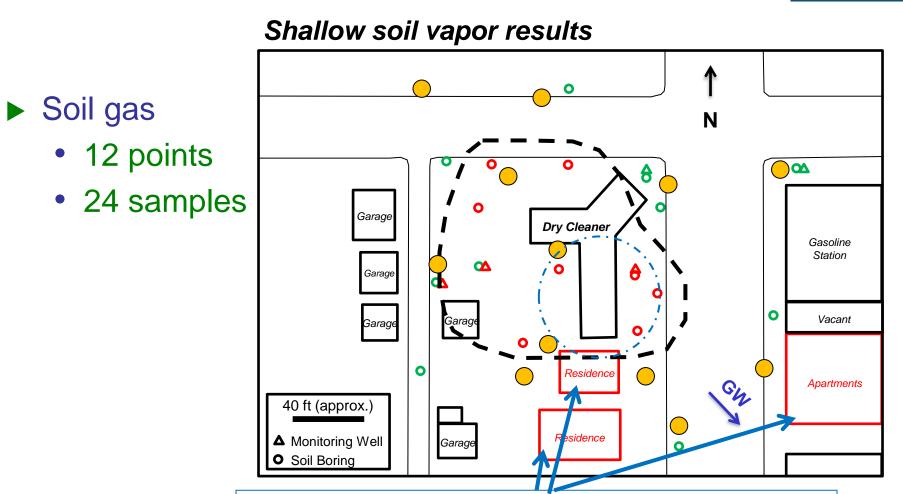
Direct sampling ion trap mass spectrometry (SW846 Method 8265) with mobile lab provides up to 80 soil/groundwater and 60 soil vapor VOC analyses per day


⁶⁶ Step 4: Data Collection & Analysis Plan

 16 borings
 80 soil samples (~5 per boring)

48 grab groundwater samples (~3 per boring)

Case Example



⁶⁷ Step 4: Data Collection & Analysis Plan

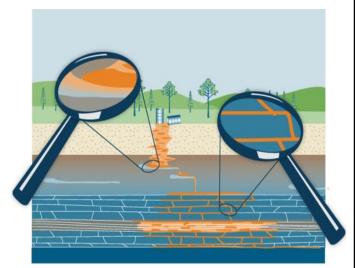
Example

Case

Soil-gas samples needed to assessment VI threat

Proposed soil-gas sample location

⁶⁸ Summary – Integrated Site Characterization


Integrated Site Characterization flow chart

- Planning
- Tool Selection
- Implementation
- Planning module
 - Step 1: Define problem and uncertainties
 - Step 2: Identify data gaps & resolution
 - Step 3: Develop data collection objectives
 - Step 4: Design data collection & analysis plan
 - Similar to DQO process; focus on DNAPL sites

Training Overview

- DNAPL Characteristics
- Life Cycle of a DNAPL Site
- Integrated Site Characterization
 - Plan
 - Tools Selection
 - Implementation
- Summary

ISC-1, Chapter 4

⁷⁰ Tools Selection Process: Contents of this Section

- Orientation to the tools matrix
- Tools selection framework
- Tools matrix functionality
- Case studies
- Summary

Which of these tools have been used on your sites? Check all that apply.

- Split Spoon Sampler
- Hydraulic Profiling Tool
- Membrane Interface Probe
- Portable GC/MS
- Colorimetric Screening
- Electrical Resistivity Tomography
- Raman Spectroscopy
- Fluorescence In-situ Hybridization (FISH)
- Partitioning Interwell Tracer Test (PITT)

71

Tools Matrix Format and Location

The tools matrix is a <u>downloadable excel</u> <u>spreadsheet</u> located in <u>Section 4.6</u>

72

- Tools segregated into categories and subcategories, selected by subject matter experts
- A living resource intended to be updated periodically

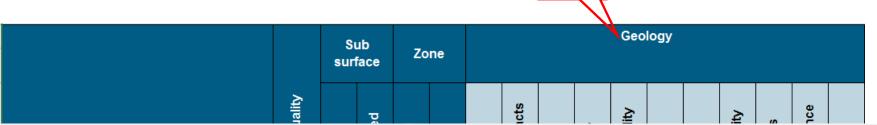
ΤοοΙ			
Geophysics			
Surface Geophysics			
Downhole Testing			
lydraulic Testing			
Single well tests			
Cross Borehole Testing			
/apor and Soil Gas Sampling			
Solid Media Sampling and Analysis Methods			
Solid Media Sampling Methods			
Solid Media Evaluation and Testing Methods			
Direct Push Logging (In-Situ)			
Discrete Groundwater Sampling & Profiling			
Multilevel sampling			
DNAPL Presence			
Chemical Screening			
Environmental Molecular Diagnostics			
Microbial Diagnostics			
Stable Isotope and Environmental Tracers			
<u>Dn-site Analytical</u>			

Orientation to the Tools Matrix

Contains over <u>100</u> tools

Sorted by:

- Characterization objective
 - Geology
 - Hydrogeology
 - Chemistry
- Effectiveness in media
 - Unconsolidated/Bedrock
 - Unsaturated/Saturated
- Ranked by data quality
 - Quantitative
 - Semi-quantitative
 - Qualitative


			Si suri	ub face	Zo	ne
	Tool	Data Quality	Bedrock	Unconsolidated	Unsaturated	Saturated
	Geophysics					
	Surface Geophysics					
1	Ground Penetrating Badar (GPR)	QL-Q	~	√	1	√
Ì	High Resolution Seismic Reflection (2D or 3D)	QL-Q	~	1		~
Ì	Seismic Refraction	QL-Q	~	1	~	~
Ì	Multi-Channel Analyses of Surface Waves (MASW)	QL-Q	~	1	~	~
Ì	Electrical Resistivity Tomography (ERT)	QL - SQ	1	1	1	1
	Very Low Frequency (VLF)	QL	1	1	1	1
	ElectroMagnetic (EM) Conductivity	QL	1	1	1	1
	Downhole Testing					
	Magnetometric Resistivitu	QL	1	✓		1
	Induction Resistivity (Conductivity Logging)	QL-Q	1	1	1	1
	Resistivitu (Eloa)	QL - SQ	1			1
	GPR Cross-Well Tomography	QL-Q	1	1	1	1
	Optical Televiewer	QL-Q	~	1	1	~
	Acoustic Televiewer	QL-Q	1			~
	Natural Gamma Log	QL-Q	~	1	~	~
	Neutron (porosity) Logging	QL-Q	~	1		~
	Nuclear Magnetic Resonance Logging	QL-Q	1	1	~	~
	<u>Video Log</u>	QL - SQ	1	1	1	1
	Caliper Log	QL-Q	1	1	1	1
	Temperature Profiling	QL-Q	1	1		1
	Full Wave Form Seismic	Q-QL	1			~

Tools Matrix Functionality

Click any box for a description or definition

Click

E.3 Geology

Geologic data provide a means to describe the physical matrix and structure of the subsurface and to classify the sedimentary, igneous, or metamorphic environment. Data related to lithology and distribution of strata and facies changes are generated through a variety of qualitative and quantitative collection tools and methods.

Initial methods and tools used to characterize site geology include site walkovers to help gain a preliminary understanding of the site prior to a major field mobilization, which can involve the use of both intrusive and nonintrusive tools. Outcroppings offer insight into structural features of the bedrock, and much information can be obtained through basic geologic mapping techniques (for example, measuring strike and dip of planar features and plotting on a stereonet).

Following a surface investigation, the next step in site characterization commonly involves collecting a continuous core of sediments and bedrock. Data provided by this core sampling may include lithology, grain size and sorting, crystalinity, geologic contacts, bedding planes, fractures and faults, depositional environment, porosity, and permeability. Generally, numerous boreholes are drilled to determine the vertical and horizontal variability of the site-specific geology. The depositional environment and facies changes should also be mapped as much as possible, and these data may be combined with surface and borehole geophysical data to interpolate conditions between the holes. Downhole geophysical tools and direct-push tools – for example, membrane interface probe (MIP), hydraulic profiling tool (HPT), and Waterloo profiler – can provide detailed information on the geology and contaminant distribution at a site.

Effective site geology characterization requires that personnel are trained and experienced in field geology and are able to accurately assess the collected data. It is also important that the team use consistent investigative methods – for example, characterizing soil or rock type using the same, agreed upon classification system. The team must determine the level of data resolution necessary to adequately characterize a specific site and whether surface and borehole geophysical data are of sufficient resolution.

Unfortunately, collection efforts at contaminated sites often yield insufficient geologic data, leading to a high degree of uncertainty in subsurface interpretation. Historically, there has been a tendency to oversimplify conceptual site models (CSMs), which has led to the misperception that physical (geologic) conditions of the site can be engineered around – that is, limitations in site characterization data can be compensated by overdesigning remediation systems. However, remedy performance success rates have been poor under such circumstances, whereas investing in adequately detailed site characterization has provided a positive return on investigation in terms of improved remedy success rates and reduced life cycle costs.

Oversimplification of CSMs is particularly relevant to glaciated regions with complex depositional environments. In the northeast and Midwest, many glaciated sites contain both bedrock and glacial aquifers that have DNAPL issues. Under such conditions, hydrogeological and geological expertise specific to glacial environments and their depositional characteristics is required for developing an accurate and complete CSM, and is key to the success of a DNAPL remedy.

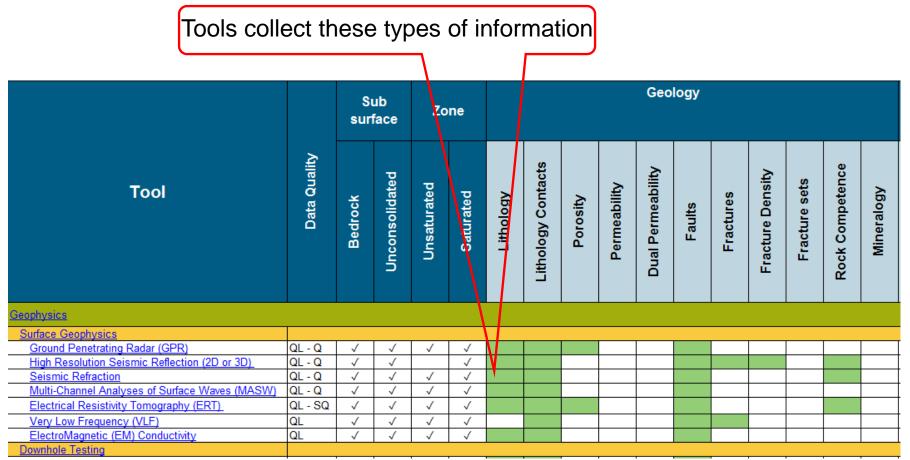
Detailed Tool Descriptions (Appendix D)

Click on any toolAdditional

Additional reference material

Description

Applicability

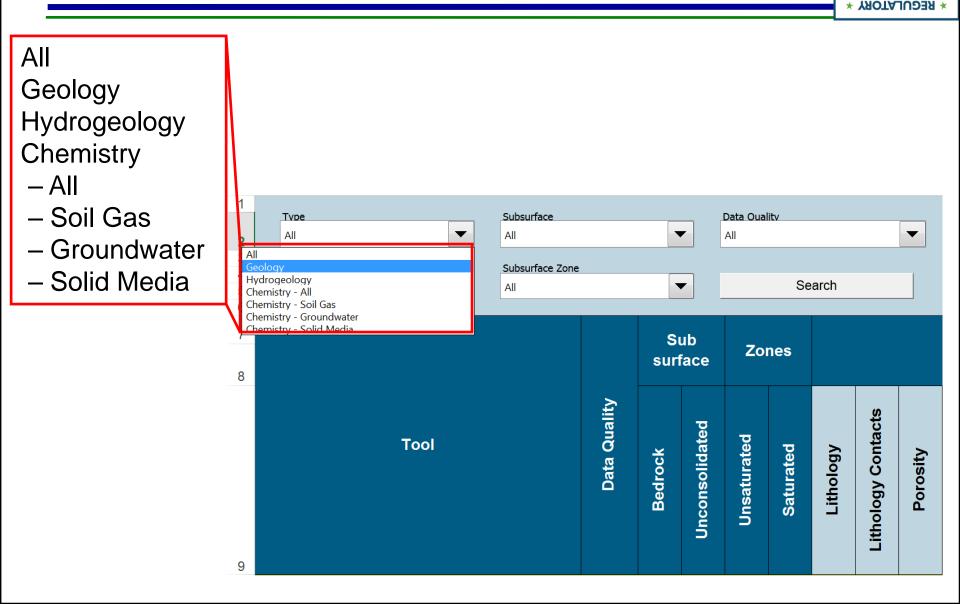

Limitations

			_		ub face		Zone	
		ΤοοΙ	Data Quality	Bedrock	consolidated	nsaturated	Saturated	
	Tool/References	Description		Data Qual licability/A	ity and dvantages	s		ons/Difficulty
- - - - - - - - -	Fround Penetrating Radar Annan 2005 Bayer et al. 2011 Beres et al. 1999 Bradford 2006 Bradford and Deeds 2006 Bradford, Dickins. and Brandvik 2010 Bradford and Babcock 2013 Clement, Barrash, and Knoll 2006 Guerin 2005 USEPA 2004	Ground penetrating radar (GPR) creates a cross- sectional imaging of the ground based on the reflection of an electromagnetic (EM) pulse from boundaries between layers of different dielectric properties. The quality depends on soil and water conditions as penetration is reduced by clay, water, and salinity. GPR is useful in resolving stratigraphic layers; however, independent confirmation of lithology is required. GPR generates a 2D profile, but it can be run with multiple lines in a grid pattern to generate a pseudo- 3D image. Penetration and resolution of features depend on antenna frequency and material conductivity and interferences, and are generally limited to 20 meters (m) deep. GPR can identify internal structures between material-bounding reflectors (e.g., cross-bedding) in some cases. GPR can be used to locate geologic material or property contacts associated with dielectric property contrasts (e.g., proxy for porosity in some water- saturated clastic sediments) as well as subsurface infrastructure (e.g., pipes, tanks, cavities).	subsui relativi qualita depen prior k calibra approp Applicabi relativi proces establi primar low EC excepl can be lapse l moistu EC or (plume severa preser nonaq	with anten rface EC ely sharp b ative to qua ding on fie nowledge/ tition, expe poriate mod lity/Advant ely fast to a ssing meth ished ily used in C (sand, gr t shales) e run repea mode to tra rre (above dielectric p e or spill bô al experime toce and ch ueous pha	ooundaries antitative eld conditio /subsurface rimental qu eling tages acquire, an odology w materials ' avel, or roo atedly in tin ack change water table	ons, e uality, d ell with ck ne- es in e) or iding ng lense ⊡	electrical and clay- pore wate interpreta depths se without in reference	enetration in y conductive (silts rich or conductive er) units tion of features and miquantitative dependent (well or cone eter [CPT])

⁷⁶ Shaded Boxes Denote Tool Meets Objective

Green shading indicates that tool is applicable to characterization objective

Using the Tools Matrix

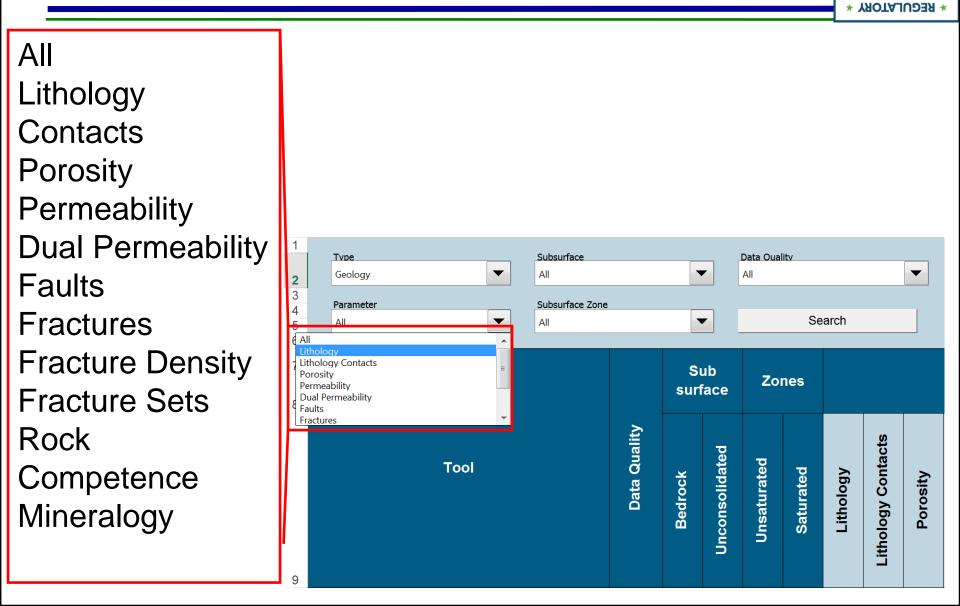


- Down-selecting appropriate tools to meet your characterization objectives
- A systematic process

- Select your categories: geology, hydrogeology, chemistry
- Select parameters of interest
- Identify geologic media (e.g., unconsolidated, bedrock)
- Select saturated or unsaturated zone
- Choose data quality (quantitative, semi-quantitative, qualitative)
- Apply filters, evaluate tools for effectiveness, availability, and cost
- Ultimately, final tools selection is site-specific, dependent upon team experience, availability, and cost

1. Select Category

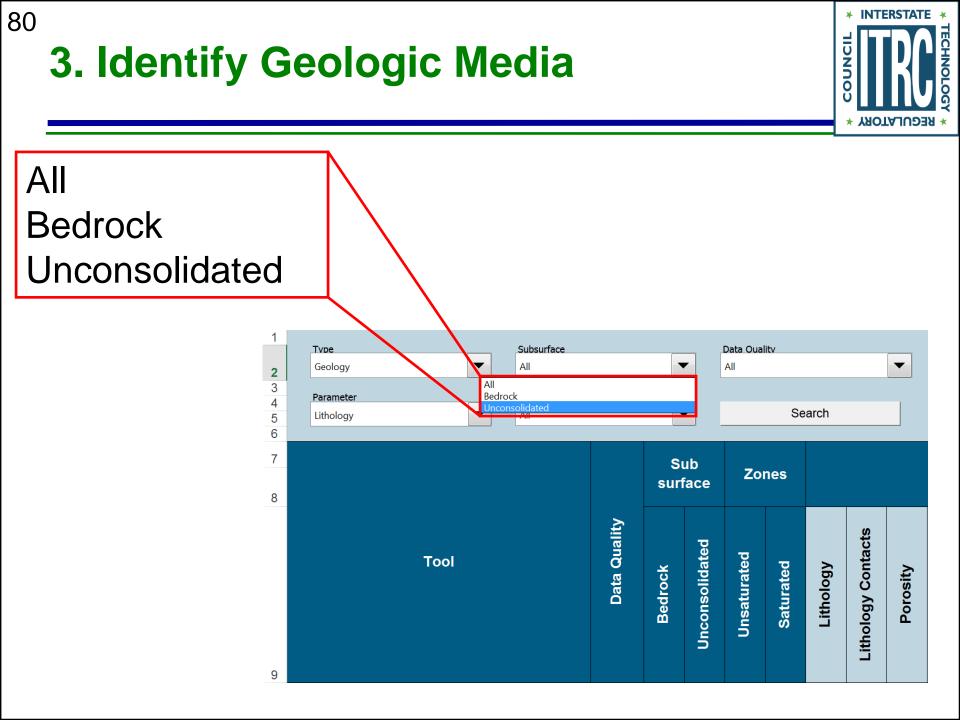
78

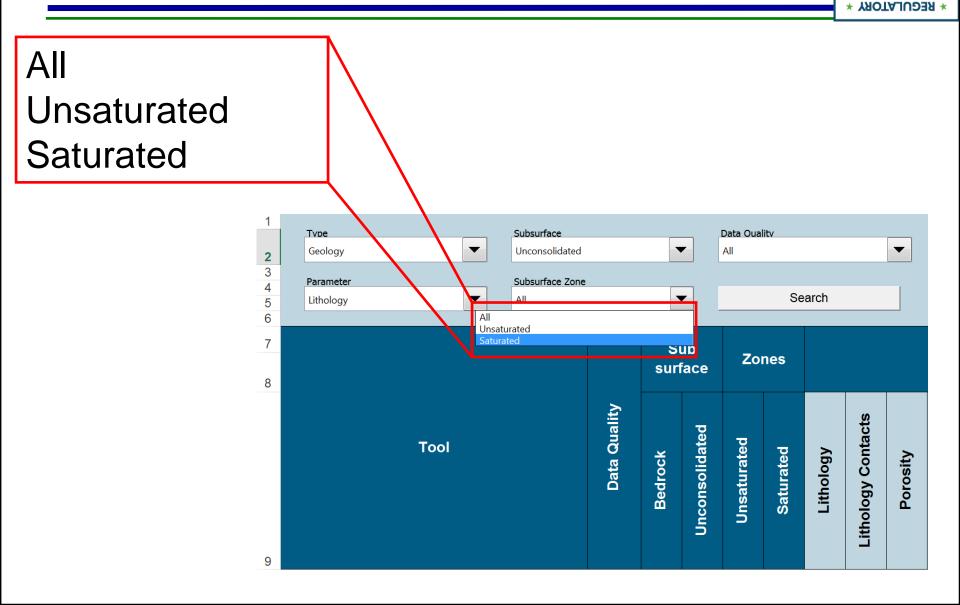


✗ INTERSTATE ✗

COUNCIL

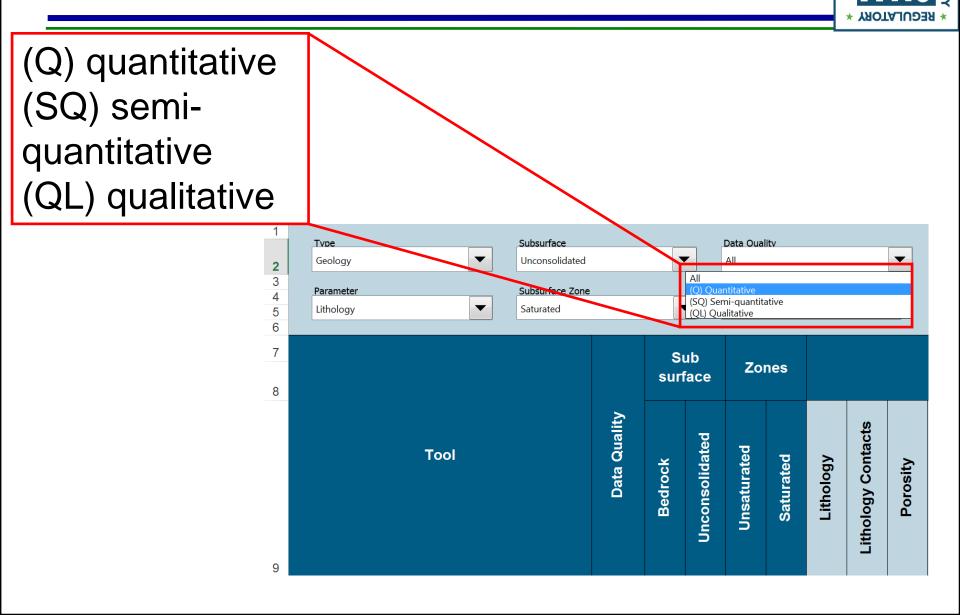
TECHNOLO


2. Select Parameters of Interest


interstate

COUNCI

ECHNOLC


✗ INTERSTATE ✗

COUNCIL

TECHNOLO

5. Choose Data Quality

82

★ INTERSTATE ★

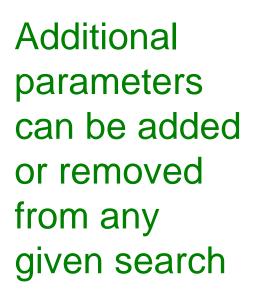
COUNCI

TECHNOLO

6. Apply Filters, Evaluate Tools

83

Type: Geology Parameter: Litholo				ithe			Geophysics		0	uali	tv:	(0)) C)ua	ntit	tati	ve				
Tvoe Geology ▼ Subsurface Parameter Lithology ▼ Subsurface Zone Subsurface Zone Subsurface Zone Subsurface Zone Subsurface Zone E			Surface Geophysics Ground Penetrating Radar (GPR) High Resolution Seismic Reflection (2D or 3D) Seismic Refraction Multi-Channel Analyses of Surface Waves (MASW) Downhole Testing Induction Resistivity (Conductivity Logging) GPR Cross-Well Tomography Optical Televiewer Natural Gamma Log	ead		S	oil as	Gr	rounc	lwate	Chemi r	istry	7	id Mee		imunity					
	Data	Bedrock	Unconsolidated	Unsaturated	Saturated	Lithology	ŀ	<u>Neutron (porosity) Logging</u> <u>Nuclear Magnetic Resonance Logging</u> Solid Media Sampling and Analysis Methods	Hydraulic H	Borehole Condition	Contaminant	Concentrat	Geochemistry	Microbial Community	NAPL Presence	Contaminant Concentration	Geochemistry	Foc	NAPL Presence	Contaminant Concentration	Microbial Community
Geophysics Surface Geophysics Ground Penetrating Radar (GPR) High Resolution Seismic Reflection (2D or 3D). Selismic Refraction Multi-Channel Analyses of Surface Waves Downhole Testino Induction Resistivity (Conductivity Logging) GPR Cross-Well Tomography	2 - QL 2 - QL 2 - QL 2 - QL 2 - QL 2 - QL 2 - QL							Solid Media Sampling Ald Analysis Methods Solid Media Sampling Methods Solid Spoon Sampler Single Tube Solid Barrel Sampler													
Optical Televiewer Natural Gamma Log Neutron (porosity) Logging Nuclear Magnetic Resonance Logging Solid Media Sampling and Analysis Methods Solid Media Sampling Methods Split Spoon Sampler	2 - QL 2 - QL 2 - QL 2 - QL 2 - QL				√ √ √			Dual Tube Sampler Solid Media Evaluation and Testing Methods Core Logging Direct Push Logging (In-Situ)													
Single Tube Solid Barrel Sampler Dual Tube Sampler Solid Media Evaluation and Testing Methods Core Logging Direct Push Logging (In-Situ) Cone Penetrometer Testing (CPT & CPTu) Hydrosparge (CPT) CPT In-Situ Video Camera	2 - QL 2 - QL 2 - QL 2 - QL 2 - SQ 2 - SQ 3Q - Q	√ 						<u>Cone Penetrometer Testing (CPT &CPTu)</u> <u>Hydrosparge (CPT)</u> <u>CPT In-Situ Video Camera</u>													
CPT In-Situ Video Camera 5Q - Q √ √ √ Discrete Groundwater Sampling & Profiling Hydraulic Profiling Tool Groundwater Sampler. (HPT-GWS)* 2 - QL √ √		1	Discrete Groundwater Sampling & Profiling Hydraulic Profiling Tool Groundwater Sampler (HPT GWS)*	:																	


*** INTERSTATE**

REGULATORY *

COUNCIL

TECHNO

⁸⁴ Perform Additional Searches to Find More Tools for Different Objectives

All Subsurface				Data Qual All	lity			
Parameter Subsurface Zone	2				Se	arch		
			_					
			ub face	Zo	ne			
ΤοοΙ	Data Quality	Bedrock	Unconsolidated	Unsaturated	Saturated	Lithology	Lithology Contacts	Porosity
Geophysics								
Surface Geophysics								
Ground Penetrating Radar (GPR)	QL - Q	\checkmark	\checkmark	 ✓ 	\checkmark			
High Resolution Seismic Reflection (2D or 3D)	QL - Q	\checkmark	√		√			
Seismic Refraction Multi-Channel Analyses of Surface Waves (MASW)	QL - Q	✓	✓	✓	√			
Multi-Channel Analyses of Surface Waves (MASW)	QL - Q	\checkmark	\checkmark	\checkmark	\checkmark			
	01 00							
Electrical Resistivity Tomography (ERT)	QL - SQ	\checkmark	1	√	√			
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF)	QL		√ √	\checkmark	√			
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF) ElectroMagnetic (EM) Conductivity		\checkmark	-					
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF) ElectroMagnetic (EM) Conductivity Downhole Testing	QL QL	√ √ √	√ √		√ √			
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF) ElectroMagnetic (EM) Conductivity Downhole Testing Magnetometric Resistivity	QL QL QL	\checkmark	-		√			
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF) ElectroMagnetic (EM) Conductivity Downhole Testing	QL QL	√ √ √ √	√ √ √	√ √	√ √ √			
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF) ElectroMagnetic (EM) Conductivity Downhole Testing Magnetometric Resistivity Induction Resistivity (Conductivity Logging)	QL QL QL QL - Q	√ √ √ √	√ √ √	√ √				
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF) ElectroMagnetic (EM) Conductivity Downhole Testing Magnetometric Resistivity Induction Resistivity (Conductivity Logging) Resistivity (Elog)	QL QL QL - Q QL - Q QL - SQ QL - Q QL - Q							
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF) ElectroMagnetic (EM) Conductivity Downhole Testing Magnetometric Resistivity Induction Resistivity (Conductivity Logging) Resistivity (Elog) GPR Cross-Well Tomography Optical Televiewer Acoustic Televiewer	QL QL QL - Q QL - Q QL - Q QL - Q QL - Q	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓						
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF) ElectroMagnetic (EM) Conductivity Downhole Testing Magnetometric Resistivity Induction Resistivity (Conductivity Logging) Resistivity (Elog) GPR Cross-Well Tomography Optical Televiewer Acoustic Televiewer Natural Gamma Log	QL QL QL - Q QL - Q QL - Q QL - Q QL - Q QL - Q							
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF) ElectroMagnetic (EM) Conductivity Downhole Testing Magnetometric Resistivity Induction Resistivity (Conductivity Logging) Resistivity (Elog) GPR Cross-Well Tomography Optical Televiewer Acoustic Televiewer Natural Gamma Log Neutron (porosity) Logging	QL QL QL - Q QL - Q QL - Q QL - Q QL - Q QL - Q QL - Q							
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF) ElectroMagnetic (EM) Conductivity Downhole Testing Magnetometric Resistivity Induction Resistivity (Conductivity Logging) Resistivity (Elog) GPR Cross-Well Tomography Optical Televiewer Acoustic Televiewer Natural Gamma Log Neutron (porosity) Logging Nuclear Magnetic Resonance Logging	QL QL QL - Q QL - Q	J J						
Electrical Resistivity Tomography (ERT) Very Low Frequency (VLF) ElectroMagnetic (EM) Conductivity Downhole Testing Magnetometric Resistivity Induction Resistivity (Conductivity Logging) Resistivity (Elog) GPR Cross-Well Tomography Optical Televiewer Acoustic Televiewer Natural Gamma Log Neutron (porosity) Logging	QL QL QL - Q QL - Q QL - Q QL - Q QL - Q QL - Q QL - Q							

Add Parameters to a previous search

Multiple searches can be saved on one matrix

	Parameter Subsurface Zon	P							
	Lithology Saturated	-			Α	dditiona	I Searcl	1	\
									1
			Subs	urface	Zo	ne			
		≳							
		Data Quality		ed	a.			Lithology Contacts	
	ΤοοΙ	o S	×	Unconsolidated	Unsaturated	ed	5	, t	≥
		ata	Bedrock	oli	ura	Saturated	Lithology	ŭ	Porosity
			ed	su	sat	atu	Ĕ	_∑	Ĭ
			Ê	8	ŝur	s	1	8	₽
				Ч				Ę	
<u>c</u>	Geophysics								
	Surface Geophysics								
	Ground Penetrating Radar (GPR)	Q - QL	~	\checkmark	\checkmark	\checkmark			
	High Resolution Seismic Reflection (2D or 3D)	Q - QL	~	\checkmark		\checkmark			
L	Seismic Refraction	Q - QL	✓	√	√	 ✓ 			
	Multi-Channel Analyses of Surface Waves (MASW)	Q - QL	√	\checkmark	\checkmark	√			
ľ	Downhole Testing Induction Resistivity (Conductivity Logging)	Q - QL	√	√	√	√			
F	GPR Cross-Well Tomography	Q - QL		\checkmark	~	\checkmark			
F	Optical Televiewer	Q - QL	- V	\checkmark	~	V			
F	Natural Gamma Log	Q - QL	× 			V			
t	Neutron (porosity) Logging	Q - QL	1	✓		1			
	Nuclear Magnetic Resonance Logging	Q - QL	~	\checkmark	\checkmark	1			
c l	Solid Media Sampling and Analysis Methods								
_	Solid Media Sampling Methods								
	Split Spoon Sampler	Q - QL		√	√	√			
			1		\checkmark	1			
	Single Tube Solid Barrel Sampler	Q - QL		\checkmark	~	✓			

- Incorporate selected tool(s) into characterization plan
- Implement plan, evaluate data, update CSM, reassess characterization objectives
- Repeat tool selection process as necessary

⁸⁷ Case Example – Characterization Objectives

Returning to Case Example from prior section – **Characterization Objective:**

Delineate lateral and vertical extent of dissolvedphase plume; determine stability and rate of attenuation.

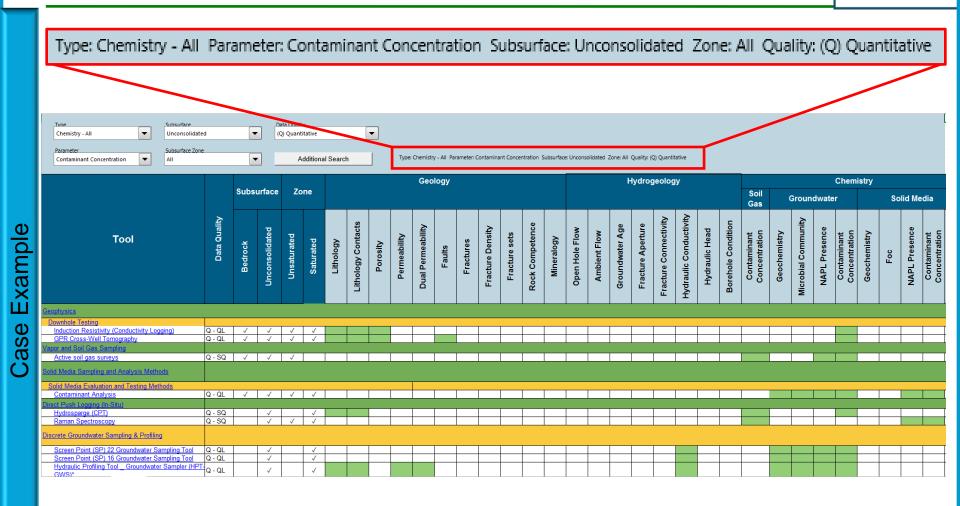
Goal:

- Define boundary exceeding groundwater standards
- Assess remedy progress soil and groundwater samples
- Assess shallow soil vapor impacts

⁸⁸ Case Example – Select Tools Matrix Filters

INTERSTAT

GULATORY


IUNUO

Filters

- Chemistry All
- Parameter
 - Contaminant Concentration
- Subsurface Media
 - Unconsolidated
- Subsurface Zone
 - All
- Data Quality
 - (Q) Quantitative

Case Example – Apply Filters

interstate

REGULATORY *

Ū

COUN

TECHNOLOG

Case Example – Applicable Tools

					_						_	
			Subsi	urface	70	one	Soil				C'a	Geophysics
			54654				Gas	(Groun	awate	er	Downhole Testing
							Gas					Induction Resistivity (Conductivity Logaina)
		£.							١Ę.			GPR Cross-Well Tomography
ΤοοΙ		Data Quality		fe	7		25	≩	Ē	Presence	E	Vapor and Soil Gas Sampling
1001		e e	ck	ida	ate	2	ina Tati	uis.	Ē	sel	na l	Active soil gas surveys
		Dat	Bedrock	onsolidated	aur	Saturat	tam.	hen	ပိ	Pre	am	
			ă	Uncor	Unsaurated	Sat	Contaminant Concentration	Geochemistry	Microbial Community	NAPL	Contaminant	Solid Media Sampling and Analysis Methods
							-		i i	z		Solid Media Evaluation and Testing Methods
									2			Contaminant Analysis
Geophysics												Direct Push Logging (In-Situ)
Downhole Testing Induction Resistivity (Conductivity Logging)									1		_	Hydrosparge (CPT)
GPR Cross-Well Tomography	님	QL	1	1	1	1						Raman Spectroscopy
Vapor and Soil Gas Sampling		22									-	
Active soil gas surveys	Q	SQ	1	- √-	1							Discrete Groundwater Sampling & Profiling
Solid Media Sampling and Analysis Methods												
											_	Screen Point (SP) 22 Groundwater Sampling.
Solid Media Evaluation and Testing Methods Contaminant Analysis	IQ.	QL	1	1	1	1						Screen Point (SP) 16 Groundwater Sampling
Direct Push Logaina (In-Situ)											-	<u>Hydraulic Profiling Tool _ Groundwater</u>
Hydrosparge (CPT)		SQ		√		1						Sampler (HPT-GWS)*
Baman Spectroscopy	Q.	SQ		√	1	~						Grab well water sampler (SNAP, Hydrasleeve)
Discrete Groundwater Sampling & Profiling												Straddle packer sampling
Screen Point (SP) 22 Groundwater Sampling	D.	QL		1		1						Hvdropunch
Screen Point (SP) 16 Groundwater Sampling	ā	QĹ		1		1						ZONFLO-Hydraulic sampling system
Hydraulic Profiling Tool _ Groundwater Sampler (HPT-GWS)*	Q.	QL		1		1						Multilevel sampling
Grab well water sampler (SNAP, Hudrasleeve)	· ·	SQ	1	1		1						Westbau
Straddle packer sampling	Q		1	1		1						Solinist
Hydropunch ZONFLO-Hydraulic sampling system	Q	SQ	1	1		1						Fact Systems (FLUTe)
Multilevel sampling	<u>u</u>		~	~		√		-		1		CMT (Continuous Multichannel Tubing)
<u>Westbay</u>	Q		1	√		1						Chemical Screening
Solinist Fact Systems (FLUTe)	Q	SQ	1	1		1	·					
CMT (Continuous Multichannel Tubing)	녆	JU	1	1	<u> </u>	1				<u> </u>		Direct Sampling Ion trap Mass Spectrometer
Chemical Screening												Environmental Molecular Diagnostics
Direct Sampling Ion trap Mass Spectrometer	Q		- √	√	√	√						Microbial Diagnostics
Environmental Molecular Diagnostics												Compound Specific Isotope Analysis (CSIA)
Microbial Diagnostics Compound Specific Isotope Analysis (CSIA)		SQ	√		1	√						On-site Analytical
On-site Analytical		59	v	v	× ·	v					-	Mobile labs
Mobile labs		QL	1	1	1	1						
Portable Gas Chromatograph		SQ	1	1	1	1						Portable Gas Chromatograph
Portable Gas Chromatograph / Mass	1U	SQ	1	1	1	1						Portable Gas Chromatograph / Mass

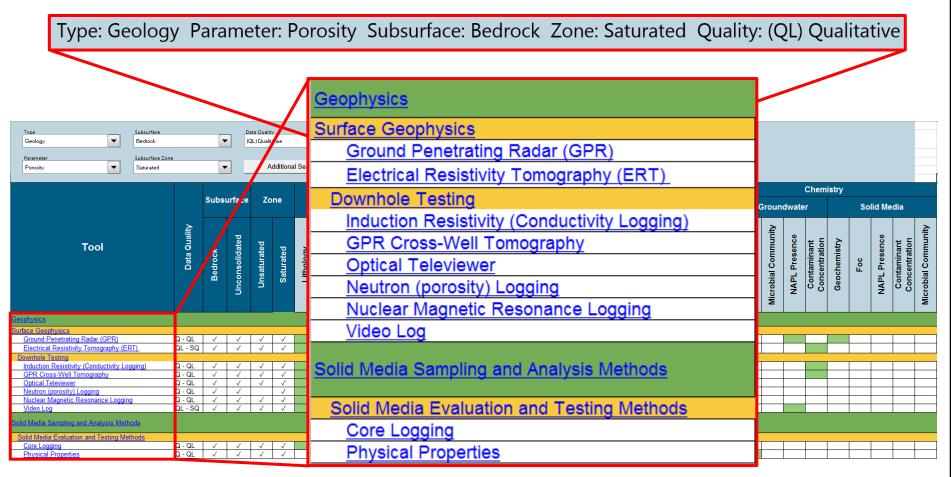
ase Example

Case Example – Tools Selection

- Search returns 22 tools
- Considering desire to expedite the assessment, project team selected
 - Direct Push borings with continuous soil sampling and GW grab sampling on 4-foot intervals
 - Active Soil Gas Survey at two depth intervals
 - Direct Sampling Ion Trap Mass Spectrometer (DSITMS) mobile field lab

Active Soil Gas Survey

DSITMS Mobil Lab


Characterization Objective – Determine the porosity of a fractured bedrock formation in a DNAPL source zone to evaluate the potential storage capacity of the rock

Type

- Geology
- Parameter
 - Porosity
- Subsurface Media
 - Bedrock
- Subsurface Zone
 - Saturated
- Data Quality
 - (Q) Qualitative

Example #2 – Bedrock Porosity

Over 100 tools distilled to 10 that are applicable to the Characterization Objective

Characterization Objective – Evaluate potential matrix diffusion issues associated with variations in hydraulic conductivity

- ► Type
 - Hydrogeology
- Parameter
 - Hydraulic Conductivity
- Subsurface Media
 - Unconsolidated
- Subsurface Zone
 - Saturated
- Data Quality
 - All

Example #3 – Hydraulic Conductivity

Type: Hydrogeolo	ogy Parameter:	Geophysics	nsolidated Zone: Saturated Quality: All
Type Subsurface Hydrogeology V Unconsolidate Parameter Subsurface Zon Hydrulic Conductivity V Stursted		Downhole Testing Nuclear Magnetic Resonance Logging Hydraulic Testing Single well tests Packer Testing FLUTe™ Profiling	
Tool	Data Quality Bedrock Unconsolidated Unsaturated Saturated	Borehole Dilution Flow Metering Pumping and Recovery Tests Slug Tests Constant Head Step Test Cross Borehole Testing Tracer testing Hydraulic Tomography	eology Chemistry Soll Groundwater Solid Media 21 tools returned. Can we refine?
Geophysics Downhole Testing Nuclear Magnetic Resonance Logging Hudsaulic Testing	Q-QL / / / / /	Flow Metering Pumping and Recovery Tests Slug Tests	
Single well tests Packer Testing FLUTE** Profiling Borehole Dilution Flow Metering Pumping and Recovery Tests Slug Tests Constant Head Step Test Cross Borehole Testing Tracer testing Hudraulic Tomostaphy	Q-SQ √ √ √ Q-SQ √ √ √	Solid Media Sampling and Analysis Methods <u>Solid Media Evaluation and Testing Methods</u> <u>Physical Properties</u> Direct Push Logging (In-Situ)	
Elow Metering Pumping and Recovery Tests Slug Tests Solid Media Sampling and Analysis Methods Solid Media Evaluation and Testing Methods Physical Properties	Q-SQ V V V V Q-SQ V V V V Q-SQ V V V V	<u>Hydraulic Profiling Tool (HPT)</u> <u>Electrical Conductivity (EC) Logging</u> <u>Cone Penetrometer Testing (CPT &CPTu)</u> Discrete Groundwater Sampling & Profiling	
Breat Push Looping In-Strul Hudraulic Profiling Tool (HPT) Electrical Conductivity (EC) Logging Cone Penetrometer Testing (CP1 & CP1u) Discrete Groundwater Sampling & Profiling Soreen Point (SP1 22 Groundwater Sampling Soreen Point (SP1 16 Groundwater Sampling Hudraulic Profiling Groundwater Sampling	QL-SQ V V V QL V V V V Q-SQ V V V V Q-QL V V V V Q-QL V V V V	<u>Screen Point (SP) 22 Groundwater Sampling Tool</u> <u>Screen Point (SP) 16 Groundwater Sampling Tool</u> <u>Hydraulic Profiling Tool _ Groundwater Sampler (HPT</u>	
HPT-GWSt Waterloo Advanced Profiling System (Waterloo APS):	Q-QL / / / / / / / / / / / / / / / / / / /	<u>GWS)*</u> <u>Waterloo Advanced Profiling System (Waterloo</u> <u>APS)*</u>	

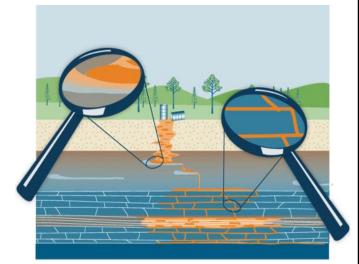
¥ INTERSTATE Example #3 – Hydraulic Conductivity ECHNOLO 0 NNO (refined) REGULATORY Type: Hydrogeology Parameter: Hydraulic Conductivity Subsurface: Unconsolidated Zone: Saturated Quality: (QL) Qualitative 🗋 Geophysics Downhole Testing Nuclear Magnetic Resonance Logging Subsurface • Hydrogeology • Unconsolidated (QL) lualitatis Subsurface Zon Parameter Solid Media Sampling and Analysis Methods • Additional • Hydraulio Conductivity Saturated Chemistry Zone Subsu face Solid Media Evaluation and Testing Methods Groundwater Solid Media Physical Properties Microbial Community Data Quality Microbial Community Contaminant Concentration NAPL Presence Contaminant Concentration Unconsolidatec NAPL Presence Geochemistry Unsaturated Tool Saturated Direct Push Logging (In-Situ) Bedroch Foc Hydraulic Profiling Tool (HPT) Electrical Conductivity (EC) Logging Downhole Testing Discrete Groundwater Sampling & Profiling QL 🗸 🗸 🗸 Nuclear Magnetic Resonance Loggin lid Media Sampling and Analysis Method Solid Media Evaluation and Testing Method - QL 🗸 🗸 🗸 🗸 Screen Point (SP) 22 Groundwater Sampling Tool Hydraulic Profiling Tool (HPT) SQ V V V Screen Point (SP) 16 Groundwater Sampling Tool Electrical Conductivity (EC) Lo Discrete Groundwater Sampling & Profiling Hydraulic Profiling Tool Groundwater Sampler (HPT Creen Point (SP) 22 Groundwater Sampling Too - QL Screen Point (SP) 16 Groundwater Sampling Tool \checkmark \checkmark GWS)* Hydraulic Profiling Tool _ Groundwater Sa QL

Change data quality to QL 7 tools returned

ITRC Tools Matrix Summary

- Characterization objectives guide selection of tools
- Interactive tools matrix over 100 tools with links to detailed descriptions
- A systematic tools selection process
- Select tools, implement work plan, evaluate results
- Align data gaps with characterization objectives, update CSM
- Repeat as necessary until consensus that objectives have been met

Training Overview



- Life Cycle of a DNAPL Site
- Integrated Site Characterization
 - Plan

98

- Tools Selection
- Implementation
- Summary

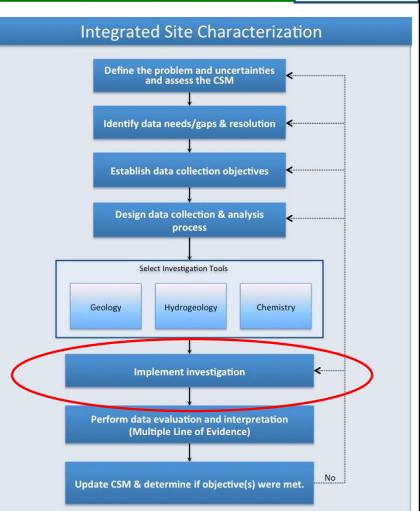
ISC-1, Chapter 4

Conducting

99

- Step 6: <u>Implement</u> investigation
- Step 7: <u>Perform</u> data evaluation and interpretation
- ► Step 8: <u>Update</u> CSM

Integrated Site Characterization


Figure 4-1 Integrated Site Characterization

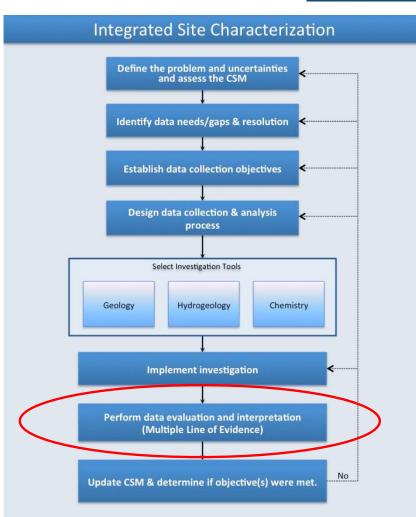
Step 6. Implement Investigation

- Time to conduct the investigation
 - Go into field

100

- Use flexible plan
- Collect data
- Often concurrent with data evaluation (Step 7)

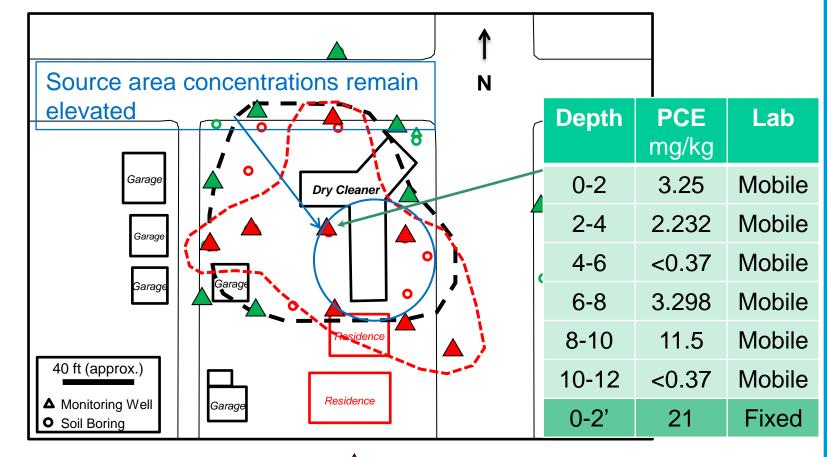
.


¹⁰¹ Step 7. Data Evaluation and Interpretation

- Integrate all data types
- Generate collaborative datasets

Multiple line of evidence

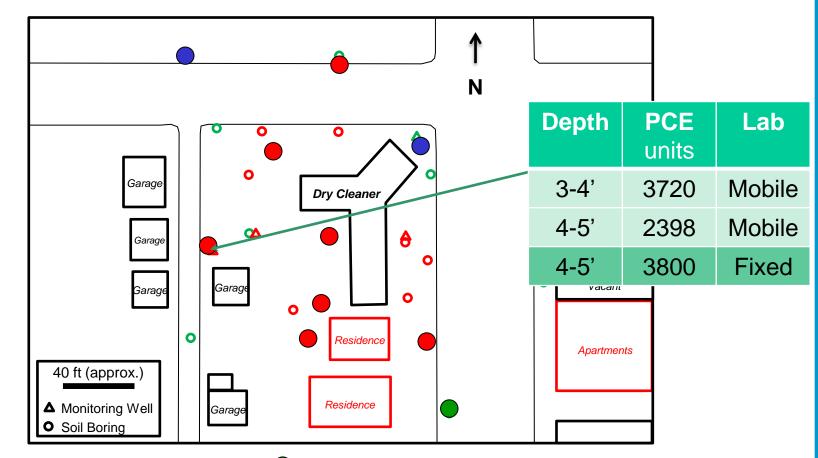
- Contaminant transport
- Storage
- Attenuation



¹⁰² Step 7. Soil and Groundwater Data Evaluation and Interpretation

Example

Case


Result exceeds criteria Result does not exceed criteria **INTERSTATE**

REGULATORY

IDNUOD

¹⁰³ Step 7. Soil Vapor Data Evaluation and Interpretation

Shallow soil vapor results

Result below vapor screening level

Result exceeds chronic vapor screening level

Result exceeds sub-chronic vapor screening level

104 Poll Question

- When do you typically update your CSM at sites where you work?
 - Whenever new data is collected
 - When a remedial technology fails
 - Whenever the CSM is determined to be inaccurate
 - Every five years
 - Never

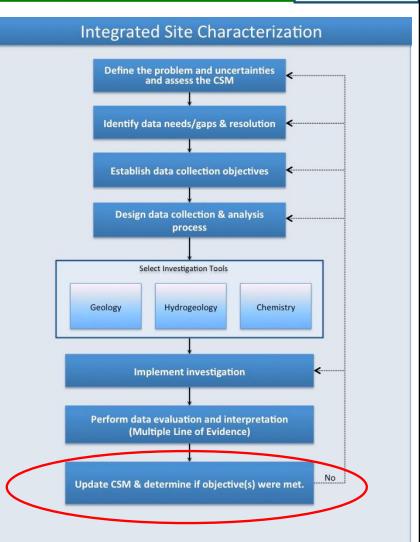
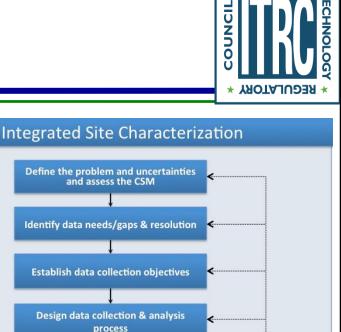


Figure 4-1 Integrated Site Characterization

Step 8. Update the CSM

- Data collected from all phases of a project can be used
- As a project progresses, data needs shift
- In late phases, additional data collection often driven by specific questions
- ISC continues as the CSM evolves

Select Investigation Tools

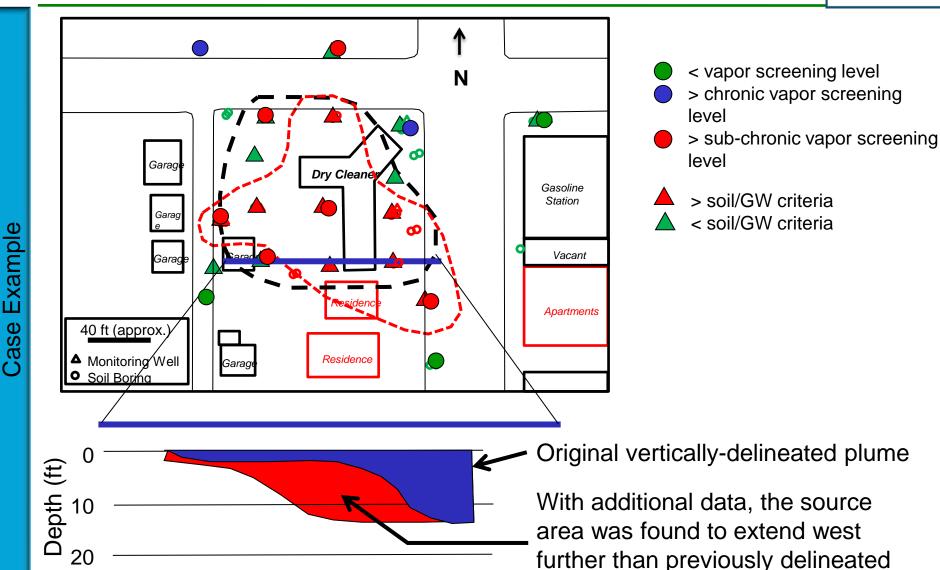

Hydrogeology

Implement investigation

Perform data evaluation and interpretation (Multiple Line of Evidence)

Update CSM & determine if objective(s) were met.

Geology

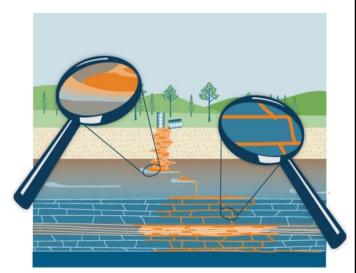

Chemistry

No

*** INTERSTATE**

¹⁰⁶ Step 8: Dry Cleaners – CSM Update

Integrated Site Characterization Benefits for Dry Cleaners Sites

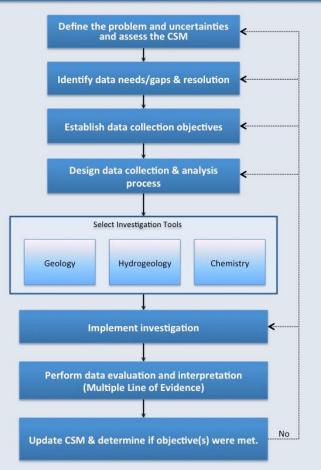

- Confirmed need for residential indoor air evaluation and VI mitigation for commercial buildings
- Optimized data density in specific areas; avoided unnecessary / inconclusive data collection

UNDO

- Accurately determined source zone and remediation target area
- Completed ahead of schedule; saved \$50k of \$150k budget (33%)

¹⁰⁸ Training Overview

- DNAPL Characteristics
- Life Cycle of a DNAPL Site
- Integrated Site Characterization
 - Plan
 - Tools Selection
 - Implementation
 - Summary



¹⁰⁹ Summary Integrated Site Characterization

Integrated Site Characterization

► Planning

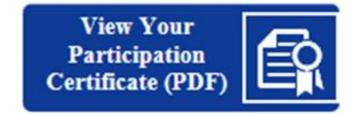
Tools selection

Implementation

Figure 4-1 Integrated Site Characterization

Integrated Site Characterization is the Path Forward

- Too many DNAPL sites are stalled or unresolved
- Examining DNAPL mobility in heterogeneous environments promoted better remedy selection
- Better characterization builds trust and confidence in site decisions



Ind question and answer break

Links to additional resources

- http://www.clu-in.org/conf/itrc/IDSC/resource.cfm
- Feedback form please complete
 - http://www.clu-in.org/conf/itrc/IDSC/feedback.cfm

CLU-IN Home	United States Technology Int Environmental Protection Agency U.S. EPA Technology Sport Project Engineering Forum
Gë to	Green Remediation: Opening the Door to Field Use Sess Remediation Tools and Examples) Seminar Feedback Form
Seminar Links	We would like to receive any feedback you might have that would ma valuable. Please take the time to fill out this form before leaving t
Feedba	United States ** Daytime Phone Number:
Home	Email Address:
CLU-IN Studio	certificate on the deck confirmation to this address.
	Thank you for participating in an online technology aminar. We hope this was a valuable of your time. Submit Clear Form Submit Clear Form

Need confirmation of your participation today?

 Fill out the feedback form and check box for confirmation email and certificate.