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When sampling soil at potentially contaminated sites, the goal is collecting representative samples which will lead to quality decisions. 
Unfortunately traditional soil sampling methods don't always provide the accurate, reproducible, and defensible data needed. Incremental 
Sampling Methodology (ISM) can help with this soil sampling challenge. ISM is a structured composite sampling and processing protocol that p g gy ( ) p p g g p p g p g p
reduces data variability and provides a reasonable estimate of a chemical's mean concentration for the volume of soil being sampled. The three 
key components of ISM are systematic planning, field sample collection, and laboratory processing and analysis. The adequacy of ISM sample 
support (sample mass) reduces sampling and laboratory errors, and the ISM strategy improves the reliability and defensibility of sampling data by 
reducing data variability.
ISM provides representative samples of specific soil volumes defined as Decision Units. An ISM replicate sample is established by collecting 
numerous increments of soil (typically 30 to 100 increments) that are combined, processed, and subsampled according to specific protocols. ISM 
is increasingly being used for sampling soils at hazardous waste sites and on suspected contaminated lands. Proponents have found that the 
coverage afforded by collecting many increments, together with disciplined processing and subsampling of the combined increments, yields 
consistent and reproducible results that in most instances have been preferable to the results obtained by more traditional (e.g. discrete) 
sampling approachessampling approaches.
This 2-part training course along with ITRC's web-based Incremental Sampling Methodology Technical and Regulatory Guidance Document
(ISM-1, 2012) is intended to assist regulators and practitioners with the understanding the fundamental concepts of soil/contaminant 
heterogeneity, representative sampling, sampling/laboratory error and how ISM addresses these concepts. Through this training course you 
should learn:
- basic principles to improve soil sampling results
- systematic planning steps important to ISM
- how to determine ISM Decision Units (DU)
- the answers to common questions about ISM sampling design and data analysis
- methods to collect and analyze ISM soil samples

the impact of laboratory processing on soil samples- the impact of laboratory processing on soil samples
- how to evaluate ISM data and make decisions

In addition this ISM training and guidance provides insight on when and how to apply ISM at a contaminated site, and will aid in developing or 
reviewing project documents incorporating ISM (e.g., work plans, sampling plans, reports). You will also be provided with links to additional 
resources related to ISM.
The intended users of this guidance and training course are state and federal regulators, project managers, and consultant personnel 
responsible for and/or directly involved in developing, identifying or applying soil and sediment sampling approaches and establishing sampling 
objectives and methods. In addition, data end users and decision makers will gain insight to the use and impacts of ISM for soil sampling for 
potentially contaminated sites.
Recommended Reading: We encourage participants to review the ITRC ISM document (http://www.itrcweb.org/ISM-1/) prior to participating in 
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the training classes. If your time is limited in reviewing the document in advance, we suggest you prioritize your time by reading the Executive 
Summary, Chapter 4 "Statistical Sampling Designs for ISM," and Chapter 7 "Making Decisions Using ISM Data" to maximize your learning 
experience during the upcoming training classes.

ITRC (Interstate Technology and Regulatory Council) www.itrcweb.org

Training Co-Sponsored by: US EPA Technology Innovation and Field Services Division (TIFSD) (www.clu-in.org) 

ITRC Training Program: training@itrcweb.org; Phone: 402-201-2419



Although I’m sure that some of you are familiar with these rules from previous CLU-IN events, let’s 
th h th i kl f ti i trun through them quickly for our new participants. 

We have started the seminar with all phone lines muted to prevent background noise. Please keep 
your phone lines muted during the seminar to minimize disruption and background noise. During the 
question and answer break, press #6 to unmute your lines to ask a question (note: *6 to mute again). 
Also, please do NOT put this call on hold as this may bring unwanted background music over the 
lines and interrupt the seminar.

Use the “Q&A” box to ask questions, make comments, or report technical problems any time. For 
questions and comments provided out loud, please hold until the designated Q&A breaks.

Everyone – please complete the feedback form before you leave the training website. Link to 
feedback form is available on last slide.

3



The Interstate Technology and Regulatory Council (ITRC) is a state-led coalition of regulators industry experts citizen stakeholders academia andThe Interstate Technology and Regulatory Council (ITRC) is a state led coalition of regulators, industry experts, citizen stakeholders, academia and 
federal partners that work to achieve regulatory acceptance of environmental technologies and innovative approaches. ITRC consists of all 50 states 
(and Puerto Rico and the District of Columbia) that work to break down barriers and reduce compliance costs, making it easier to use new technologies 
and helping states maximize resources. ITRC brings together a diverse mix of environmental experts and stakeholders from both the public and private 
sectors to broaden and deepen technical knowledge and advance the regulatory acceptance of environmental technologies. Together, we’re building 
the environmental community’s ability to expedite quality decision making while protecting human health and the environment. With our network of 
organizations and individuals throughout the environmental community, ITRC is a unique catalyst for dialogue between regulators and the regulated 
community.

For a state to be a member of ITRC their environmental agency must designate a State Point of Contact. To find out who your State POC is check out 
the “contacts” section at www.itrcweb.org. Also, click on “membership” to learn how you can become a member of an ITRC Technical Team.

Disclaimer: This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility 
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof and no 
official endorsement should be inferred.

The information provided in documents, training curricula, and other print or electronic materials created by the Interstate Technology and Regulatory 
“ ” “ ”Council (“ITRC” and such materials are referred to as “ITRC Materials”) is intended as a general reference to help regulators and others develop a 

consistent approach to their evaluation, regulatory approval, and deployment of environmental technologies. The information in ITRC Materials was 
formulated to be reliable and accurate. However, the information is provided "as is" and use of this information is at the users’ own risk. 

ITRC Materials do not necessarily address all applicable health and safety risks and precautions with respect to particular materials, conditions, or 
procedures in specific applications of any technology. Consequently, ITRC recommends consulting applicable standards, laws, regulations, suppliers of 
materials, and material safety data sheets for information concerning safety and health risks and precautions and compliance with then-applicable laws 
and regulations. ITRC, ERIS and ECOS shall not be liable in the event of any conflict between information in ITRC Materials and such laws, 
regulations, and/or other ordinances. The content in ITRC Materials may be revised or withdrawn at any time without prior notice.

ITRC, ERIS, and ECOS make no representations or warranties, express or implied, with respect to information in ITRC Materials and specifically 
disclaim all warranties to the fullest extent permitted by law (including but not limited to merchantability or fitness for a particular purpose) ITRC ERIS
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disclaim all warranties to the fullest extent permitted by law (including, but not limited to, merchantability or fitness for a particular purpose). ITRC, ERIS, 
and ECOS will not accept liability for damages of any kind that result from acting upon or using this information. 

ITRC, ERIS, and ECOS do not endorse or recommend the use of specific technology or technology provider through ITRC Materials. Reference to 
technologies, products, or services offered by other parties does not constitute a guarantee by ITRC, ERIS, and ECOS of the quality or value of those 
technologies, products, or services. Information in ITRC Materials is for general reference only; it should not be construed as definitive guidance for any 
specific site and is not a substitute for consultation with qualified professional advisors.



Annette C. Dietz , Ph.D., has been an instructor in the Department of Civil and Environmental Engineering at Portland State University in Portland, 
Oregon since 2015. From 2010 to 2015, she was the Cleanup Program Coordinator for the Oregon Department of Environmental Quality (OR DEQ) 
located in Portland, Oregon. She was a technical and policy expert for cleanup program activities, oversaw the maintenance and development oflocated in Portland, Oregon. She was a technical and policy expert for cleanup program activities, oversaw the maintenance and development of 
policy and guidance for cleanup project work, coordinated program functions performed by technical staff in regional offices, and provided outreach 
and training support for external stakeholders. Before joining OR DEQ in 2010, Annette worked as an environmental consultant managing and 
performing site investigation and remediation projects. While at OR DEQ, she was Oregon's Point of Contact (POC) to ITRC and a member of the 
ITRC Incremental Sampling Methodology team. Annette earned a bachelor's degree in Spanish and Global Studies in 1993, a master's in 
environmental engineering in 1996 and a doctoral degree in environmental engineering in 2000, all from the University of Iowa in Iowa City, Iowa.

Deana Crumbling is an Environmental Scientist in the Technology Innovation section of EPA’s Office of Solid Waste and Emergency Response in 
Washington, DC. Since 1997 she has focused on the topics of dynamic work plans, field analysis and other analytical chemistry technologies, 
sampling designs and data uncertainty management. She has taught many classroom and webinar courses in those topics. Before coming to EPA, 
she worked for 2 years as a risk assessor for an environmental consulting firm, for 2 years as a lab and safety manager and adjunct faculty for a 

ll f 1 i lt t f i t l tt d 1 i th P l i St t H d Sit Cl Pcollege, for 1 year as a science consultant for an environmental attorney, and 1 year in the Pennsylvania State Hazardous Site Cleanup Program. 
She worked for 20 years as a hospital-based clinical laboratory analyst and trainer. Deana was a team member in the ITRC Site Characterization 
and Monitoring Team from 2002 to 2004, and now a member of the Incremental Sampling Methodology Team since 2009. She earned a bachelor’s 
in biochemistry and a bachelor’s in psychology from Lebanon Valley College in Lebanon, Pennsylvania, in 1989, and a master’s in environmental 
science from Drexel University in Philadelphia, Pennsylvania, in 1997.

Robin Boyd is a Senior Project Manager with AECOM in Virginia. Robin is a specialist in the use of incremental sampling for both surface and 
subsurface remedial investigations and remediation. Since 1989 Robin has gained experience with investigating hazardous waste sites including 
the development and implementation of innovative technologies for the remediation of soil and ground water. He has designed and implemented 
over 35 incremental sampling programs of various types and conducted numerous training classes on the use of incremental sampling. He has 
attended both Francis Pitard’s and Chuck Ramsey’s classes on incremental sampling and Gy’s Sampling Theory (which is the cornerstone of ISM). a e ded bo a c s a d s a d C uc a sey s c asses o c e e a sa p g a d Gy s Sa p g eo y ( c s e co e s o e o S )
He is an active member of the ITRC Incremental Sampling Methodology team. Robin earned both a bachelor’s degree in 1979 and master’s degree 
in 1981 in geology and geophysics from the University of Wisconsin-Madison. Robin is also a registered professional geologist.

Philip Goodrum is a Senior Managing Scientist with Integral Consulting in Syracuse, New York. Since 1989 Phil has gained experience in 
quantitative risk assessment and environmental modeling, specializing in applications to human health and ecological risk assessment, sediment 
remediation, groundwater compliance monitoring, and natural resource damage assessment. He brings a broad understanding of the use and 
effective communication of data evaluation, visualization, and statistical analysis techniques to support ecological risk assessment and injury 
assessment. He is responsible for developing sampling designs and conducting data interpretation, statistical analysis, modeling, and risk 
characterization at sites around the country. He is a recognized national expert in probabilistic modeling, lead (Pb) risk assessment, and 
environmental sampling, having been invited to teach numerous professional short courses on these topics by regulators and industry. He has co-

th d USEPA id b bili ti i k l i d i d d t i f t t d f d l i d i

5

authored USEPA guidance on probabilistic risk analysis, served as an independent peer reviewer for state and federal agencies on survey design, 
and continues to serve on USEPA’s Science Advisory Board for lead (Pb). Phil has contributed to ITRC Incremental Sampling Methodology team 
since 2009. Phil earned his bachelor’s degree in environmental technology from Cornell University in Ithaca, New York in 1989, a master’s in water 
resources from SUNY Environmental Science and Forestry (ESF) in Syracuse, New York in 1995, and Ph.D. in environmental engineering from ESF 
in 1999. He is on the adjunct faculty at Syracuse University where he teaches a course in environmental toxicology.



_____

Picture Reference: http://www.swrcb.ca.gov/rwqcb2/brownfields.shtml
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_____

How are your decisions made when you review soil sampling data?
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_____
Di t l if fi d h t t t t b t if t NDDiscrete samples – if you find a hotspot you step out… but if you get a ND – are you 
done? 

With a small number of discrete samples how well did you define the extent of contamination 
to begin with? 

What does each discrete sample represent? 
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_____

What does a single sample represent and how can/should you assess the spatial variation of 
samples. 

A small # of discrete samples encourages two key errors:

1) Underestimate the representative concentration in the an area, and

2) Underestimate the vertical and later extent of contamination.

Does 1g of soil represent your site?

That small volume of samples that is analyzed provides a results that represents the area 
we are assessing for risk type decisions.

Picture Reference: http://www.swrcb.ca.gov/rwqcb2/brownfields.shtml
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_____

Most Risk-based environmental criteria are based on an estimate of the mean (.e.g., 95% 
UCL). 

If you have a few discrete samples how do you estimate the mean?

Discrete samples give some sense of spatial variability.

Th di t l h th k b t th l ti i bilitThe more discrete samples you have, the more you know about the population variability, 
and build certainty.
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____

What are Sources of Uncertainty and where do we find them?

With proper maintenance and standard operating procedures instrument analysis is actually 
very consistent.

Uncertainty increases as you move down the list.
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_____

The largest amount of uncertainty lies in laboratory sub sampling and field sampling 
collection, including sample heterogeneity. 

Is there a better way to control uncertainty and errors and get a better representative 
sample? 
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_____

Incremental Sampling is a structured sampling and processing protocol that reduces data 
variability and increases sample representativeness. 

ISM is an improved form of composite sampling, because the process involved in collection 
and analysis of an ISM sample greatly improves sample representativeness. The ISM 
sample goal is to have all the same constituents in the same proportion as the volume 
sampled.

ISM samples provide a result that better estimates the mean concentration of the sampled 
volume, than sparse discrete sampling. 
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_____

The Internet-based training follows the ISM document section by section

Two-part ITRC Internet-based training:
Part 1 - Principles, Systematic Planning, and Statistical Design
Part 2 - Field Implementation, Lab processing, and Data Assessment

The planning, field implementation, and laboratory processing are critical to collecting a 
l th t i ld Hi hl R d ibl M C t tisample that yields Highly Reproducible Mean Concentrations
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_____

Survey identified outstanding issues and used to aid development of the ISM technical 
regulatory document.

263 responses to our survey
½ of the responses from consultants
¼ from State regulators
¼ from federal agencies, regulators, laboratories, stakeholder groups. 

These summarize the key implementation issues identified by the survey.

Section 8 addressed these issues in the ISM document. 

ISM is still being developed and some of these issues (e.g. cost) are still being worked out 
with more wide spread use.
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_____

The survey found that ISM has been applied on a variety of sites.
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_____

ISM sampling can be used for a broad range of contaminants – data from our 2009 survey.
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____

No associated notes

18



_____

Multi-disciplinary team includes, scientists, geologist, toxicologists, engineers, chemists, 
statisticians, and community and tribal representatives.
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_____

Training classes on Multi-Increment sampling and guidance available from Hawai’i, Alaska, 
and the USACOE 

ISM Tech-Reg document deals with things in more detail and include case study and 
simulation info to support application of ISM. 

In 2010, the ISM Team developed and implement an IS plan for a case study site in Florida. 
It is presented in our Tech-Reg document and will be presented during different Internet-p g p g
based training modules.

As of March 2012, the Florida Dept. of Environmental Protection is in the process of 
developing ISM guidance by incorporating the ITRC ISM guidance document.

Web-based document has live links and you can print the entire document, a Section, or just 
a page. 
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_____

ISM involves planning, field implementation, and laboratory processing and subsampling to 
provide a representative analytical aliquot. The goal of ISM is to analyze an aliquot that 
represents the same proportion of constituents as the sampling area. 

The box represents a Decision Unit or DU - the volume being sampled and the volume you 
want to make a decision on. 

Within the DU, there are sample locations or ”Increments”.

The sampling grid and increment locations are established during the systematic planning 
as are the number of increments represented by the X’s, O’s and triangles.

The ISM field replicate for X is a composite of all 60 X increments, likewise for the O’s and 
the triangles.

After collection in the field the samples are sent to a lab to be processed, and subsampled.

The lab subsampling approach is similar to that applied to collection of a single field 
increments. The goal of ISM is to have all the same constituents in the same proportion as 
the area sampled. 

The ISM document recommends at least three replicate results (X, O, and triangle) for each 
DU. 
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_____

ISM has both advantages and disadvantages from a sampling design perspective. 

Can’t directly compare discrete and ISM samples because each measure different 
properties of the population.

Under disadvantages, discrete sampling allows for calculations of ratios of two variables –
allows for correlations among constituents, or estimates of bioaccumulation factors (update 
from abiotic media to organisms) that you cannot get from ISM. g ) y g

When assessing acute toxicity issues, the decision unit would have to be very small for 
incremental sampling. ISM may not be practical.
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_____

No associated notes
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_____

Training provides answers to make informed ISM decisions by answering:

Where can ISM be used?

When should ISM not be used?

What contaminants are most suitable for ISM?

What effect does sample processing have on contaminant concentration?

Does ISM mask area of high concentrations due to compositing and homogenization?

How does ISM differ from discrete sampling?

How many replicates should be collected?

How are data quality objectives (DQOs) addressed?

How do ISM results relate to action levels?
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Part 1 includes Modules on:

Soil Principles, Systematic Planning, and Statistical Design 

25



_____

Soil Principles – Be aware of issues related to heterogeneity and sampling errors

Systematic Planning - Involve the entire team, regulators, consultants, responsible parties in 
critical elements (e.g. conceptual site model, establish sampling objectives and decision 
units.) Sampling objectives should drive your sampling design, and the scale of decision 
making should align with sampling objectives.

Statistical Design - Provides the statistical foundation and describes why ISM provides a 
reasonable mean, describes a good ISM sampling design, and informs you how ISM 
provides 95% UCL.
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Speaker Notes

• Micro-scale heterogeneity is also called compositional heterogeneity.
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Speaker Notes

Previous section emphasized 1) importance of up-front planning BEFORE going to the field, 
and 2) sample processing is critical part of incremental sampling methodology. Planning is 
necessary to minimize errors throughout data generation. In order to plan effectively, need to 
understand the causes and effects of sampling error, and be able to detect when sampling 
error may have degraded data quality. 

A key goal of ISM is to reduce decision errors when dealing with soils. Decision error refers 
t d i i th t ld b d diff tl IF th t t f th t i tito decisions that would be made differently IF the true nature of the contamination were 
known. An example of a decision error is deciding that contamination is not present above a 
certain level, when it actually is.

To reduce decision errors, need to examine their root causes. This slide shows how the 
heterogeneous nature of soil ends up causing decision errors. Starting with the first box on 
the left (the blue box), we’ll look at how contaminants interact with soil. That interaction 
leads to contaminant heterogeneity which is a primary cause of sampling errors Samplingleads to contaminant heterogeneity, which is a primary cause of sampling errors. Sampling 
errors, in turn, lead to data variability, and data variability can mislead decision makers. In 
this presentation I’m going to explain how this cascade occurs. We’ll use this figure to serve 
as a navigation aid.

Supplemental Information

See ISM-1 Section 2.1
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Speaker Notes

• Heterogeneity in composition is referred to as “compositional” or “constitutional” 
heterogeneity

• Soil samples show compositional heterogeneity in 3 primary ways: 

• made up of particle sizes that vary over several orders of magnitude and so differ 
in surface area, and

• composed of different mineral grains which vary in their “stickiness” for 
contaminant molecules,

• contain various amounts and types of organic matter.

Supplemental Information

See ISM-1 Section 2.2
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Speaker Notes

• This figure is a photo of magnified sandy soil containing very little organic matter. 

• At the macro level (i.e., viewed without magnification) this soil looks homogeneous.

• But under magnification, can see it is composed of mineral grains that vary from relatively 
large to barely visible at this magnification. 

• Colors of individual grains vary from white to pink to greenish, reflecting the different 
minerals present in the grains. 

• This is an example of soil heterogeneity at the micro-scaleThis is an example of soil heterogeneity at the micro-scale. 
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Speaker Notes

• Soil is composed of an infinite number of particles, some made of inorganic minerals and 
some of organic matter. 

• Organic matter comes from living organisms. It could be grass, leaves, sticks, insects, 
microbes, etc. 

• Organic matter is of particular importance to contaminants because it decays into complex 
molecules that act as molecular sponges.

• Many contaminants, although not all, adhere well to certain soil minerals. y g

• Organic and inorganic contaminants can be absorbed into organic carbon complexes.

Supplemental Information

See ISM-1 Section 2.2
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Speaker Notes

• Different particles bind contaminants to varying degrees. 

• Clay minerals strongly bind many contaminants. 

• This is a photograph of clay particles under high magnification. If you look closely, you’ll 
see that clay particles take the form of stacked plates. 

• The plates have molecule-sized spaces between them. The very small size of clay particle 
gives them a large surface area on the outside, then the plate structure provides even more. 
More surface area provides more sites where contaminants can bind.p

• Some of the “stickiness” of clays is due having many negative charges lining the inside of 
the plates. Clay particles have some positive charges along the edges of the plates. 

• Negative charges attract metal contaminants that are positively charged. An example is 
when Pb in bullets corrodes into Pb minerals that then dissolve and release positively 
charged Pb ions into the soil. Lead ions are attracted to the clay’s negative charges and can 
become trapped between the clay plates. 

• Another type of soil particle that is sticky from a contaminant’s point of view are oxide yp p y p
minerals, such as iron oxides and aluminum oxides. Geochemical oxides are small particles 
with a large surface area. They can carry either a positive or negative charge depending on 
the pH. 

• Iron oxide is interchangeable with iron hydroxide, depending on the pH.

Supplemental Information

See ISM-1 Section 2 2 1 1See ISM-1 Section 2.2.1.1

-----------------------------------------------

Photo credit: USGS Photo Library, 2006, USGS, URL = http://libraryphoto.cr.usgs.gov/cgi-
bin/show_picture.cgi?ID=ID.%20McKee,%20E.D.%20%20316
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Speaker Notes

• Particulate iron minerals, such as oxides, are very good at binding contaminants. 

• One researcher stated that the Fe in a cubic yard of soil can adsorb ½ to 5 lbs of soluble 
metals or organics. 

• The photomicrograph shows microscopic iron hydroxide grains coated with arsenic. The 
arsenic appears as a light-colored deposit covering Fe-OH grains (see red arrow). 

• Silicate minerals make up most of the soil mass in the photo. Arsenic does not adsorb to 
those minerals, so they are dark gray. y g y

• Photo provided by Roger Brewer with the Hawaii Dept. of Health

Supplemental Information

See ISM-1 Section 2.2 hyperlinks

--------------------------------------------------------

Quote from the journal article: “Given the average concentration in soil, the iron in a cubic 
yard of soil is capable of adsorbing from 0.5 to 5 pounds of soluble metals as cations, 
anionic complexes, or a similar amount of organic[s].” (Vance, 1994). [Reference = David B. 
Vance. “Iron – The Environmental Impact of a Universal Element,” National Environmental 
Journal, May/June. 1994 Vol.4 No. 3 page 24-25. see also URL = http://2the4.net/iron.htm]
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Speaker NotesSpeaker Notes
•• The photo is of Composition B particles from lowThe photo is of Composition B particles from low order 81order 81 mm mortarmm mortar 60% Military grade•• The photo is of Composition B particles from lowThe photo is of Composition B particles from low--order 81order 81--mm mortar. mm mortar. 60% Military grade 
RDX (Contains about 10% HMX) 39% Military grade TNT. 
•• Photo provided by Alan Hewitt (US Army Corp of Engineers Cold Regions Research and Photo provided by Alan Hewitt (US Army Corp of Engineers Cold Regions Research and 
Engineering Laboratory).Engineering Laboratory).
•• Sometimes contaminants are released directly in particulate form. Examples are 
explosives residues, organic or metal-based pesticides applied as a dust; airborne smelter 
residues depositing as dust; and lead and other metals dust and fragments created by firing 
guns at firing ranges.
• But even if they were not originally released in particulate form, contaminants behave as if 
th ti l h th bi d t il ti l b th h i j t d ib dthey were particles when they bind to soil particles by the mechanisms just described.
• As a consequence contaminants are heterogeneous in their spatial distribution throughout 
even small soil samples. 
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Speaker Notes

• This is important because particulate contaminants integrate with soil particles in a non-
uniform manner, which creates contaminant heterogeneity at a micro-scale. In other words, 
contaminants are not uniformly spread out evenly throughout the soil in a jar. 

• This is called “distributional heterogeneity” at a micro-scale.

• This matters because the mechanics of sample analysis take place at this micro spatial 
scale. When the lab scoops out subsamples from a jar for analysis, different scoops of soil 
may have different numbers of contaminant particles.

Supplemental Information

See ISM-1 Section 2.5.2
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Speaker Notes

• Like in this graphic, heterogeneity makes soil contamination hard to read. 

• Soil may appear to be homogeneous when viewed from the spatial scale of decision-
making, but it is NOT homogeneous at the scale at which chemical data are generated. 

• Yet we expect that analyzing tiny samples will tell us the true concentration of tons of soil.

Supplemental Information

S ISM 1 S ti 2 4See ISM-1 Section 2.4
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Speaker Notes

• Based on the results of analyses performed on a few grams of soil, decisions are made 
about whether contamination is present (and at what level) in tens to hundreds to thousands 
of tons of soil.

• Although a jar of soil containing 100 or more grams of soil is submitted to the lab, routine 
metals analysis actually analyzes only 0.5, 1 or sometimes 2 gram of soil (depending on the 
lab) from that jar.

• Organics analysis typically will analyze from 5 to 30 grams (depending on the lab and the 
l t )analyte).

37



Speaker Notes

Previous discussion focused on heterogeneity WITHIN a sample (i.e., within a single jar).

Now will focus on heterogeneity BETWEEN samples (i.e., from one sample to another in the field).

“Co-located samples” are a QC check designed to assess short-scale heterogeneity.

“Co-located samples” are expected to be equivalent in that they are expected to have pretty much the same 
concentration.

But often co-located samples have very different results even though they may be only inches apart.

Withi th fi f ll h hi h f l f f il i i k d t b t i thWithin the confines of a small area, chance governs which spoonful of core of soil is picked to be put in the 
jar.

Since the concentration of each spoonful might be very different, chance can determine which decision gets 
made on that area.

This is one of the dangers of making decisions based on single grab sample results.

Uranium data set: although only about 8 inches apart, sample #1 has a concentration of 30, while sample #2 
is nearly 500. If discrete samples are used to make decisions, the decisions in this area would be determined 
b h b th lt d d h th l h t k l d d diby chance, because the result depends on where the sampler happens to kneel down and dig. 

Co-located sample results are affected by both short-scale heterogeneity AND within-sample heterogeneity. 
So unless you have controlled for within-sample heterogeneity, you won’t be able to measure between-
sample heterogeneity.

Uranium data source: Robert Johnson (US Dept of Energy)

Arsenic data source: Deana Crumbling (USEPA). Data from center of a residential yard.
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Supplemental Information

See ISM-1 Section 2.2.2



Speaker Notes

• Long-scale heterogeneity is the spatial scale at which differences in concentration are 
expected. 

• Sampling programs are generally designed to search for variation in concentrations at this 
scale.
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Speaker Notes

• The next concept is that insufficient control over heterogeneity’s effects can lead to 
sampling errors. A sampling error is said to occur when the sampling process produces a 
sample that does not represent the intended population. 

• To discuss sampling errors, need the term, “sample support.” 

• Sample Support: “the size, shape, and orientation of sampling volume (i.e., “support”) for 
heterogeneous media have a significant effect on reported measurement values.” EPA Soil 
Screening Guidance: Technical Background Document, EPA/540/R95/128, May 1996

• Sample support refers to the physical dimensions of a sample as it is collected from the 
parent material. 

• For example, a 6-inch deep core is a different sample support than scraping up surface soil 
to a 2-inch depth. A core with a 2-inch diameter is a different sample support from a core 
with a 5-inch diameter. A 100-gram sample is a different sample support from a 300-gram 
sample. 

• Sample support is a critical factor governing the results of soil measurements. 

• The following slides explain how this worksThe following slides explain how this works.

Supplemental Information

See ISM-1 Sections 2.3.2, 2.4.1.1 and 2.2 hyperlinks
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Speaker Notes 

• The issue of “sample support” for heterogeneous environmental and waste matrices 
invalidates the common assumption that the reported concentration of an environmental 
sample should be the same no matter what mass/volume of sample is collected and 
analyzed. 

• The mass/volume of the sample greatly influences the reported concentration for a sample, 
especially when contaminants are heterogeneously distributed throughout the parent matrix. 

• It is like putting a drop of dye in water in a water glass vs. in water in gallon jug. The water 
i th l ill h i t l th th t i th jin the glass will have a more intense color than the water in the jug.

• For heterogeneous samples (which are affected by the nugget effect to a greater or lesser 
degree), the analytical result for a sample is determined by how much contaminant (in the 
form of concentrated nuggets) is captured in that sample amidst a volume of cleaner matrix. 

• The cleaner matrix serves to “dilute” the concentrated particles during sample extraction 
(for organics) or digestion (for metals). 

• The issue of sample support is becoming an increasingly important determinant of 
ffanalytical results as more sophisticated analytical technologies and efforts to reduce 

generation of lab waste drives a trend toward smaller and smaller masses of sample. 
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Speaker Notes

• Another way sample support influences concentration results is whether the sample 
support is large enough to accurately capture the particle ratio of the population.

• In this cartoon, the large container represents a field sample in a jar. 

• The cartoon illustrates how subsample support affects how well a lab subsample 
represents the field sample. 

• The lab subsample represents the field sample if the ratio of contaminant-laden particles to 
“cleaner” particles in the subsample mirrors the ratio in the field sample. p p p

• A sampling error occurs when a subsample does not have same ratio as the field sample. 

• Sampling error is more likely for smaller subsample supports, since they are more likely to 
under- or over-estimate the proportion of “hot nuggets” to less contaminated “cool” particles. 

• Larger supports are more likely to represent the actual ratio and give a concentration result 
that is representative of the mean of the jarred field sample. 

• Figure adapted from EPA 530-D-02-002, RCRA Waste Sampling Draft Technical 
Guidance August 2002 page 92Guidance, August 2002, page 92.

• ISM addresses this problem by collecting many increments which results in a large mass 
representing the whole volume of the material being investigated.
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Speaker Notes

• Nuggets carrying high contaminant loading have a huge effect on what the concentration is 
reported to be. Concentration is determined by 2 things: the mass of the contaminant and 
the mass of the material that contains the contaminant. 

• A smaller mass of soil that contains some contaminant-laden nuggets will have a higher 
concentration than if the same nuggets are present in a larger mass of soil. 

• In the picture, the mass of arsenic on the Fe-OH mineral grains was measured to be 5 
nanograms. The mass of the soil minerals containing the arsenic is 1 microgram (blue 
i l ) E d i t ti it 5 i i 1 i f ilcircle). Expressed in common concentration units, 5 ng arsenic in 1 microgram of soil 

material is 5000 mg/kg. 

• On the other hand, consider if only the arsenic-coated iron hydroxide particle itself were 
analyzed (red oval). The arsenic might make up 10% of the mass, while iron hydroxide 
makes up the rest (90%). Then the arsenic concentration would be 100,000 mg arsenic/kg of 
soil material.

• When the number of contaminated particles (i.e., the mass of contaminant) stays the 
same the concentration will be different depending on how much soil material is digestedsame, the concentration will be different depending on how much soil material is digested 
and analyzed.

• The notion of “maximum concentration” is meaningless unless a sample support is 
specified. This applies in the field as well as in the laboratory.
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Speaker Notes

• But what if those same arsenic-bearing grains were present in 1 gram of “cleaner” soil 
particles (particles that are not laden with arsenic)? 

• Then the arsenic concentration would be 5 ng arsenic in 1 gram of soil or 0.005 mg/kg. 

• A key concern of ISM is controlling sample support!

Supplemental Information

S ISM 1 Ch t 5 d 6See ISM-1 Chapters 5 and 6
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Speaker Notes

• Unlike routine discrete sampling programs, ISM specifically addresses sample support 
issues. A project team using ISM must consider the likelihood of nuggets, the analytical 
subsample’s volume and particle size. 

• Reducing the overall particle size by grinding prior to subsampling may sometimes be 
required. 

• Increasing the mass of the subsample and incremental subsampling are common ways to 
reduce subsampling error. 

• If a field sample needs to be split, there are specialized equipment and techniques, such as 
rotary splitters. Choice of technique is heavily dependent on soil properties. 

Supplemental Information

See ISM-1 Chapter 6

See also EPA guidance documents: 

“G id f Obt i i R t ti L b t A l ti l S b l f• “Guidance for Obtaining Representative Laboratory Analytical Subsamples from 
Particulate Laboratory Samples”, EPA/600/R-03/027 (Nov 2003); and 

• “RCRA Waste Sampling Draft Technical Guidance”, EPA 530-D-02-002 (August 
2002), Chapter 6
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Speaker Notes

The same principles apply to short-scale sampling error. Recall that this refers to 
extrapolating a single data point to a large field area without taking spatial heterogeneity into 
account. 

Taking the whole targeted soil volume as a single sample for analysis would provide THE 
concentration for that volume without any sampling error. But, of course, that is not possible, 
so we take samples. 

Need to have enough samples to include fluctuations in concentration in the result for the 
il l b t ith t bit t tsoil volume, but without exorbitant cost. 

This goal can be accomplished by taking increments from many locations and pooling them 
together for a single analysis.

Incremental field sampling increases the sampling density (the number of samples per unit 
area) AND it increases the sample support of the field sample—both of which help control 
sampling error. 

This is what ISM does in its planning stage and field implementation stage.

Supplemental Information

See ISM-1 Section 2.6.2.1
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• Using our navigation sequence, we see that sampling errors are commonly observed as 
data variability. 

Supplemental Information

See ISM-1 Sections 2.4.1.3
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Speaker Notes

• Don’t dismiss this data just because all the concentrations are high. Just because these Pb 
concentrations are much greater than the common risk-related threshold of 400 ppm does 
not mean that variability at these high concentrations are not important. Decisions about 
remedy selection and design or soil treatment and disposal may still hinge on differences at 
these high concentrations.

• The prime purpose of this graph is to illustrate the extreme variability that soil 
contamination can display.

S il th t t i t d lik l t di l t ff t hi h if t• Soils that are contaminated are more likely to display a nugget effect which manifests as 
high variability. 

• Soils that are not contaminated (or very lightly contaminated) are less likely to have 
particles with high contaminant loading, and so typically show less variability.

• Data variability is striking in this experiment where 5 replicate subsamples were taken from 
a single unground sample. Each of the 5 subsamples were analyzed for metals. The mass 
of the subsamples was 2.5 grams.

ff f• The Pb results varied between 4000 and 28,000. Remember! These are not different field 
samples…they are 5 different subsamples from the same jar of soil. 

• Fortunately, routine lab quality control checks provide measures of variability. QC includes 
co-located samples, field splits, lab duplicates, and matrix spike/matrix spike duplicates. 

• Unfortunately, the information provided by these QC results is greatly under-appreciated 
and often ignored.

• A small sample mass composed of large particles frequently does not preserve the 
proportion of constituents as is present in the original population.
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• This is a continuation of the previous slide, now with ground results for the same sample 
(“post-grind”, in pink) also included in the graph.

• 5 replicate subsamples were taken for analysis after the sample had been ground. The 
mass of the subsamples was again 2.5 grams.

• Variability was markedly reduced, which is the same as saying precision was markedly 
increased.

• The dramatic influence of nugget effects in the unground sample is evident by comparing gg g p y p g
the 2 sets of replicates.

• This data illustrates how grinding provides the smaller particles and mixing needed to 
better preserve the sample’s constituent proportions even when small subsamples are used.

• The larger the particle size in the sample, the more subsample mass is needed to produce 
a representative subsample.
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Speaker Notes

• This graph plots the data from a study done in the 1970s It directly measured how different masses of analytical samples (i e the sample support)• This graph plots the data from a study done in the 1970s. It directly measured how different masses of analytical samples (i.e., the sample support) 
influenced the statistical distribution of the data.

• Measurement units are in nCi/g, a measure of radioactive activity, which is related to the concentration (in ppm) of the radioisotope, in this case americium-
241.

• The experiment involved first preparing a large soil sample (with mass of several kilograms—not shown on the slide—which will be called a batch) from which 
subsamples of various sizes could be taken (as shown on the slide). Preparing the large batch involved moderate homogenization efforts involving mild 
grinding and then sieving to less than 10-mesh.

• A series of 20 subsamples each of different supports were taken from the large prepared batch. 

• The subsample supports that were tested included 1-gram, 10-gram, and 100-g ram. 

•The wider the peak shape, the more variability present in the data set.

• The data set from the 1-g subsamples plots as a statistical distribution that is unsymmetrical and skewed in that the right-hand tail is pulled out. 

• The 1-g tail does not reach the x-axis until about 5 (note the green subsample on the right with a higher nugget:matrix ratio than the ratio in the 
100-g  samples). 

• Many samples have low concentrations, reaching down to about 0.25 (green subsample on the left without any high-load nuggets)

• The width and shape (a low hump) of the curve mean that repeated 1-gram subsamplings of the large batch will produce data results that have a 
wide spread in values. Frequently there are low results, but sometimes there will be very high results. This variability is also called imprecision. No 
single result can be trusted to be close to the true mean of the batch.

• In contrast to the 1-g subsamples, the 20 10-g subsamples (purple) showed much less skewing of the right tail. 

• The right-hand tail reaches the x-axis just past 3. 

The left hand tail shows fewer samples (than the 1 g data set) with very low results with the lower range of the distribution ending at about 0 8• The left-hand tail shows fewer samples (than the 1-g data set) with very low results, with the lower range of the distribution ending at about 0.8

• The width of the 10-g peak is narrower, reflecting less variability (more precision) in the 10-g data set

• For the 100-g subsamples (red), the statistical distribution is almost symmetrical, with a high tight peak (high precision) and the right skewing nearly gone. 

• The 100-g curve reaches the x-axis on the right at about 2.5

• On the left, the 100-g curve runs only down to about 1.4

• The height and narrowness of the 100-g peak indicates that replicate subsamplings of the batch produce values that are close to each other 
(precise), and most likely close to the true mean for the large batch.

• Not only do small sample supports increase variability, they also contribute to data taking a lognormal or gamma (or other skewed) statistical distribution. 

• So what does this have to do with decision errors?

-------------------------------------------------------------------------------------------------

P.G. Doctor and R.O. Gilbert. 1978. DOE NAEG Report. Two Studies in Variability for Soil Concentrations: with Aliquot Size and with Distance [provided in 
webinar References]

See also Gilbert, Richard O. and Pamela G. Doctor. 1985. Determining the Number and Size of Soil Aliquots for Assessing Particulate Contaminant 
Concentrations. Journal of Environmental Quality Vol 14, No 2, pp. 286-292.

Supplemental Information

See ISM-1 Section 2.4.1.3 50



Speaker Notes

• A decision error is a conclusion that is different from the conclusion the data user WOULD 
have made if the true condition were known. 

• Decision error in this context refers to using data results to draw a conclusion without 
taking data variability and other sources of sampling and analytical error into account. 

Supplemental Information

See ISM-1 Sections 2 4 1 3 and 2 4 2See ISM-1 Sections 2.4.1.3 and 2.4.2
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• It is known that the true “concentration” of the large multi-kg batch is 1.92 (refer back to a previous slide)
• Measurement units are in nCi/g, a measure of radioactive activity, which is related to the concentration (in ppm) of the radioisotope, in 
this case americium-241.

• For the sake of discussion, suppose 3 is an action level, which is here shown as the small vertical blue line on 
the x-axis. 

• Therefore, the true “concentration” of the large batch (1.92) is below the action level of 3

• The question for a data user is: Will the subsample that is analyzed lead to the correct conclusion about 
whether the “concentration” of the batch is higher or lower than 3, or could the data lead the user astray?

• Look again at the curve representing the 1-g subsamples (the heavy-lined curve): Even though the true mean 
is well below 3, the skewed nature of the data means that sometimes (around 11% of the time) data results are 
going to be higher than 3, as exemplified by the green subsample on the right. This would contribute to a 
decision error. 

• Note that there is a 12% chance that a 1-g subsample would have concentrations much lower (less than 1 
nCi/g) than the true mean, as exemplified by the green subsample on the left.

• Look at the curve representing the 10-g subsamples (the purple subsample): Only rarely will a result from a 
10-g subsample exceed 3.

• In contrast, look at the 100-g curve (red subsample). Since that curve ends around 2.5, it is very, very unlikely 
that any single data result would be greater than 3.

• Larger subsamples are more likely to provide data results that are close to the true mean, as evidenced by the 
tighter peaks the 10- and 100-g subsamples show around the true mean. 

• The bottom line is that decisions that are based on a single sample result are more likely to be in error when 
subsample supports are small. 

• As we talked about before, metals analysis typically uses around 1 gram of soil. Deciding that a few high 
results represent hotspots could well be decision errors due to the skewed distribution of data from small 
subsamples. This is why areas initially called hotspots sometimes cannot be found upon repeat sampling. 

• Sampling errors operate in the other direction too. A sample from a true hotspot might give a data result biased 
far lower than the true value (as illustrated by the “clean” green subsample on the left) and the hotspot would be 
missed. 52



Speaker Notes

• How can we avoid decision errors? 

• When laboratory duplicates and/or matrix spike/matrix spike duplicates do not match and 
there is wide variation in results within the data set, suspect that sampling error may be 
occurring at the within-sample level. 

• If within-sample heterogeneity has been controlled, but co-located samples do not match, 
the problem is likely short-scale heterogeneity.

• When sampling error has affected a data set, making decisions based on single sample p g g g p
results is like flipping a coin—it is a matter of chance. 

• Decisions need to be based on the data set as a whole. If the data set is large and 
decisions are based on the mean, or the UCL on the mean, at least some of these errors 
could cancel out. But typical discrete data sets are much too small for that to happen. 

• So work plans such as Quality Assurance Project Plans (QAPPs) need to be constructed 
with procedures that control for heterogeneity’s effects and measure the degree of sampling 
error present. 

• According to EPA Superfund guidance, data error must be measured for data to be 
definitive. (USEPA Applicability of Superfund Data Categories to the Removal Program 
OSWER 9360.4-21FS EPA 540-F-05-005 July 2006.) So QAPP reviewers should 
recommend that sampling error be quantified and controlled. 
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• How can we avoid decision errors? 

• When laboratory duplicates and/or matrix spike/matrix spike duplicates do not match and 
there is wide variation in results within the data set, suspect that sampling error may be 
occurring at the within-sample level. 

• If within-sample heterogeneity has been controlled, but co-located samples do not match, 
the problem is likely short-scale heterogeneity.

• When sampling error has affected a data set, making decisions based on single sample p g g g p
results is like flipping a coin—it is a matter of chance. 

• Decisions need to be based on the data set as a whole. If the data set is large and 
decisions are based on the mean, or the UCL on the mean, at least some of these errors 
could cancel out. But typical discrete data sets are much too small for that to happen. 

• So work plans such as Quality Assurance Project Plans (QAPPs) need to be constructed 
with procedures that control for heterogeneity’s effects and measure the degree of sampling 
error present. 

• According to EPA Superfund guidance, data error must be measured for data to be 
definitive. (USEPA Applicability of Superfund Data Categories to the Removal Program 
OSWER 9360.4-21FS EPA 540-F-05-005 July 2006.) So QAPP reviewers should 
recommend that sampling error be quantified and controlled. 
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• In summary: Inadequate management of soil heterogeneity produces data sets tainted by 
sampling errors that manifest as data variability where data consistency would be expected.

• If single data results or very small data sets are used to make decisions, data variability 
and chance can produce data that might be misinterpreted as the “true” condition for large 
volumes of soil.

• Misinterpreting data sets can lead to costly and non-protective decision errors about risk, 
compliance and remediation of soils.

• Controlling sampling error is a prime feature of ISM, and more information on this will be 
presented throughout this webinar and in the ITRC ISM Tech-Reg document.

Supplemental Information

See ISM-1 Sections 5, 6 and 7
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• As a bit of whimsy, this slide is meant to convey that heterogeneity is the natural state for 
soils. 

• Pretending that heterogeneity doesn’t exist will hobble our projects with wasted time and 
money. 

• Incremental sampling methodology is key to managing micro-scale heterogeneity to reduce 
subsampling error in the lab, as well as increasing sampling densities to manage short-scale 
heterogeneity in the field.

The next section of the training will delve into another aspect of ISM that must be carefully 
planned, which is how to select the appropriate decision unit (DU) size, configuration, and 
location.
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No associated notes.
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No associated notes.
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No associated notes.
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No associated notes.
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Refer to Table 3-1 in ITRC ISM-1.
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Typical Information: Historical Site Use - Current and Future Receptors – Contaminants of 
C Id tif P t ti l S A E l t Mi ti P th G l f thConcern – Identify Potential Source Areas – Evaluate Migration Pathways – Goals of the 
Investigation – Geologic Conditions

ITRC ISM-1: Figure 3-2
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No associated notes.
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No associated notes.
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Information that can be used to determine DUs includes: Historical site use; aerial photos for 
ibl i ti li d t i t i ith t f it kpossible source areas; existing sampling data; interviews with current or former site workers; 

sampling objectives; and data quality objectives.
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Refer to ITRC ISM-1 Section 3.3.1 Exposure Area Decision Units and

ITRC ISM-1 Section 3.3.2 Source Area Decision Units
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Source areas can be found with discrete data, however boundaries are much more difficult. 
As the mean gets closer to the action level the greater the chances discrete data will missAs the mean gets closer to the action level, the greater the chances discrete data will miss 
contamination and underestimate the mean. Take home message: Don’t use discrete 
samples to estimate the extent of contamination!

ITRC ISM-1: Figure 2-15.
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Simple discrete design. Poor at identifying site boundaries, high risk of false negatives and 
f l iti t ti l t id i l d t i t h t t i d tfalse positives, potential to consider a single data point a hot spot, more expensive, and not 
a good design for estimating risk for an exposure area.
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The Decision Statement: "Does contamination in soil around the perimeter of the building 
t ti l di t ?” i th it f th di t d ipose potential direct exposure concerns?” is the same as it was for the discrete design on 

the previous slide. This is agreed upon before the investigation. If the mean concentration is 
lower than a target screening level then no further action will be required. If the mean 
concentration exceeds a target screening level then remediation and/or further delineation 
will be required.
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No associated notes.
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Example Decision Units for estimating the concentration of lead from lead-based paint 
d h ll ti id i th daround a home as well as pesticides in the yard.
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No associated notes.
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Use of small source area DUs and larger exposure area DUs for estimating the boundaries 
f t i tiof contamination.
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Exposure area DUs based on a default residential lot size. 

This is how the scale of decision making is tied directly to the sampling design.
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No associated notes.
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No associated notes.
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Refer to ITRC ISM-1 Section 3.3.7.
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No associated notes.
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No associated notes.
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No associated notes.

80



No associated notes.
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No associated notes.

82



Refer to ITRC ISM-1 Section 3.3.6 and Figure 3-11

83



The soil from the stockpile was to be used for fill material in a residential development, and 
d t t d th f i i h 5 000 f t l t Thi i i t l 100spread out to a depth of six inches over 5,000 square foot lots. This is approximately 100 

cubic yards of soil per residential lot. The stockpile was then divided into 100 cubic yard 
DUs.

Refer to ITRC ISM-1 Section 3.3.5 and Figure 3-10
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Refer to ITRC ISM-1 Section 3.3.4 and Figure 3-8
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Decision Units designed to test various aspects of ISM, not characterize the entire golf 
course.
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No associated notes.
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No associated notes.
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No associated notes.
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No associated notes.
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Access additional information on statistical design for ISM

ITRC ISM-1

Other training modules
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Note that section numbers of the document are given for more detailed discussions of 
th t ithese topics.

If the answer to #2 is yes – then the next question is - what UCL method should be 
used?

92



- Sampling designs include multiple features: sampling pattern, number of increments, and 
b f li tnumber of replicates.

- Extrapolation requires assumptions that the mean or variance are the same across multiple 
DUs.
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Section 4.2.1

Think of each ISM result (or “replicate”) as providing one point estimate from a distribution 
of possible means – the arithmetic mean of that distribution, also called the “grand mean”, 
is equal to the population mean. No sampling design yields a perfect estimate of the mean. 
The magnitude of the error in the estimate increases as: 1) the number of replicates 
decreases; and 2) the variance of the distribution of means increases.
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Figure 4-2, Section 4.2.1

The CV in each case is based on the standard deviation of the “underlying distribution”. We 
generally do not know this SD (and therefore, cannot calculate the CV) since we do not 
measure concentrations in each increment that is composited to generate the ISM. The CV 
may be estimated if we also had discrete sampling.
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Section 4.2.2

UCL methods used with specific distributions (e.g., lognormal, gamma) would require larger 
sample sizes than are typically available with ISM data.
UCL methods based on bootstrap resampling would also require larger sample sizes.
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In these examples, the true mean is meant to be 100.  The pink distribution represents 
di t d t th bl di t ib ti t ISM d t Ch b h ill i ld hi h UCLdiscrete data; the blue distribution represents ISM data.  Chebyshev will yield a higher UCL 
than Student’s t.  This allows for better coverage but also a greater magnitude of difference 
between the UCL and mean.  Performance varies depending on the underlying distribution’s 
shape and variance.  This makes the choice difficult because ISM data do not give much 
information about the underlying distribution.
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Central Limit Theorem suggests that the distribution of means approaches normality with 
i i l i ( b f i t ) H d t t d hincreasing sample sizes (number of increments).  However, as demonstrated here, 
deviations from normality are apparent for the bottom two scenarios (CV = 2 and 3).  This 
has implications for the performance metrics of the Student’s-t UCL, which provides 
sufficient coverage so long as the assumption of normality (of the mean) holds true.
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This table reflects consensus results from simulation studies conducted by several members 
f th ISM t Thi t bl ifi ll i i l ti f th d fof the ISM team.  This table specifically summarizes simulations of many thousands of 

applications of an ISM sampling protocol to hypothetical DUs.  We assumed that the 
distribution of increments was lognormally distributed with CVs ranging from < 1.5 to > 3.  
ISM sampling protocols were also varied to investigate performance using different numbers 
of increments and replicates.

ITRC, ISM-1, Table 4-4, Sections 4.3.1.1, 4.3.3.1, 4.3.4.1; Appendix A.6.6, Fig. A-1, A-10, A-
14 A 15 A 19 A 2114, A-15, A-19, A-21
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When both methods are applied to the same dataset, Chebyshev will yield 10-45% higher 
UCL th St d t’ t F l if th St d t’ t UCL i 100 i ht tUCLs than Student’s-t.  For example, if the Student’s t-UCL is 100 ppm, we might expect 
the Chebyshev UCL to be between 110ppm and 145 ppm.   The exact difference depends 
on the variability in ISM results.  Here we express that variability as the ratio of the SD to the 
mean (i.e., the CV).  This CV of ISM replicates should not be confused with the CV of 
increments that was presented in the previous slide on coverage.  Note that the Central 
Limit Theorem suggests that CV of replicates is ~ 5.5 times smaller than CV of increments 
when each replicate is comprised of n=30 increments.  (SD replicates = SD increments / 
sqrt(30), and sqrt(30) = 5.48).  So if CV of increments = 3.0, then CV of replicates = 0.55.  At 
this degree of variability, Chebyshev will yield about 20% higher UCL than Student’s t.
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ProUCL provides more options for UCL calculations, but needs n=8 to 10 observations in 
d t l t di t ib ti d t b t t liorder to evaluate distributions or conduct bootstrap resampling.
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Figure 4-6 in Section 4.3.1 and Appendix E (Glossary)

Before answering this, it is important to review the meaning of bias and precision 
(reproducibility), and how they can both contribute to error.

• Bias = the tendency for a measurement to consistently over- or underestimate the actual 
(true) value. Together precision and bias determine accuracy.

• Precision (reproducibility) = a measure of reproducibility. Together precision and bias 
determine accuracy
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Error (Variability) – not “mistake”

Speaker Bullets – not comprehensive; theoretical sources of error discussed in Chapter 2 
(Section 2.2) ISM controls these better than discrete 

It is useful when evaluating data to consider the steps in the process where errors 
(variability) may have been introduced

If error is determined to be unacceptable in a given data set – one or more of these sources 
may be at fault
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Section 4.3.4.4

RSD measures reproducibility, not accuracy of the results.

A high RSD can be caused by lab error and should be investigated. A low RSD suggests the 
absence of lab error, but does not necessarily indicate that the results are sufficiently 
accurate to avoid decision error.
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Implementation of sampling designs requires coordination between the statistician and field 
ll ti t If th t ti ti i id t f di t ( l t d t d ) thcollection team. If the statistician provides a set of coordinates (selected at random), the 

field team will first place flags to match those locations in the field.

105



Section 4.3.4.2

With ISM, we can consider each of the 30 points to represent an individual increment. 
Collectively, the set of increments are combined to form a single composite sample that 
yields 1 ISM result. In the four sampling designs shown, each of these patterns is a form of 
random sampling. This means that the exact locations of the individual increments can 
change with each new sampling event. With #1, even though the increments are equidistant, 
the location of the first increment is selected a random from within the grid cell. With #2, 
three sampling events are shown (circle, square, triangle), each with a different random 
“starting” location. It is clear how the density of the samples (or “spatial coverage”) can be g y p ( p g )
very high with ISM designs that involve multiple replicates.
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Section 4.3.4.2 (sampling design) and Section 4.3.1.2 (bias)

Random sampling from a population generates an estimate of the mean concentration of 
that population with desirable statistical properties.

Bias is one metric used to evaluate the performance of a parameter estimation method. A 
sampling method is unbiased if, when repeated many times, the parameter estimate equals 
the population parameter. This examples shows the distribution of increments for three 
sampling events applied to a DU with a true (population) mean of 100 mg/kg. For purposes 
of presentation, we also assume that the distribution is normal. While no individual ISM is 
centered on the mean on average (if repeated many times) we would expect the estimatecentered on the mean, on average (if repeated many times), we would expect the estimate 
of the mean to equal 100 mg/kg.
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Section 4.3.4.1

Sample support and spatial coverage are usually optimized at about 30 increments. Lesser 
numbers compromise the ability of ISM to address sampling error; larger numbers provide 
limited improvement in error reduction, though a “denser” sampling grid. In the simulations, 
we calculated the difference between the UCL and mean using the “relative percent 
difference”, RPD = (UCL – mean) / mean

The simulations that support recommendations given in the ISM guidance apply to DUs of 
i b h t it t d b t ti ti l di t ib ti th t did tany size because heterogeneity was represented by statistical distributions that did not 

depend on the size of the DU. Some practitioners of ISM have found that increasing the 
number of increments to more than n=30 for larger DUs (e.g., 1 acre or more) can provide 
greater confidence that, collectively, the set of increments collected in the DU will represent 
subareas of high and low concentrations in the appropriate proportions.  As discussed in 
Section 5.3.1 of the ISM guidance, as the DU gets significantly larger, the amount of 
distributional heterogeneity may increase. In these cases, depending on site specific 
knowledge, the conceptual site model (CSM), and data quality objectives (DQOs), it may be 
necessary to increase the number of increments per DU to n=50 or more.  In practice, 
collection of a greater number of increments in each DU typically reduces the variation 
among replicate samples. Alternatively, splitting larger DUs into two or more smaller DUs 
should be considered. It is not normally necessary to increase the number of increments 
unless there is reason to believe the DU has more distributional heterogeneity than can be 
controlled with 30–50 increments.
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No associated notes.
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With ISM, selecting the sample sizes requires weighing advantages and disadvantages of 
f t h ti l f th DU t (i l di fi ld d l ti l) dfactors such as:  spatial coverage of the DU, costs (including field and analytical), and 
whether or not an estimate of the variance can be obtained to calculate a 95UCL.  The table 
above compares and contrasts three scenarios.  Green shading is more favorable, orange 
shading is less favorable.  In general, we would opt for a sampling design that provides an 
estimate of the variance.
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Section 4.4.2

There are different assumptions associated with each, and therefore different answers…

If you extrapolate variability, generally use the CV instead of the SD. This is because the CV 
estimates standard deviation based on the estimate of the mean: CV = SD/mean. This is 
more consistent with contamination that has a non-normal (or “positively skewed”) 
distribution (e.g., lognormal, gamma). Extrapolation of the SD is only recommended if the 
distribution of the concentrations of individual increments is approximately normal.
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Extrapolation is usually reserved for very large sites where sampling all DUs is prohibitively 
iexpensive.

There is usually no confirmation of this assumption, so the rationale for the assumption must 
be very strong.

Note that there is nothing magic about ISM that diminishes the uncertainty of extrapolating 
from sampled to unsampled areas. If you wouldn’t do it with discrete data, you shouldn’t do 
it with ISM.
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Extrapolation of variance is valid only if the distributions of concentrations in each DU are 
t ti ti ll i ilstatistically similar.

If you extrapolate variability, generally use the CV instead of the SD. This is because the CV 
estimates standard deviation based on the estimate of the mean: CV = SD/mean. This is 
more consistent with contamination that has a non-normal (or “positively skewed”) 
distribution (e.g., lognormal, gamma). Extrapolation of the SD is only recommended if the 
distribution of the concentrations of individual increments is approximately normal.
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Section 4.4.3.3

The concept is to compare distributions. With ISM, we will generally have too few data 
points (e.g., r=3) to determine distribution shapes, or to use non-parametric methods. One 
cannot compare discrete data to ISM data because they represent the distribution of 
concentrations very differently.
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The concept is to compare distributions of ISM results. With ISM, we will generally have too 
f d t i t ( 3) t d t i di t ib ti hfew data points (e.g., r=3) to determine distribution shapes.

Because of the small sample size, statistical power is too low to allow for non-parametric 
hypothesis tests like Wilcoxon Rank Sum (Mann Whitney).
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Figure 7-1, Section 7.2.4

Dot plots can be a useful graphic for presenting ISM results. While not the same as a formal 
statistical test, the graphic presents information in a manner that can support decisions.
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This Module 4 brings the Day-1 training to an end. The focus of this module has been on 
ifi ti th t b dd d th h t ti ti l l i f ISM d t Fspecific questions that can be addressed through statistical analysis of ISM data. For more 

detailed discussion of these concepts and an overview of the simulations that were 
performed to support the recommendations that have been provided, please refer to Section 
4 and Appendix A of the document.
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No associated notes.
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Today’s training included Modules on:

Soil and Principles – Be aware of issues related to heterogeneity and sampling errors

Systematic Planning - Involve the entire team, regulators, consultants, responsible parties in 
critical elements (e.g. conceptual site model, establish sampling objectives and decision 
units.) Sampling objectives should drive your sampling design, and the scale of decision 
making should align with sampling objectives.g g p g j

Statistical Design - Provides the statistical foundation and describes why ISM provides 
a reasonable mean, describes a good ISM sampling design, and informs 
you how ISM provides 95% UCL.
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No associated notes.
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Part 2 Module includes:

Collecting Field Samples

Laboratory Processing & Analytical Issues

Using and Applying ISM Data 

121



Links to additional resources: 

http://www.clu-in.org/conf/itrc/ISM/resource.cfm

Your feedback is important – please fill out the form at: 

http://www.cluin.org/conf/itrc/ISM/feedback.cfm

The benefits that ITRC offers to state regulators and technology developers, vendors, 
and consultants include:

Helping regulators build their knowledge base and raise their confidence about new 
environmental technologies

Helping regulators save time and money when evaluating environmental technologies

Guiding technology developers in the collection of performance data to satisfy the 
requirements of multiple states

Helping technology vendors avoid the time and expense of conducting duplicative and 
costly demonstrations

Providing a reliable network among members of the environmental community to focus on 
innovative environmental technologies

How you can get involved with ITRC:

Join an ITRC Team – with just 10% of your time you can have a positive impact on the 
regulatory process and acceptance of innovative technologies and approaches

Sponsor ITRC’s technical team and other activities
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Use ITRC products and attend training courses

Submit proposals for new technical teams and projects


