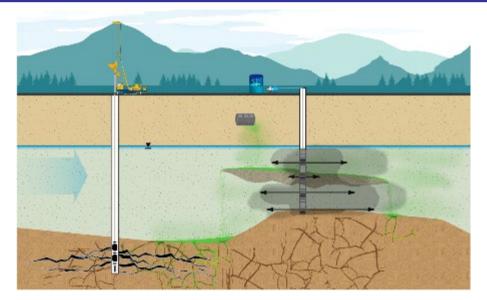
Starting Soon: Optimizing Injection Strategies and In Situ Remediation Performance

- Optimizing Injection Strategies and In Situ Remediation Performance (OIS-ISRP-1, 2020)
- Download PowerPoint file
 - CLU-IN training page at <u>https://www.clu-in.org/conf/itrc/OIS-ISRP</u> Under "Download Training Materials"

Use "Join Audio" option in lower left of Zoom webinar to listen to webinar Problems joining audio? Please call in manually

> Dial In 301 715 8592 Webinar ID: 841 9580 5978#



Welcome – Thanks for joining this ITRC Training Class

2

Optimizing Injection Strategies and In Situ Remediation Performance

Optimizing Injection Strategies and In Situ Remediation Performance (OIS-ISRP-1, 2020)

Sponsored by: Interstate Technology and Regulatory Council (<u>www.itrcweb.org</u>) Hosted by: US EPA Clean Up Information Network (<u>www.cluin.org</u>)

- Course time is 2¼ hours
- This event is being recorded
- Trainers control slides
 - Want to control your own slides? You can download presentation file on CLU-IN training page

- Questions and feedback
 - Throughout training: type in the "Q & A" box
 - At Q&A breaks: trainers will address questions in the Q&A box
 - At end of class: Feedback form available from last slide
 - Need confirmation of your participation today? Fill out the feedback form and check box for confirmation email and certificate

Copyright 2020 Interstate Technology & Regulatory Council, 1250 H Street, NW Suite 850 | Washington, DC 20005

ITRC (<u>www.itrcweb.org</u>) – Shaping the Future of Regulatory Acceptance

- Host organization
- Network

4

- State regulators
 - All 50 states, PR, DC
- Federal partners

 ITRC Industry Affiliates Program

- Academia
- Community stakeholders
- Follow ITRC

- Disclaimer
 - Full version in "Notes" section
 - Partially funded by the U.S. government
 - ITRC nor US government warranty material
 - ITRC nor US government endorse specific products
- ITRC materials available for your use – see <u>usage policy</u>
- Available from <u>www.itrcweb.org</u>
 - Technical and regulatory guidance documents
 - Online and classroom training schedule
 - More...

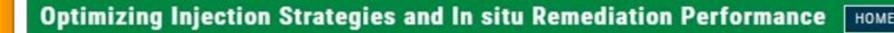
Meet the ITRC Trainers

Kristopher McCandless

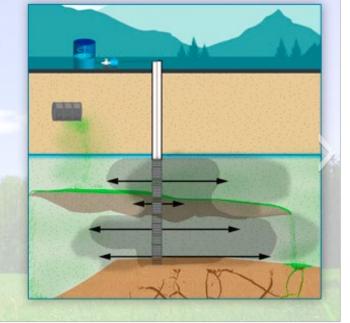
Virginia DEQ Woodbridge, VA 703-583-3833 kristopher.mccandless @deq.virginia.gov

Richard Desrosiers

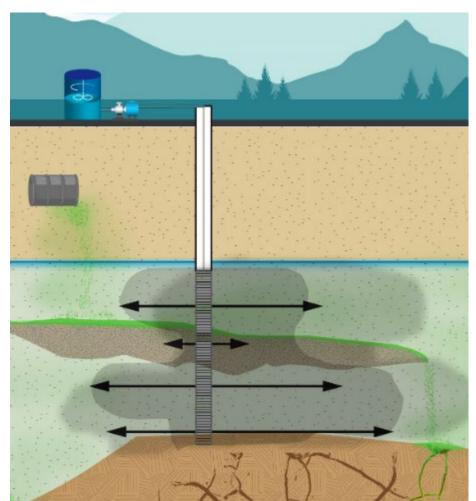
GZA GeoEnvironmental, Inc. Glastonbury, CT 860-858-3130 richard.desrosiers@gza.com


Suzanne O'Hara Geosyntec Consultants Guelph, Ontario, Canada 519-515-0865 SOHara@Geosyntec.com

Elizabeth Rhine Bhate Birmingham, AL erhine@bhate.com



Read trainer bios at https://clu-in.org/conf/itrc/OIS-ISRP/


Optimizing Injection Strategies and In situ Remediation Performance (OIS-ISRP-1)

Free Online Access at: https://ois-isrp-1.itrcweb.org

- A typical in situ remedy includes delivery and dosing of amendments to enhance abiotic and/or biotic processes to treat contaminants in subsurface
- More than thirty years of experience with in situ remedies has greatly improved the state of the science and engineering; though challenges remain

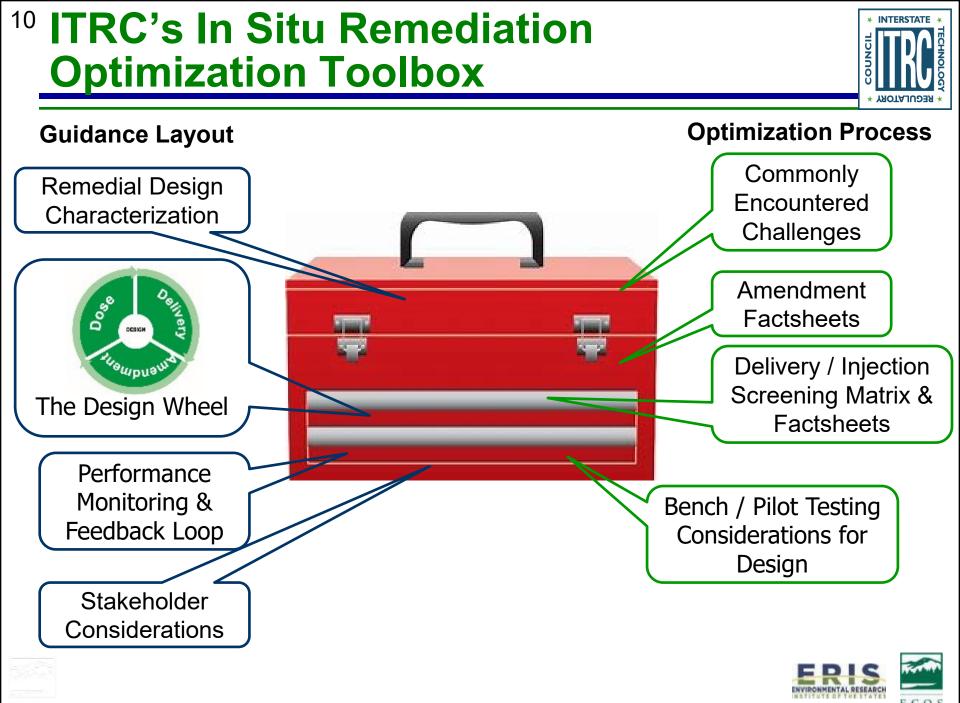
State of Practice

The Problem

- Failing to achieve the <u>objectives</u> or <u>performance</u> requirements
- Unknown variables that influence effectiveness

The Need

- Conceptual Site Model (CSM) more complete
- More efficient and effective remedies
- Framework guidance to facilitate improvements


State regulator survey: ~40% of regulators deemed the first submittal for in_ situ remediation projects as <u>incomplete</u>

- Optimization is the effort (at any clean-up phase) to identify and implement actions that improve effectiveness and cost-efficiency of that phase. (From ITRC-GRO-1)
- Optimizing in situ remediation is:
 - The management of risks and uncertainties through <u>sound</u> <u>science</u> and <u>engineering</u> during different stages of in situ remedy <u>planning</u> and <u>implementation</u>
- This training and accompanying guidance intended to help transfer "best practices" to benefit all

- Intended audience
 - Regulators
 - Responsible Parties
 - Consultants
- Two applications of this document:
 - Improving underperforming remedies
 - Planning, designing and implementing optimized in situ remedies

Seepage

12

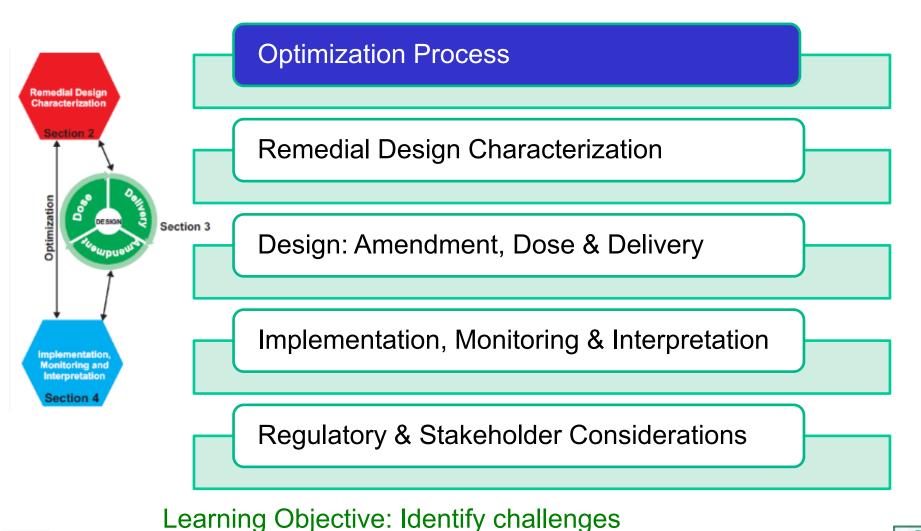
- Higher contaminant concentrations after injections
- Insufficient amendment distribution and contact
- Contaminants in low permeability zone
- Amendment is "daylighting"/short circuiting
- Using vendor's dosing default values instead of CSM data

Image used with permission of Jaydeep Parikh

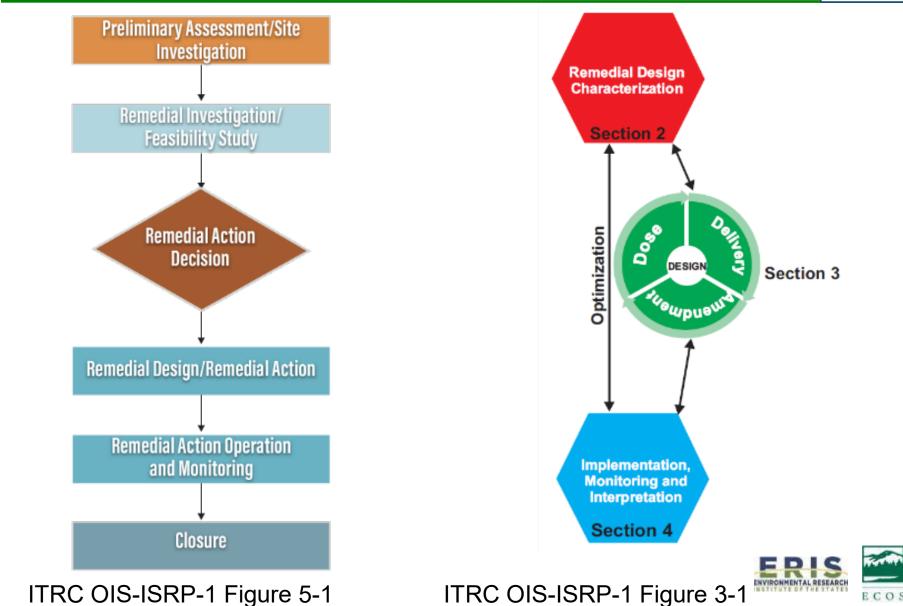
Commonly Encountered Issues

Commonly Encountered Issues Associated with Remedial Design Characterization – Section 2								
Lithology	Contaminant	Challenges, Lessons Learned, and/or Best Practices	Discussion, Document Section, Links					
Bedrock		The amount of contaminant mass sorbed into bedrock secondary porosity.	(<u>ITRC 2017a</u>)					
Soil		Lack of understanding of contaminant mass sorbed onto finer grained soils.	Application of MiHPT, MiHPT-CPT coupled with high density soil sampling to determine extent and distribution of contaminant mass (<u>ITRC 2015</u>).					
-		Limitations of solvent extraction in quantifying mass sorbed into soil.	See <u>Discrete fracture network approach for studying contamination in</u> <u>fractured rock</u>					
Groundwater		Variability of K and calculated seepage velocity in contaminated intervals is needed to estimate ROI delivery approaches and residence time within ROI.	Higher resolution slug testing, tracer testing, or pilot testing with monitoring to determine amendment distribution in effective pore space.					
-		Mischaracterization of mass flux to be targeted in a mass flux reduction strategy.	Higher resolution sampling to identify transmissive zones for injection based on defined targeted K values, contaminant mass, and heterogeneity within the TTZ.					
	NAPL or DNAPL	Mischaracterization resulting in not identifying the presence of LNAPL or DNAPL that overwhelms efficacy of in situ treatment.	Evaluate vertical extent of TTZ for presence of LNAPL or DNAPL (ITRC 2015) (ITRC 2018).					

ITRC OIS-ISRP-1 Table 1-1 (See Additional Information, Appendix B) Commonly Encountered Issues with In Situ Remediation

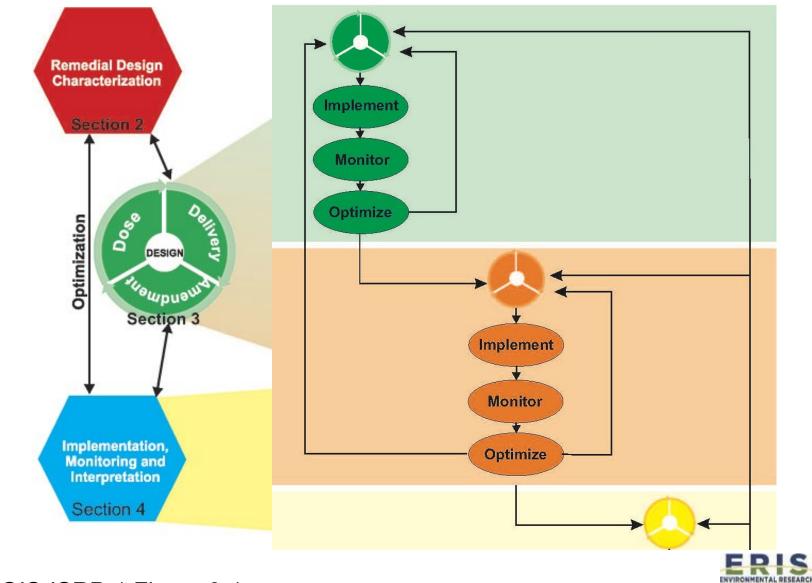

Training Program Learning Objectives

- Identify challenges
- Apply iterative optimization process at each stage of in situ remedy
- Determine amendment, dosing and delivery options
- Monitor performance to make optimization decisions
- Anticipate iterative refinement for remedy design and regulatory approvals



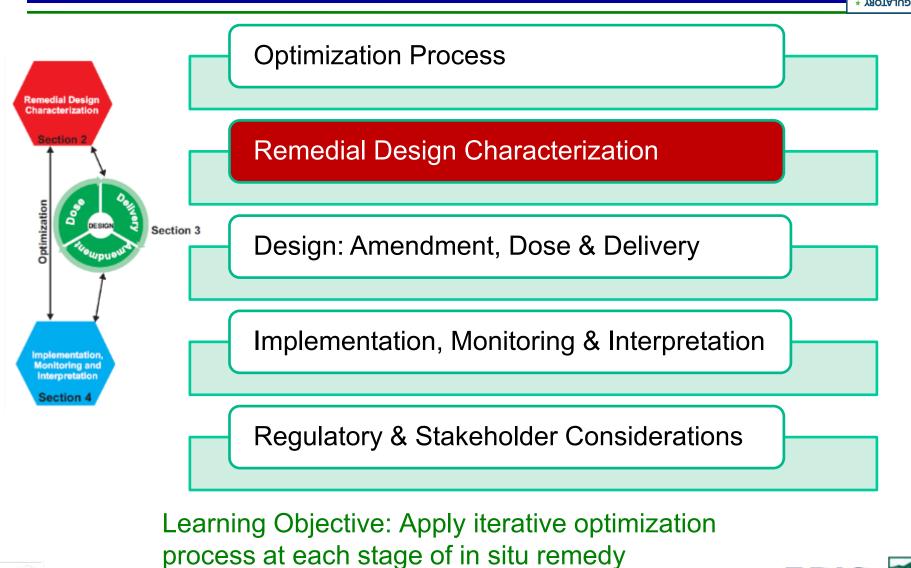
Linear Paradigm to Iterative Process

¹⁷ ITRC Documents Support Interactive/Iterative Approach


ITRC IDSS Document ITRC In-Situ Optimization Document CONCEPTUAL FRAMEWORK Develop/revise the Conceptual Site Model REMEDIAL OBJECTIVES Set/revisit Functional Objectives TREATMENT TECHNOLOGIES Remedial Design Evaluate/re-evalute and select technologies Characterization Implement the Section 2 Dos technology(ies) DESIGN Monitor trea MONITORING performance Section 3 each aunuav Yes Implementation REMEDY Evaluate For EVALUATION No progress Feedback and Has a more efficient **Data Analysis** Iternative become available? Section 4 Yes Re-evaluate the basis of Are Is progress No No Functional your original toward the Functional Optimization process fits into the Site Strategy document Objectives decision Objectives during the selection and evaluation of appropriate remedial met? beginning acceptable? technologies, and during implementation and assessment of with the CSM the selected remedy. Application of the Site Strategy document Yes then carries the process through to site closure. Closure Strategy

ITRC OIS-ISRP-1 Figure 1-1

Iterative Approach to Optimization



ITRC OIS-ISRP-1 Figure 3-1

18

ECOS

Presentation Road Map

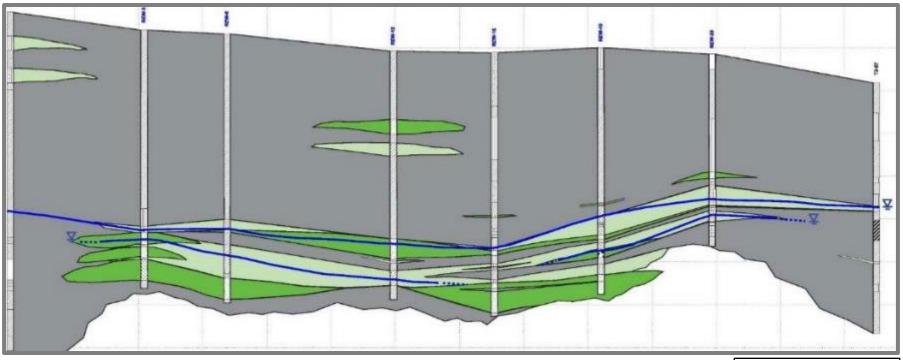
RDC = REMEDIAL DESIGN CHARACTERIZATION

It is the collection of additional data, above and beyond general site characterization, necessary to develop a sufficiently detailed CSM

This enables the design basis for a successful in situ remedy

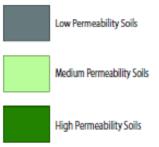
When in situ remedies fail, or produce less than optimal outcomes, it is often due to a lack of detailed data or an insufficiently developed conceptual site model (CSM)

The success of in situ remedies is directly related to a thorough understanding of site and subsurface conditions



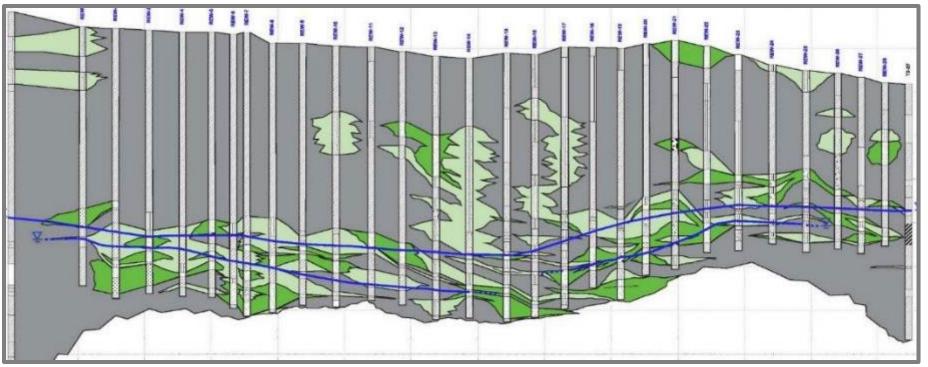
The Impact of Data

22



HYDROGEOLOGIC DATA:

- Alluvial formation
- 7 borings to ~140 feet
- 3,500-foot alignment
- Soil logged every 5 feet


Figure used with permission of Amy Wilson

The Impact of More Data

MORE DATA

23

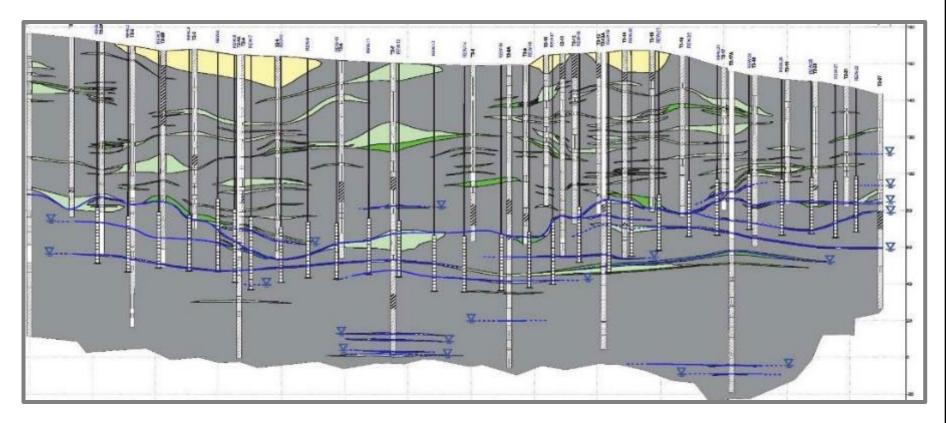

- ~40 borings over the 3,500-foot alignment
- Soil logged every 5 feet in vadose zone
- Soil logged continuously below first saturated zone
- Increasing complexity revealed

Figure used with permission of Amy Wilson

The Impact of More (and More) Data

EVEN MORE DATA

24

- ~60 borings over the 3,500-foot alignment
- Soil logged continuously
 - **Cross-section evolves even more complex**

Figure used with permission of Amy Wilson

WHAT DO WE NEED TO KNOW?

Geology

properties that define flow regimes

Hydrogeology

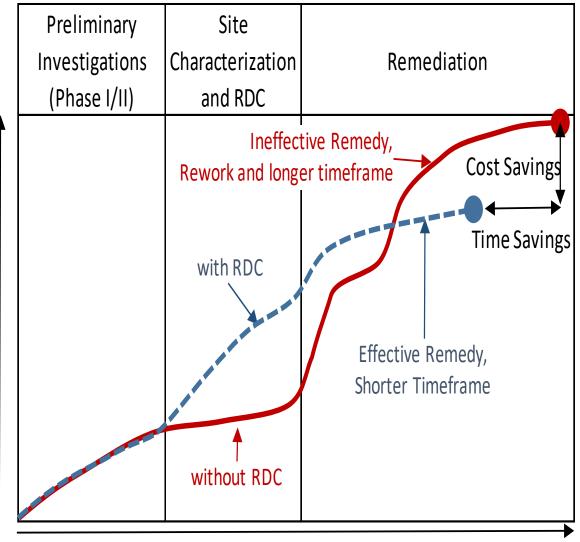
properties that influence flow and transport

Geochemistry

electron acceptors, competitors, metal mobilization

Microbiology

degradation potential


RDC - Why Do It? (Redux)

COST

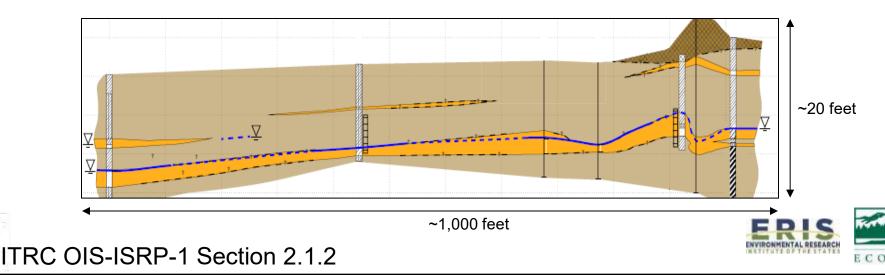
* INTERSTATE *

- What is the value of investigation (VOI)? Figure 2-1
- Why spend more money on characterization, when you could be spending it on cleanup?

<u>Remember</u>: when in situ remedies fail, it is often due to a lack of detailed data or an insufficiently developed CSM

ITRC OIS-ISRP-1 Figure 2-1

The Setting:


27

Case

- 20-acre site in California Central Valley
- VOC impacts to soils and groundwater
- Geology floodplain deposits
- TTZ sand lens, several feet thick approximately 15 feet below grade

Initial Remedy Attempt: Study

- Tight redevelopment timeframe
- Enhanced In Situ Bioremediation implemented using sodium lactate

The Good

- Geology well characterized
- Injections properly performed within the sand interval

The Bad

- Hydraulic conductivity not evaluated
- Sinjection test not performed
- Geochemical parameters not used to assess EISB viability
- No treatability testing
- Choice of substrate and dosing "based "similar sites"
- Microbial studies not performed
- Opgradient sources not assessed or removed

Value of Investigation (VOI) Case Study

The Ugly Outcome

- No reductions in groundwater contamination concentrations
- Site redevelopment was delayed

Site had to be re-characterized (RDC):

- ✓ Better definition of source areas
- ✓ Better plume definition
- Aquifer testing to estimate K and ROI
- ✓ Microbial testing
- Treatability studies to assess various substrates and specify dosing
- Upgradient sources removed

³⁰ VOI Case Study Cost Outcomes, Table 2-1

			C	osts	Years		
		Item	VOI Case	Hypothetical,	VOI Case	Hypothetical,	
			Study	Using RDC	Study	Using RDC	
		Initial Site Characterization	\$150,000	\$150,000	2	2	
		Upfront RDC (hypothetical)	\$0	\$160,000	0	1	
- Fail	ed	EISB Implementation	\$300,000	\$0	1	0	
Remedy	EISB Monitoring	\$80,000	\$0	2	0		
	VS Re-work (RDC &	RDC (as part of Rework)	\$160,000	\$0	1	0	
		Remedy Implementation	\$200,000	\$200,000	1	1	
Reme	edy)	Monitoring and Closure	\$70,000	\$70,000	1	1	
		Totals	\$960,000	\$580,000	8	5	
		Cost Savings and Time Saved with RDC	\$380,000		3		
2						ERIS	

ITRC OIS-ISRP-1 Table 2-1

ENVIRONMENTAL RESEARCH

NETITUTE OF THE STATES

³¹ What Do We Need To Know? **"THE TABLE" (2-2)**

venance and Mineralogy

Stratigraphy

Bulk Density

Flow Regime

Hydraulic Conductivi

Degree of Heterogeneity

Anisotropic Orientation

ffective Porosity

Velocity/Flux

Temperature

Nitrate (NO₂)

Nitrite (NO₂')

Manganese (Mn⁴

Manganese (Mn^{*2}

erric Iron (Fe^{*3})

Chloride (Cl⁻)

Anions, cations Arsenite (As⁺³)

Arsenate (As*

hromium (Cr^{*3})

hromium (Cr⁺⁶

Stable Isotope Probing

PLFA (Phospholipid Fatty Acids)

Acetylene, Propane, Propene) Carbon Dioxide CO2

ess applicable / not applicable

Magnetic Susceptibility

Legend More applicable

CSIA (Compound Specific Isotope Analysis)

Dissolved Hydrocarbon Gases (Methane, Ethane, Ethene

elative importance of data at the remediation phase indicated

OW

LOW

LOW

MEDILIM

IOW

LOW

LOW

М м

М

М

L

LOW

MEDIUN

HIGH

М

MEDILIM

MEDIUM

MEDIUM

LOW

rous Iron (Fe^{*2}) Sulfate (SO₄²)

Sulfite (SO₃²⁻), Sulfide (S²⁻)

COD (chemical oxygen den

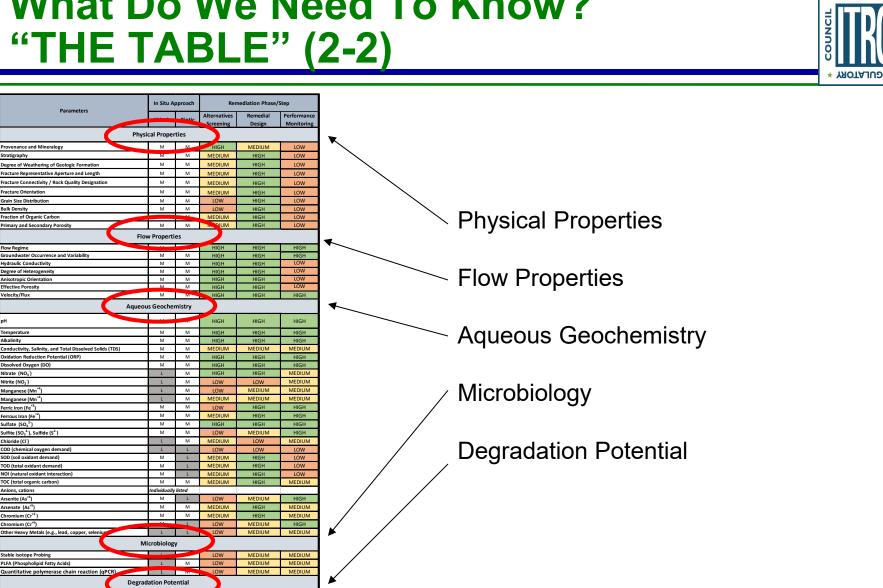
SOD (soil oxidant demand)

TOD (total oxidant demand)

TOC (total organic carbon)

NOI (natural oxidant interactio

Dissolved Oxygen (DO)


Alkalinity

racture Orientation

Grain Size Distribution

Fraction of Organic Carbon

rimary and Secondary Porosit

★ INTERSTATE

ITRC OIS-ISRP-1 Table 2-2

and When? (Table 2-2)

32

Μ

LOW

HIGH

ECOS

Physical Properties (Table 2-2)

Parameters	In Situ A	oproach	Remediation Phase/Step				
Farameters	Abiotic	Biotic	Alternatives Screening	Remedial Design	Performance Monitoring		
Physical Properties							
Provenance and Mineralogy	М	М	HIGH	MEDIUM	LOW		
Stratigraphy		М	MEDIUM	HIGH	LOW		
Degree of Weathering of Geologic Formation		М	MEDIUM	HIGH	LOW		
Fracture Representative Aperture and Length		М	MEDIUM	HIGH	LOW		
Fracture Connectivity / Rock Quality Designation		М	MEDIUM	HIGH	LOW		
Fracture Orientation	М	М	MEDIUM	HIGH	LOW		
Grain Size Distribution	М	М	LOW	HIGH	LOW		
Bulk Density	М	М	LOW	HIGH	LOW		
Fraction of Organic Carbon	М	М	MEDIUM	HIGH	LOW		
Primary and Secondary Porosity		М	MEDIUM	HIGH	LOW		

ITRC OIS-ISRP-1 Table 2-2

ITRC OIS-ISRP-1 Table 2-2

Provenance and mineralogy of a rock or soil matrix are the properties of its physicochemical formation - geologic structure, chemical composition, distribution, and occurrence. They are the governing factors for the physical, flow, and geochemical properties, discussed in Table 2-2, that are necessary to understand and quantify in order to design an optimal in-situ approach.							
Provenance and Mineralogy	М	М	HIGH	MEDIUM	LOW		
Stratigraphy	М	М	MEDIUM	HIGH	LOW		
Degree of Weathering of Geologic Formation	М	М	MEDIUM	HIGH	LOW		
Fracture Representative Aperture and Length	М	М	MEDIUM	HIGH	LOW		
Fracture Connectivity / Rock Quality Designation	М	М	MEDIUM	HIGH	LOW		
Fracture Orientation	М	М	MEDIUM	HIGH	LOW		
Grain Size Distribution	М	М	LOW	HIGH	LOW		
Bulk Density	М	М	LOW	HIGH	LOW		
Fraction of Organic Carbon	М	М	MEDIUM	HIGH	LOW		
Primary and Secondary Porosity	М	М	MEDIUM	HIGH	LOW		

ITRC OIS-ISRP-1 Table 2-2

P	In Situ A	pproach	Remediation Phase/Step				
Parameters			Altornativos	Pomedial	Performance		
Stratigraphy describes the geologic layering in a formation. Formations with more layers (e.g., gravels, sign Monitoring Sands, silts) and complex "fingering" of high permeability units within low permeability media will require detailed characterization so that amendments can be emplaced properly.							
Dr. logy	M	M	HIGH	MEDIUM	LOW		
Stratigraphy	М	М	MEDIUM	HIGH	LOW		
Degree or weathering of Geologic Formation	М	М	MEDIUM	HIGH	LOW		
Fracture Representative Aperture and Length	М	М	MEDIUM	HIGH	LOW		
Fracture Connectivity / Rock Quality Designation	М	М	MEDIUM	HIGH	LOW		
Fracture Orientation	М	М	MEDIUM	HIGH	LOW		
Grain Size Distribution	М	М	LOW	HIGH	LOW		
Bulk Density	М	М	LOW	HIGH	LOW		
Fraction of Organic Carbon	М	М	MEDIUM	HIGH	LOW		
Primary and Secondary Porosity	М	М	MEDIUM	HIGH	LOW		

ITRC OIS-ISRP-1 Table 2-2

	In Situ A	oproach	Remediation Phase/Step			
Parameters Heterogeneity refers to the variability in soil types within an aqu	ifer (gravels	sands si	Its clave ves	Remedial	Performance	
bedrock/fractures). Heterogeneity is related to a unit's provenan	Design	Monitoring				
for example, alluvial units are more heterogeneous than fluvial units. Understanding and mapping the more permeable zones is a critical step in characterization, because these zones						
are more likely to be saturated with groundwater and contain co	HIGH	HIGH				
units are more likely to have sorbed contaminants that will be sl	ne via	HIGH	HIGH			
back-diffusion.	HIGH	LOW				
Deg Heterogeneity	М	М	HIGH	HIGH	LOW	
Anisotrop	М	М	HIGH	HIGH	LOW	
Effective Porosity	М	М	HIGH	HIGH	LOW	
Velocity/Flux	Μ	М	HIGH	HIGH	HIGH	

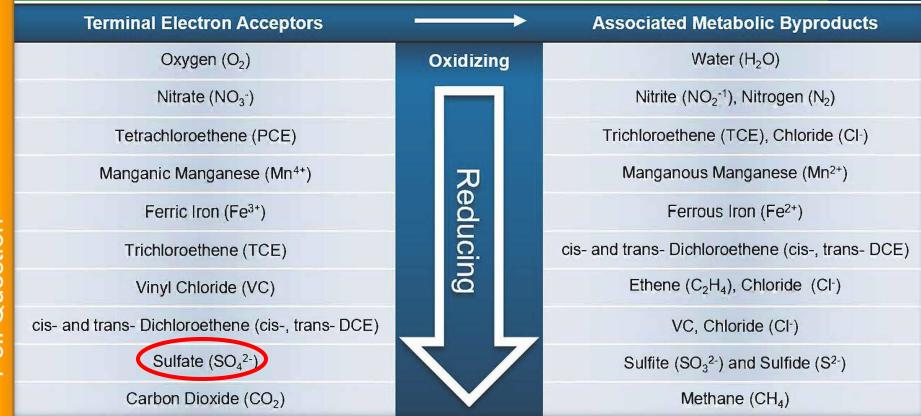
ITRC OIS-ISRP-1 Table 2-2

Parameters	In Situ Aı	oproach	Rer	Remediation Phase/Step			
Parameters	Abiotic	Biotic	Alternatives Screening	Remedial Design	Performance Monitoring		
Flow Properties							
Anisotropy refers to the directionality of physical aquifer pr	•	•	•	у нібн	HIGH		
anisotropic, with continuity of properties and flow in the late	eral direction, limited in the vertical			HIGH	HIGH		
direction by low permeability layers.				HIGH	LOW		
Den	HIGH	HIGH	LOW				
Anisotropy	HIGH	LOW					
Effective recomp	М	М	HIGH	HIGH	LOW		
Velocity/Flux	М	М	HIGH	HIGH	HIGH		

Aqueous Geochemistry

38

	In Situ Aj	pproach	Remediation Phase/Step				
Parameters		Abiotic	Biotic	Alternatives Screening	Remedial Design	Performance Monitoring	
	Δαυρουά	Gaachar	nictry				
Sulfate is naturally present in many ground waters as a product of geologic formations and their naturally occurring minerals and is often elevated in saline waters. It can also be a manufacturing or agricultural contaminant and a byproduct of persulfate used in some ISCO treatments. Sulfate needs to be carefully considered when selecting a remedial approach, as it can be beneficial and impeding, depending on the technology selected. Natural or pre-remediation sulfate at elevated concentrations can inhibit reductive processes such as reductive dechlorination, because sulfate, at elevated concentrations, is a powerful competitor for electrons. Typically, approximately 400 mg/L or greater sulfate at pre-remediation conditions can be a potential cause for concern (for reductive dechlorination) and special consideration for dosing. On the other hand, sulfate can react in situ with iron to form iron sulfides, which can provide long-term anaerobic chemical reduction. Sulfate reduction is yet another process, where sulfate is used as the primary electron acceptor, that can degrade specific							
	imary electror				•	MEDIUM	
process, where sulfate is used as the pri contaminants (i.e., petroleum hydrocarbo	imary electror				•		
process, where sulfate is used as the price contaminants (i.e., petroleum hydrocarbo	imary electror	n accepto	r, that ca	n degrade sp	ecific	MEDIUM HIGH	
process, where sulfate is used as the pri	imary electror	n acceptor	r, that ca M	n degrade sp MEDIUM	ecific HIGH	MEDIUM HIGH HIGH	
process, where sulfate is used as the pri contaminants (i.e., petroleum hydrocarbo	imary electror	n accepto M M	r, that ca M M	n degrade sp MEDIUM HIGH	ecific HIGH HIGH	MEDIUM HIGH HIGH HIGH	
process, where sulfate is used as the pricontaminants (i.e., petroleum hydrocarbo Sulfate (SO ₄ ²⁻)	imary electror	n accepto M M	r, that ca M M M	n degrade sp MEDIUM HIGH LOW	ecific HIGH HIGH MEDIUM	MEDIUM HIGH HIGH HIGH HIGH	
process, where sulfate is used as the pricontaminants (i.e., petroleum hydrocarbo Sulfate (SO ₄ ²⁻)	imary electror	n accepto M M	r, that ca M M M	n degrade sp MEDIUM HIGH LOW MEDIUM	HIGH HIGH MEDIUM LOW	MEDIUM HIGH HIGH HIGH HIGH MEDIUM	
process, where sulfate is used as the pricontaminants (i.e., petroleum hydrocarbo Sulfate (SO ₄ ²⁻) Chloride (CI) COD (chemical oxygen demand)	imary electror	M M M L L	r, that ca M M M L	n degrade sp MEDIUM HIGH LOW MEDIUM LOW	HIGH HIGH MEDIUM LOW	MEDIUM HIGH HIGH HIGH HIGH MEDIUM LOW	
process, where sulfate is used as the pricontaminants (i.e., petroleum hydrocarbo Sulfate (SO ₄ ²⁻) Chloride (Cl [*]) COD (chemical oxygen demand) SOD (soil oxidant demand)	imary electror	M M M L L M	r, that ca M M M L L	n degrade sp MEDIUM HIGH LOW MEDIUM LOW	HIGH HIGH MEDIUM LOW LOW HIGH	MEDIUM HIGH HIGH HIGH HIGH MEDIUM LOW	
process, where sulfate is used as the pricontaminants (i.e., petroleum hydrocarbo Sulfate (SO ₄ ²⁻) Chloride (Cl [']) COD (chemical oxygen demand) SOD (soil oxidant demand) TOD (total oxidant demand)	imary electror	M M M L L M M	r, that ca M M M L L	n degrade sp MEDIUM HIGH LOW MEDIUM LOW MEDIUM MEDIUM	HIGH HIGH MEDIUM LOW LOW HIGH HIGH	MEDIUM HIGH HIGH HIGH HIGH LOW LOW LOW	
process, where sulfate is used as the pricontaminants (i.e., petroleum hydrocarbo Sulfate (SO ₄ ²⁻) Chloride (Cl) COD (chemical oxygen demand) SOD (soil oxidant demand) TOD (total oxidant demand) NOI (natural oxidant interaction)	imary electror ons).	M M M L L M M M M	r, that ca M M L L L L M	n degrade sp MEDIUM HIGH LOW MEDIUM MEDIUM MEDIUM	HIGH HIGH MEDIUM LOW LOW HIGH HIGH	MEDIUM HIGH HIGH HIGH HIGH LOW LOW LOW	
process, where sulfate is used as the pricontaminants (i.e., petroleum hydrocarbo Sulfate (SO ₄ ²⁻) Chloride (Cl ⁻) COD (chemical oxygen demand) SOD (soil oxidant demand) TOD (total oxidant demand) NOI (natural oxidant interaction) TOC (total organic carbon)	imary electror ons).	M M M L L L M M M M	r, that ca M M L L L L M	n degrade sp MEDIUM HIGH LOW MEDIUM MEDIUM MEDIUM	HIGH HIGH MEDIUM LOW LOW HIGH HIGH	MEDIUM HIGH HIGH HIGH HIGH LOW LOW LOW	
process, where sulfate is used as the pricontaminants (i.e., petroleum hydrocarbo Sulfate (SO ₄ ²⁻) Chloride (Cl) COD (chemical oxygen demand) SOD (soil oxidant demand) TOD (total oxidant demand) NOI (natural oxidant interaction) TOC (total organic carbon) Anions, cations	imary electror ons).	M M M L L L M M M M M	r, that ca M M L L L L I Sted	n degrade sp MEDIUM HIGH LOW MEDIUM LOW MEDIUM MEDIUM MEDIUM	ecific HIGH HIGH LOW LOW HIGH HIGH HIGH	MEDIUM HIGH HIGH HIGH LOW LOW LOW LOW	
process, where sulfate is used as the pricontaminants (i.e., petroleum hydrocarbo Sulfate (SO ₄ ²⁻) Chloride (Cl) COD (chemical oxygen demand) SOD (soil oxidant demand) TOD (total oxidant demand) NOI (natural oxidant interaction) TOC (total organic carbon) Anions, cations Arsenite (As ⁺³)	imary electror ons).	M M M L L M M M M Individually M	r, that ca M M L L L L Isted	n degrade sp MEDIUM HIGH LOW MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM	HIGH HIGH MEDIUM LOW LOW HIGH HIGH HIGH HIGH	MEDIUM HIGH HIGH HIGH LOW LOW LOW LOW HIGH	
process, where sulfate is used as the pricontaminants (i.e., petroleum hydrocarbo Sulfate (SO ₄ ²⁻) Chloride (Cl [*]) COD (chemical oxygen demand) SOD (soil oxidant demand) TOD (total oxidant demand) NOI (natural oxidant interaction) TOC (total organic carbon) Anions, cations Arsenite (As ⁺³) Arsenate (As ⁺⁵)	imary electror ons).	M M M L L L M M M Individually M M	r, that ca M M L L L Isted L M	n degrade sp MEDIUM HIGH LOW MEDIUM MEDIUM MEDIUM MEDIUM LOW MEDIUM	ecific HIGH HIGH LOW LOW HIGH HIGH HIGH HIGH HIGH	MEDIUM HIGH HIGH HIGH MEDIUM LOW LOW LOW LOW HIGH HIGH	


* INTERSTATE * UTERSTATE * UTE

ITRC OIS-ISRP-1 Table 2-2

The Redox Ladder

ITRC OIS-ISRP-1 Figure 2-2. Electron acceptors and products in order of reaction preference in progressively reducing groundwater conditions. Select contaminants are included for reference.

Aqueous Geochemistry

* INTERSTATE *							
COUNCIL	ITRC PROPERTY						
*							

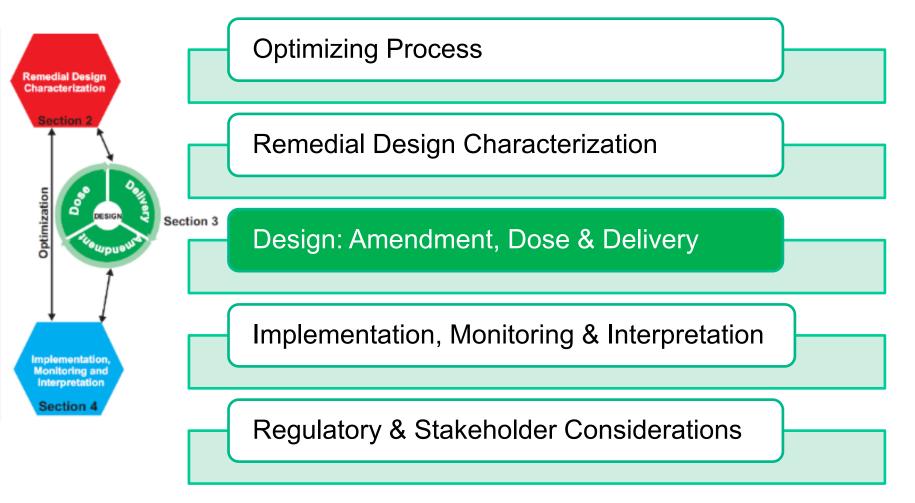
	In Situ A	pproach	Remediation Phase/Step				
Parameters	Abiotic	Biotic	Alternatives Screening	Remedial Design	Performance Monitoring		
Aqueous Geochemistry							
рН	М	М	HIGH	HIGH	HIGH		
Temperature	М	М	HIGH	HIGH	HIGH		
Alkalinity	М	М	HIGH	HIGH	HIGH		
Conductivity, Salinity, and Total Dissolved Solids (TDS)	М	М	MEDIUM	MEDIUM	MEDIUM		
Oxidation Reduction Potential (ORP)	М	М	HIGH	HIGH	HIGH		
Dissolved Oxygen (DO)	М	М	HIGH	HIGH	HIGH		
As reductive dechlorination occurs chloride ions are released and the concentration of chloride may increase. However, naturally and anthropogenic chloride may be present in groundwater at concentrations high enough that this change could be difficult to detect or attribute solely to remediation of the chlorinated solvents. In high chloride environments, such as landfills and areas subject to seawater intrusion, chloride can cause toxicity to microbes, typically at concentrations in the thousands of mg/L.							
Sulfit	М	М	LOW	MEDIUM	HIGH		
Chloride Cl ⁻	MEDIUM	LOW	MEDIUM				

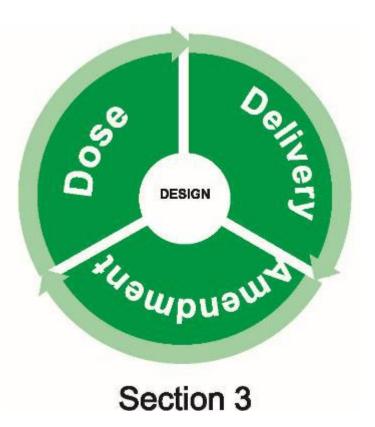
L. L. LOW LOW LOW C SOD (soil oxidant demand) HIGH Μ L MEDIUM LOW TOD (total oxidant demand) Μ L MEDIUM HIGH LOW NOI (natural oxidant interaction) MEDIUM HIGH LOW Μ Т TOC (total organic carbon) ITRC OIS-ISRP-Μ Μ MEDIUM HIGH MEDIUM Anions, cations Individually listed 1 Table 2-2 Arsenite (As⁺³) HIGH Μ Т LOW MEDIUM Arsenate (As⁺⁵) Μ MEDIUM HIGH MEDIUM Μ Chromium (Cr⁺³) Μ Μ MEDIUM HIGH MEDIUM Chromium (Cr⁺⁶) Μ MEDIUM HIGH L LOW ENVIRONMENTAL RESEARCH Other Heavy Metals (e.g., lead, copper, selenium) LOW MEDIUM MEDIUM ECOS

⁴¹ Microbiology and Degradation Potential

ITRC OIS-ISRP-1 Table 2-2

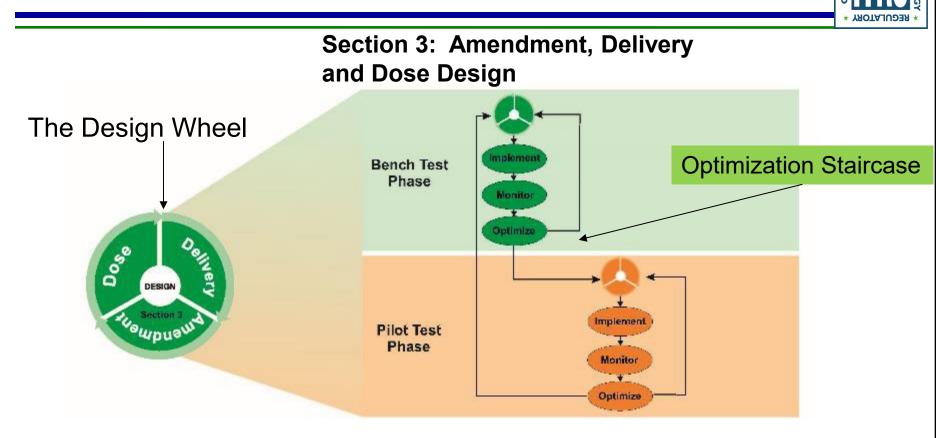
	In Situ Aj	oproach	Rer	Remediation Phase/Step			
Dissolved hydrocarbon gases are typical degradation products of reductive dechlorination of chlorinated ethenes (e.g., PCE), methanes (e.g., carbon tetrachloride), and propanes (e.g., 1,2-dichloropropane). Acetylene is thought to be primarily a byproduct of the abiotic reduction of chlorinated ethenes by reaction with ZVI or ferrous sulfide. The presence of these dissolved gases generally indicates that some complete reductive dechlorination is occurring. Methane can be produced from the contaminant(s), electron donor, other organics, or carbon dioxide. Methane is also the product of methanogenesis, that is, the reduction of carbon dioxide, and in that case is indicative of							
a significantly reducing environment. Natural gas contains many of these dissolved gases.							
CSIA (Compound Credit And Compound Credit And							
Carbon Dioxide CO2	L	M	LOW	LOW	MEDIUM		
Magnetic Susceptibility	М	L	MEDIUM	LOW	LOW		





Learning Objective: Determine amendment, dosing and delivery options

⁴⁴ Amendment Delivery and Dose Design – The Design Wheel



- Involves consideration of the proposed amendment, delivery method and dose applied simultaneously throughout the in situ RDC design and implementation and monitoring process
- Any step in the sequence can be repeated as new information becomes available

Iterative Nature of Design

- Refinement of design following selection of amendment and delivery strategy may involve various tests, all applying the dose, delivery and amendment design feedback;
 - Results of each test feeding refinements into a subsequent test

ITRC OIS-ISRP-1 Modified from Figure 3-1

- Target Treatment Zone (TTZ)
 - Definition of TTZ often iterative
 - Considers collateral effects, performance, costs, etc.
 - May be revised as design is developed
- Key Considerations for defining TTZ
 - Cleanup objectives

- Spatial and temporal relationship to other (combined) remedies
- Uncontrolled amendment discharge
- Geological, hydrogeological, and geochemical characteristics

- Design elements to support remedial design are an extension of the CSM and RDC data
 - Number one source of failure for amendment injection is lack of adequately detailed characterization of TTZ and reliance on overly simplified CSM
- Design elements used to support design include:
 - Modeling and analytical tools
 - Laboratory bench testing, and
 - Field pilot tests

CSM – Contaminated Industrial Site

Solvent release Sand and Silt Underlying Clay Sands and Silts Clay

Example Case Study – image prepared using Health Canada CSM Builder Tool 2015

Modeling and Analytical Tools

- Modeling and Analytical Tools
 - Parameter estimation,
 - Groundwater flow and transport
 - Geochemical reactions
- Can range from simple spreadsheet calculations to complex 3D models
- Some of the software is public domain and others are commercially available and require a license

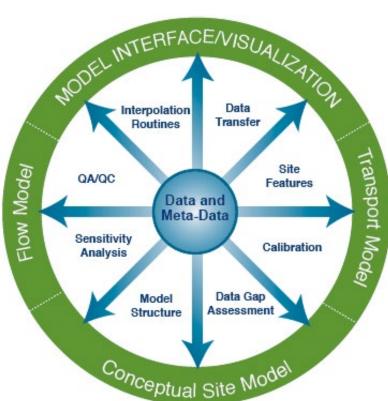


Image used with permission of Geosyntec Consultants.

⁵⁰ Laboratory Treatability Bench-scale Testing

- Determine type and dosing of amendments
- Provide data to support remediation technology or series of specific treatments
- Using site-specific materials, confirm that treatment is effective for a specific site's chemistry

See ITRC OIS-ISRP-1 Table 3-2 for a listing of bench testing objectives and considerations

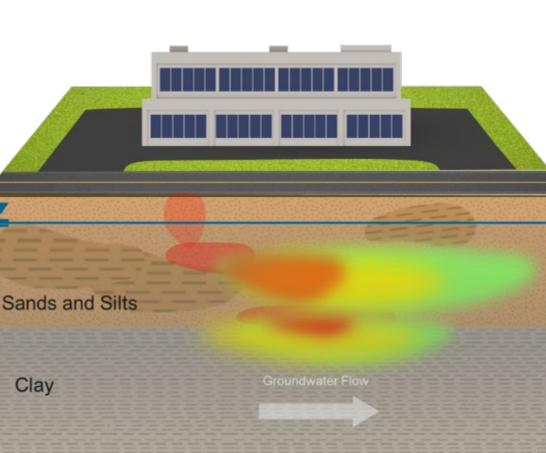
Images used with permission of SiREM.

- Secondary effects can occur over a wide range of time:
 - Transient shifts lasting hours or days
 - Long-term changes that may last years
- Consider potential secondary effects of the remedy design:
 - Evaluate and potentially mitigate secondary effects
 - Beginning with bench and field pilot tests

Example: The addition of sodium persulfate can affect the natural or anthropogenic chromium present in the soil or aquifer matrix, which may be oxidized to hexavalent chromium

- Have you used Bench Tests in your design for an in situ remedy?
 - Yes
 - No
- If you have used Bench Tests in your design for an in situ remedy did the results change your approach?
 - Yes
 - No

Section 3



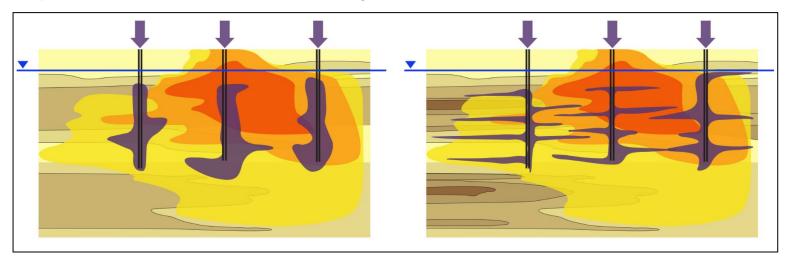
- ► ISCO
 - Faster
 - More secondary effects
 - Higher oxidant demand than ideal

Bio

- Slower
- Fewer secondary effects
- Cheaper long term
- Emulsified vegetable oil (EVO) as donor
- Chosen option

- Evaluate the impacts of heterogeneities on the performance of the remedial technology
- Evaluate remedy timeframe under real world conditions, combined effects of dilution, advective flow, diffusion, adverse chemical interactions, etc.
- Determine amendment distribution, ROI, injections rates and pressure, volume
- Evaluate secondary effects metals mobilization, acid production
- Identify locations for sampling/performance evaluation

Used to test the assumptions incorporated into full-scale remedy design



⁵⁵ Geologic Heterogeneity Affects Delivery

Geologic heterogeneity results in preferential flow through higher permeability zones. Unconsolidated (sedimentary) geologic deposits are stratified vertically.

The less heterogeneous case (left) results in delivery of amendment in the vicinity of each of the delivery points.

The more heterogeneous case (right) results in substantial variability in lateral influence versus depth.

ITRC OIS-ISRP-1 Figure 3-4 Graphic used by permission from Trihydro Corporation

Amendment distribution through a porous aquifer media is controlled by:

- The nature of the amendment
 - Soluble,

- Semi-soluble, or
- Insoluble
- Permeability of the formation
 - High permeability zones often receive the most fluids, allow broadest radial delivery
 - Back diffusion of contaminant mass storage in low permeability materials can be a significant source that contributes to plume longevity

- The pressure at which the fluid is applied to the formation
 - High-pressure emplacement technologies using hydraulic or pneumatic methods are required to deform the aquifer matrix and propagate seams (fractures) within the aquifer matrix
 - Soluble amendments like organic carbon substrates and chemical oxidants can be delivered under gravity flow-low pressure and via high pressure fracturing methods

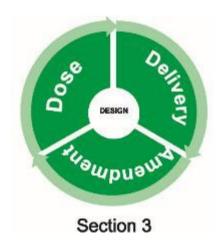
	Hvdroaeoloaic	1	m	Widely us	ed = •", "	Site-s	specific = 🔳	', and '	'Not a	pplicable =	NA"	
	Gravels										Injection D4]	Permeable
Ну	Cobbles		irect Push Injection		ction Jh Wells		ctrokinetics njection thro			lydraulic	Pneumatic	Reactive
Ch <u>Un</u>	Sandy Soils (Sm, Sc, Sp, Sw)		(DPI) [<u>D1</u>]	& Bor	eholes)2]		wells. [D3]		Thre	Delivery ough Wells Boreholes	Delivery Through Open Boreholes	Barriers (PRBs) [<u>D7</u>]
<u>Cl</u> a	Silty Soils (Ml, Mh)								[D5]			
	Clayey Soils (Cl, Ch, Oh)											
	Weathered Bedrock	lh)	•		•		•	•		•		
	Competent/Fractured		•	•			•	•	,			
	Bedrock	NA NA	•	NA]				
	K ≤ 10 ⁻³ to 10 ⁻⁴ (Low Perm Soils)		•		•		•		•	•		
	K ≥ 10 ⁻³ (High Perm Soils)		•	•]	•		
	Depth > Direct Push Capabilities	_	NA	•	I				0			

ITRC OIS-ISRP-1 Table 3-4

Pilot Test – Injection of Emulsified Vegetable Oil

Sand Layer

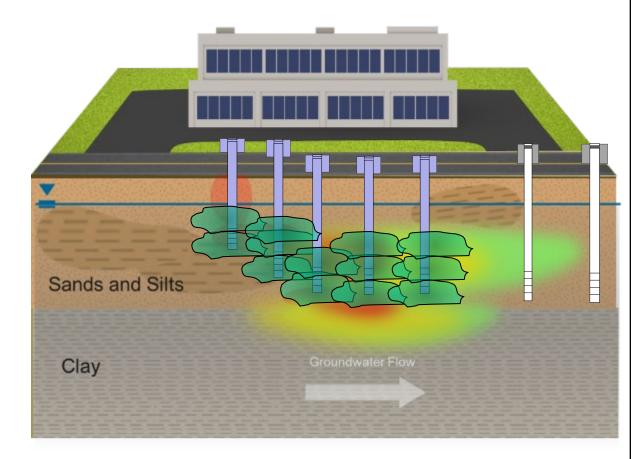
- Good ROI at low injection pressures
- Good distribution
- Clay Layer
 - High injection
 pressure
 - Evidence of short circuiting up into sand layer
 - Poor distribution
 - Uneven and very small ROI



Example Case Study – image prepared using Health Canada CSM Builder Tool 2015

- Have you used Pilot Tests in your design for in situ remedy?
 - Yes
 - No
- If you have used Pilot Tests in your design for in situ remedy, did the results change your design?
 - Yes
 - No

⁶¹ Full Scale – Injection of Emulsified Vegetable Oil (EVO)



Sand Layer

 Direct Injection of EVO

Clay Layer

- Switch to Electro kinetic (EK) - Bio?
- Go back to Bench Test

Example Case Study – image prepared using Health Canada CSM Builder Tool 2015

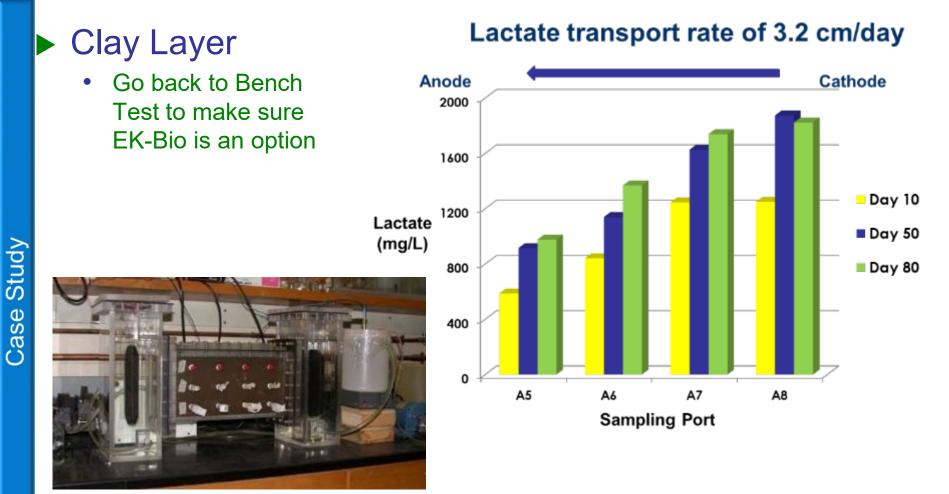


Photo and graphics used with permission from Geosyntec Consultants

Return to Pilot Testing

Clay Layer

- Do pilot test to confirm design parameters and applicability
- Dipole Test
- Small Scale Test

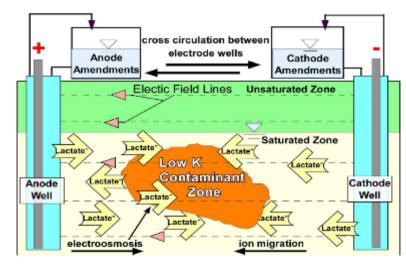
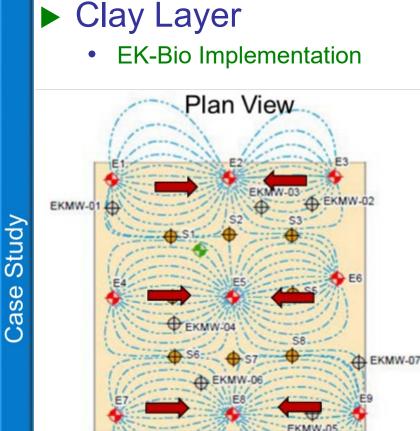


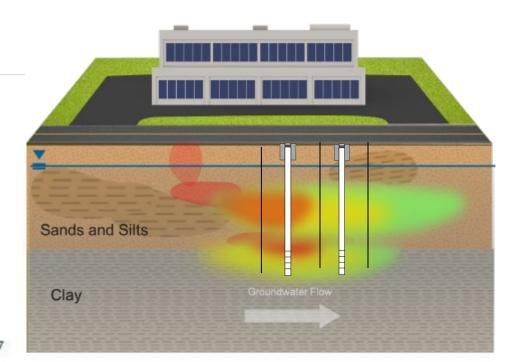
Photo and graphics used with permission from Geosyntec Consultants


Case Study

Full Scale Clay Layer– EK-Bio

CAT

Supply Well

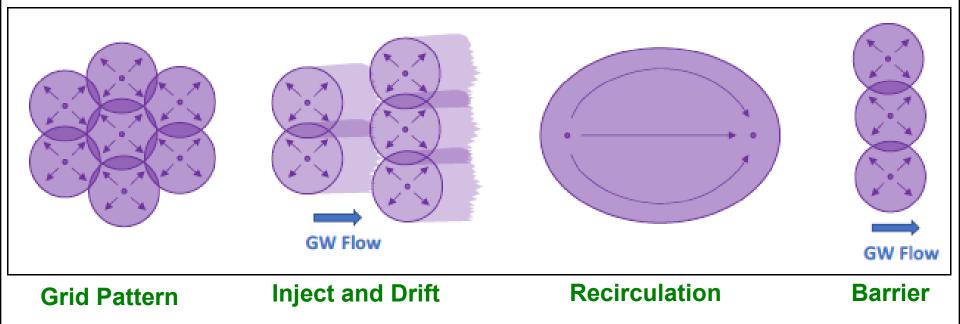


AN

Electrode Well

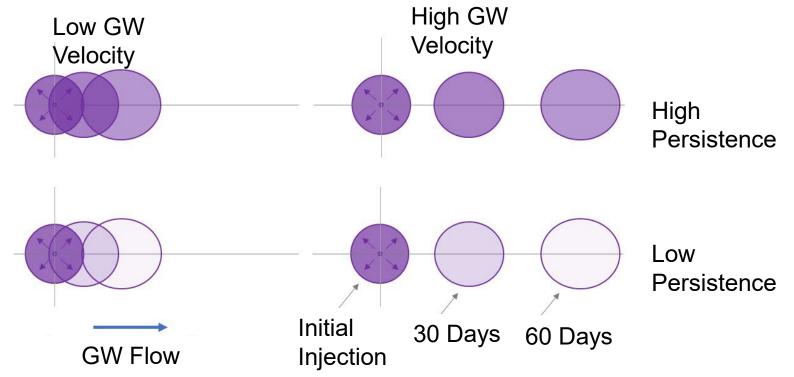
CAT

64


Example Case Study – image prepared using Health Canada CSM Builder Tool 2015; Graphics used with permission of Geosyntec Consultants.

Electro kinetics: OIS-ISRP Appendix D3

The refinement of number and spacing of injection points, injection transects, and recirculation wells for minimization of cost or time using one of the delivery strategies:

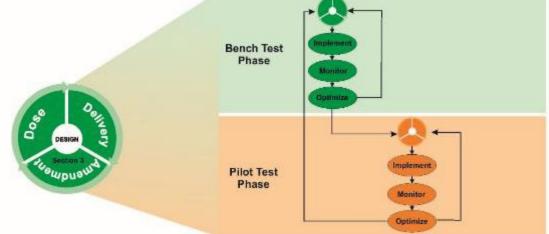


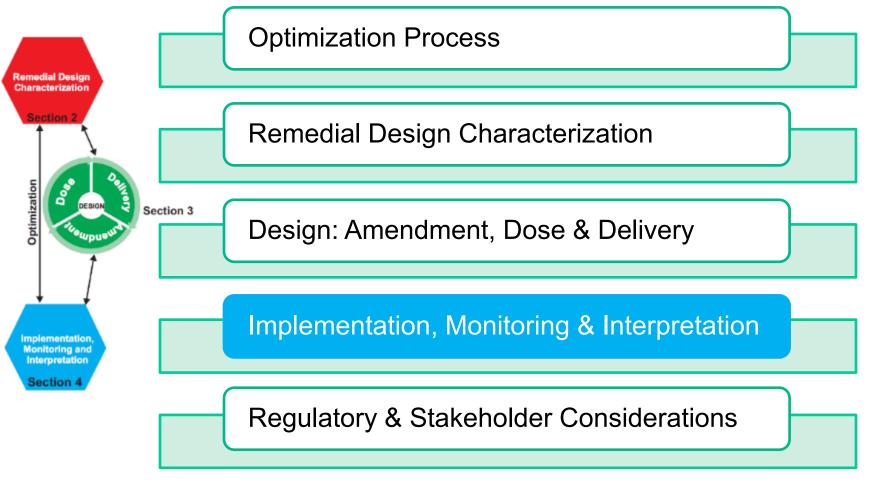
ITRC OIS-ISRP-1 Figure 3-3 Graphic used with permission from Trihydro Corporation

Behavior and persistence of the amendment once injected must be understood and estimated:

ITRC OIS-ISRP-1 Figure 3-2

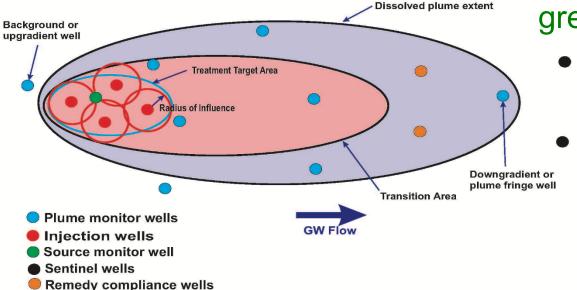
66


Amendment persistence at natural flow using 4 scenarios. Graphic used with permission from Trihydro Corporation


ITRC OIS-ISRP-1 Modified from Figure 3-1

- Need to constantly evaluate the data you have
- Refinement of design following selection of amendment and delivery strategy may involve bench and pilot tests
 - Results of each test needs to feed back refinements into a subsequent test or next version of design
- Iterative approach and constant evaluation of new data will provide a strong design and more successful remedial effort

Learning Objective: Using performance monitoring to make optimization decisions.


⁶⁹ Implementation and Feedback Monitoring Optimization

- Baseline monitoring
- Compliance monitoring

- Frequency and parameters vary with amendment
- Field parameters are inexpensive and have great value

Example of Network Well Locations

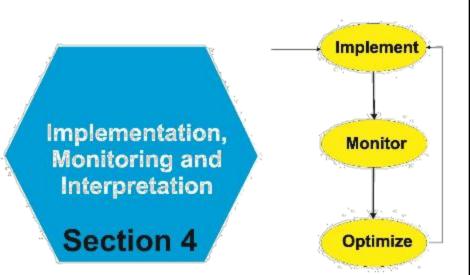
Table 4-2. Analytical parameters for anaerobic biostimulation (with or without bioaugmentation).

PARAMETER	INTERPRETATION GUIDELINES	RECOMMENDATIONS
Contaminant concentrations	Progress is denoted by a reduction of parent COC concentrations and an increase in degradation products; build-up of degradation products could signal stalling.	If parent concentrations are declining but degradation products are not produced, there may be an alternate pathway (e.g., abiotic instead of reductive dechlorination).
Contaminant breakdown products	Breakdown products should be short-lived and reduce with time if the degradation is continuing to the desired end products. Changes in total molar concentrations of the parent and breakdown products should be assessed to verify full degradation.	If undesirable breakdown products continue to increase, then adjustments may be needed to stimulate greater transformation toward the desired end products.
Ultimate end products (e.g., methane, ethene, ethane, chloride, propene) Field parameters—pH	r conditions suitable for sulfate reduction are no greate	ate reduction and methan ot observed and ORP is er than -120 mV, condition t exist for sulfate reductio
neu parameters-pri	6.8–7.5; generally required range is 6.0–8.5).	low pH environments. Amend with sodium bicarbonate, sodium carbonate, or other additives to adjust pH; verify distribution if amendment is unsuccessful.
Field parameters—DO and ORP	DO should be <0.5 mg/l and ORP should be negative; if 10 and ORP values are conflicting, the treatment zone hay not be properly buffered or gases formed by injected materials may be causing instruments to read incorrectly.	If high DO or high ORP is observed in pockets, anisotropy may be hindering distribution by lowering the ROI in certain areas. Evaluate injection spacing in these areas to improve
		methanogenesis occurs
		at -200 mV to -400 mV
		το -400 mv.
Field parameters (e.g., temperature, specific conductance)	An increase in temperature or specific conductance may indicate injection reagents transport and could be used to evaluate ROI.	Each species of bacteria has an optimal range of temperature for growth. Verify that selected consortia meet site characteristics during the selection process because aquifer temperature cannot be changed.
Water level and NAPL thickness	Mounding or increased hydraulic gradients can be induced during injection events. NAPL can also be mobilized.	Determine groundwater flow direction and the hydraulic connection between injection wells and monitoring wells.
тос	TOC includes both naturally occurring organic carbon (such as humus) and organic carbon contamination, e.g., benzene. TOC values above approximately 50 mg/L indicate carbon levels that, if biologically	Over time TOC will decline again to pre- remediation levels. This, combined with aquifer flow and transport information, can indicate when the substrate is depleted.

Table 4-4. Analytical parameters for chemical oxidation

PARAMETER	INTERPRETATION GUIDELINES	RECOMMENDATIONS
Contaminant concentrations	Progress is denoted by a reduction of parent COC concentrations.	If COC concentrations are unchanged, evaluate distribution and effectiveness of selected oxidant (e.g., permanganate will not oxidize ethanes).
Contaminant breakdown products	Breakdown products should be short-lived and reduce with time if the degradation is continuing to the desired end products.	If undesirable breakdown products continue to increase, then adjustments may be needed to stimulate greater transformation toward the desired end products
Ultimate end products (e.g., acetone, carbon disulfide, carbon dioxide, chloride)	Presence confirms degradation.	These end products may quickly dissipate in
Field carameters (e.g. p.t., temperature, specific conductance, DO, ORP, pressure, ferrous iron, hydrocarbon gases, LEL, CO ₂)	Certain reactions require low pH (ideal range it 4–6); amend if necessary. In the case of alkaline activation of some oxidants, pH should be confirmed to be above targets, typically in the range of greater than 10.5 and < 12.	application and can be used to evaluate ROI during process monitoring.
Water level and NAPL thickness	Mounding or increased hydraulic gradients can be induced during injection events. NAPL can also be mobilized.	Determine groundwater flow direction and the hydraulic connection between injection well locations and monitoring wells.
Metals (e.g., arsenic, chromium, lead, zinc, and other site-specific or amendment-specific metals)	Metals can leach from the geology/soil at concentrations that exceed regulatory standards.	Monitor secondary effects of ISCO application.
Natural oxidant demand (NOD)	Determine the oxidant demand of the existing biogeochemistry and account for it when calculating the amount of amendment needed. A high NOD may preclude the selection of ISCO as cost-effective. COD, soil oxidant demand (SOD), and total oxidant demand (TOD) are related terms.	Evaluate oxidant demand required to overcome properties of the aquifer. This is typically a design parameter not used during performance monitoring. Multiple applications of a chemical oxidant may be required to overcome NOD such that COD can be adequately addressed.
тос	TOC provides a general indication of the amount of oxidant that will be needed, if a soil sample cannot be collected for testing.	It is best to rely on NOD, COD, or TOD when using chemical oxidation amendments.
Amendment-specific parameters (e.g., manganese, sulfate, sodium, potassium, ozone), amendment components (H ₂ O ₂ , persulfate, permanganate, ozone)	Amendments can be used as a tracer to evaluate ROI and calculate travel times if the reaction with contaminants and soil minerals or organics is accounted for. May need to monitor for components of amendments if there are components that present a water quality concern.	Evaluate ROI and travel times.
Water quality parameters—TDS	TDS is a measure of the combined organic and inorganic substances in water, primarily	Some states have compliance values for TDS and/or individual salts or minerals.

⁷¹ Applying Optimization to Underperforming Remedies


- When should you optimize, select an alternate remedy, or transition to a polishing remedy (e.g., MNA)?
- Have you collected all of the data needed to evaluate progress?
- In what way is the remedy underperforming?
- Which Design Criteria needs to be addressed?
- Can it be optimized?
- Should a supplemental remedy be considered?

Case Study - Background

- ► Site Info:
 - Total area: ~380 acres
 - Plume extent: 12 acres, including off-site impacts
- Geology: Piedmont, heterogeneous with saprolite of varying thickness overlying transition zone of partially weathered rock and granitic schist

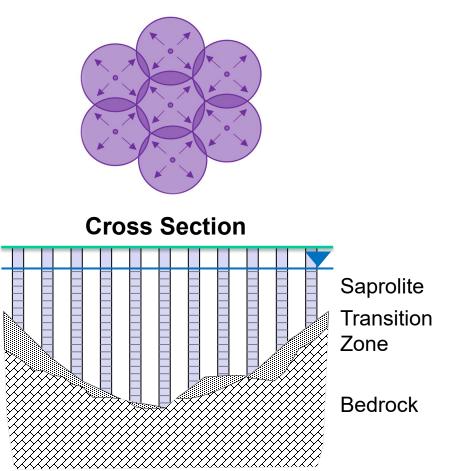
- Contaminants: Chlorinated solvents (carbon tetrachloride, trichloroethene (TCE), and daughter products)
- Existing Remedy: Pump and Treat
 - Ineffective after 13 years

72

ITRC OIS-ISRP-1 Figure 3-1

Case Study – Multiple Optimizations

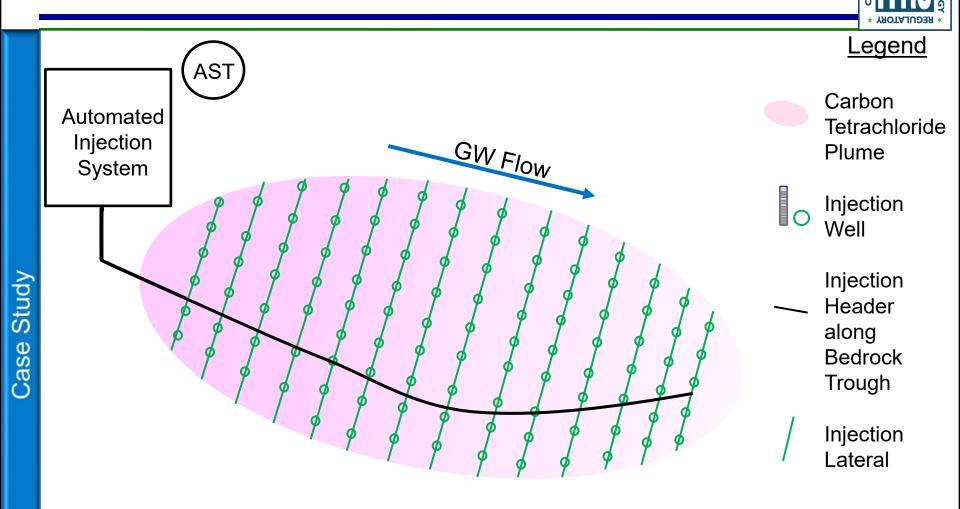
- Implemented anaerobic in situ bioremediation
- Optimized bioremediation remedy
 - Evaluate monitoring data monthly don't wait for the annual report
 - Know when to anticipate changes in groundwater chemistry and respond early
- Incorporated hydraulic fracturing to improve distribution
- Relied on natural downward vertical gradient to distribute amendments to the bedrock
 - Also anticipated MNA once shallow groundwater impacts were addressed
 - But had a contingency plan to address bedrock


73

Case Study – Remedy Design

- Fixed injection wells on 25foot centers in grid pattern
- 134 injection wells within 4.1-acre TTZ
- Injections in saprolite only, relying on downward vertical gradient for distribution to deeper zones
- Automated injection system

Plan View



ITRC OIS-ISRP-1 Figure 3-3 (graphic used by permission from Trihydro Corporation); Cross section Figure used with permission of Elizabeth Rhine

74

Injection Well Network

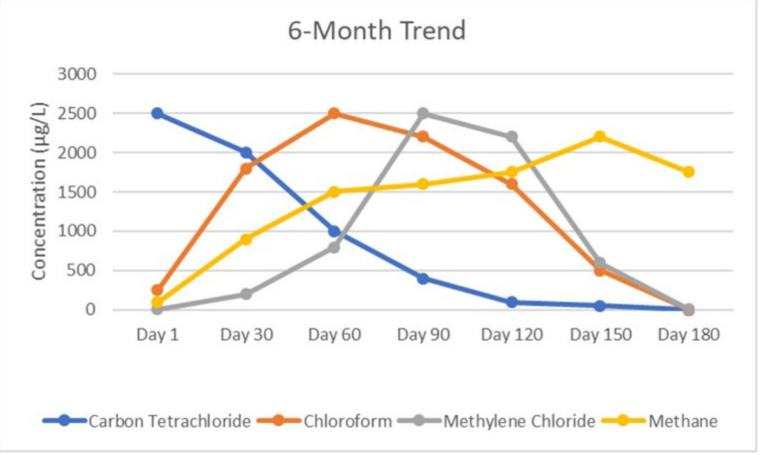
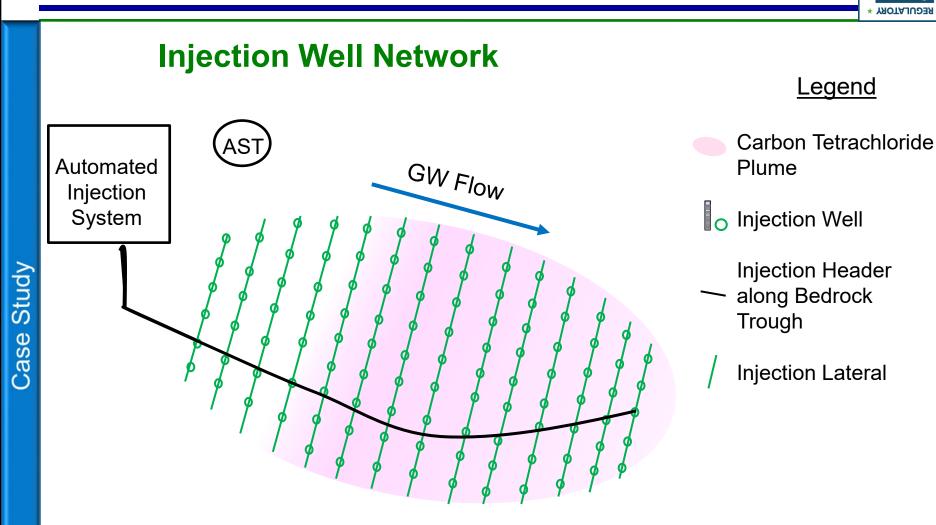

INTERSTATE

Figure used with permission from Elizabeth Rhine

Good News...



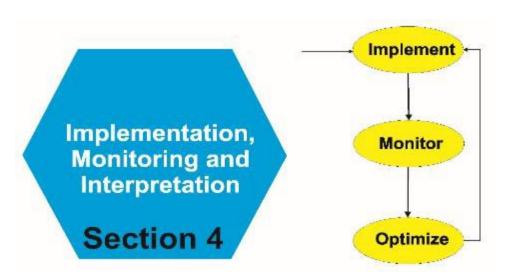
In the Source Area, MCLs were met within 6 months in performance monitoring wells

Graph used with permission of Elizabeth Rhine

INTERSTATE

Figure used with permission from Elizabeth Rhine

Data Evaluation after 6 months



Increase in daughter products

78

Case Study

- The pH dropped slightly after 12 months
 - Increased methane concentrations

- Ideal redox conditions for biodegradation not generated uniformly across the plume
- Distal end of the plume exhibited no change
 - But it should have been easier to address low concentrations

ITRC OIS-ISRP-1 Figure 3-1 Graphic used with permission of Elizabeth Rhine

Redox Parameter Evaluation

ECOS

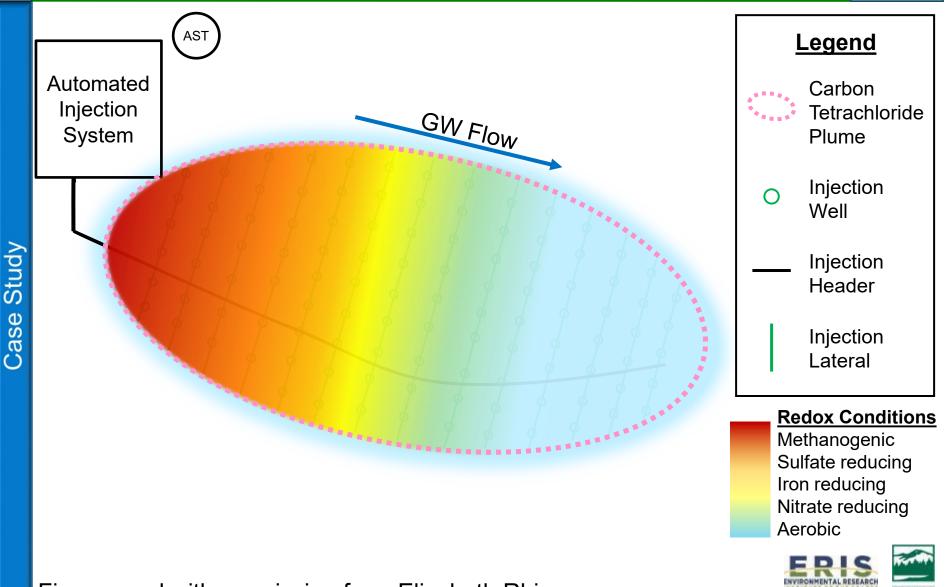
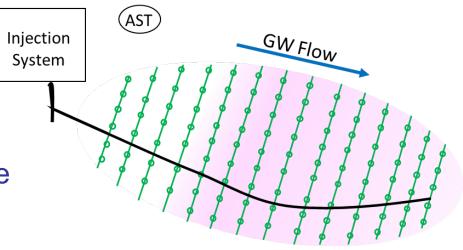


Figure used with permission from Elizabeth Rhine

- Given the data just presented, what type of problem do we have? What needs to be optimized for success?
 - Delivery
 - Dose
 - Amendment
 - All of the above



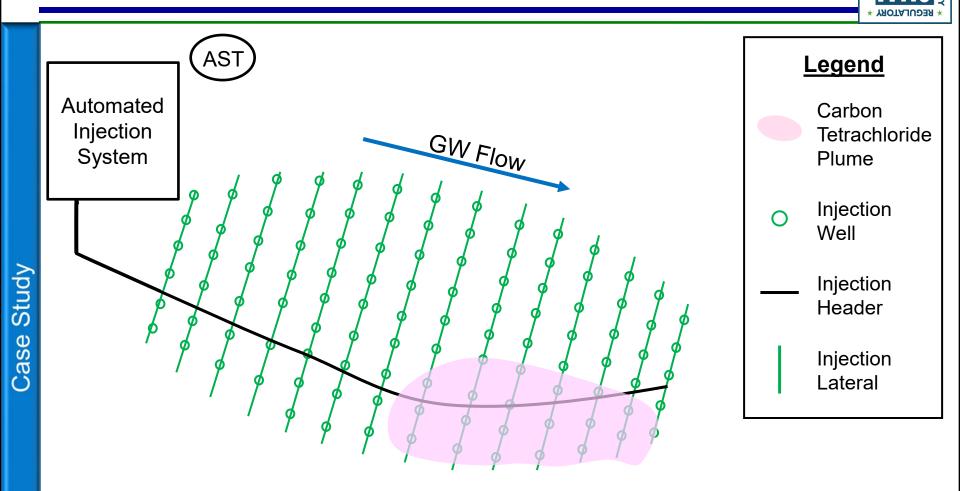
Optimization 1

- Downgradient, anaerobic conditions not established
 - COC concentrations and pH stable in this area
- Degradation by-products not observed in the downgradient, low-concentration plume
- Low TOC compared to upgradient
 - ROIs in downgradient monitoring wells appear to be less than observed in source area monitoring wells

- ▶ What should we do?
 - Revisit RDC
 - Revisit the Design Wheel
 - Increase the radius of influence (ROI) in the downgradient wells

81

82



	Problem	Resulting Optimization
Amendment	 Address the pH drop 	Lower carbon load from 10% to 5%
Dose	 Increase the radius of influence (ROI) of downgradient wells 	 Decrease the frequency of injection Increased the volume from 10 to 25 gal/ft
Delivery	 Solve the fermentation issue in the holding tank 	 Add a clean water flush Stir the holding tank

12 Months after Optimization 1

INTERSTATE

Figure used with permission from Elizabeth Rhine

- Given the data just presented, what type of problem do we have? What needs to be optimized for success?
 - Delivery
 - Dose
 - Amendment
 - All of the above

Initial optimization

- helped in most areas
- Why did COCs persist in this area?
- Revisit RDC and Design Wheel

Case Study

- Review boring logs
- Silts and clay lenses
- Back-diffusion from clay acting as a longterm source

ITRC OIS-ISRP-1 Figure 3-4 Graphic used by permission from Trihydro Corporation

- Perhaps
- Pilot study

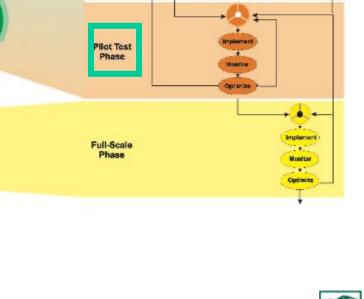
Optimization 2 – Fracturing Pilot Test

Remedial Design Characterization

northern.

Dos

mplementation


Nonitoring and

Interpretation

Section 3

Optimizati

- Reagent takes path of least resistance, which in this case was the silty sands
 - Hydraulic fracturing pilot test to evaluate potential to enhance distribution by creating additional sand layers

Bench Tast

Phase

Figure used with permission of Elizabeth Rhine

- Installed a single hydraulic fracture using sand suspended in food-grade guar gel using DPT tooling
- Installed piezometers at various depths and equipped with data loggers
- Injected water into fracture
- Influence was observed 3 to 4 feet above and below fracture

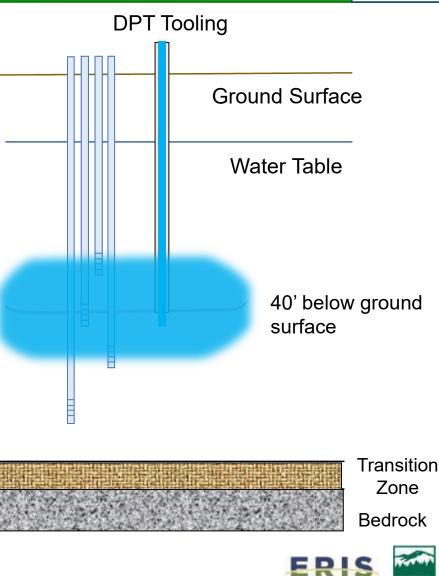
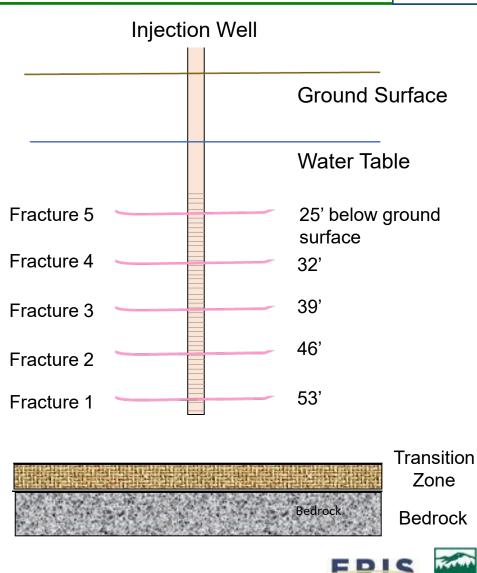



Figure used with permission of Elizabeth Rhine

Hydraulic Fracture – Stacked Fractures

- Implemented full-scale series of fractures at 7foot intervals
- Installed a single injection well screened to intercept all 5 fractures
 - Installed piezometers to measure ROI
 - 20-foot ROI
 - 40-foot ROI

Hydraulic Fracture – Full Pilot Test

ECOS

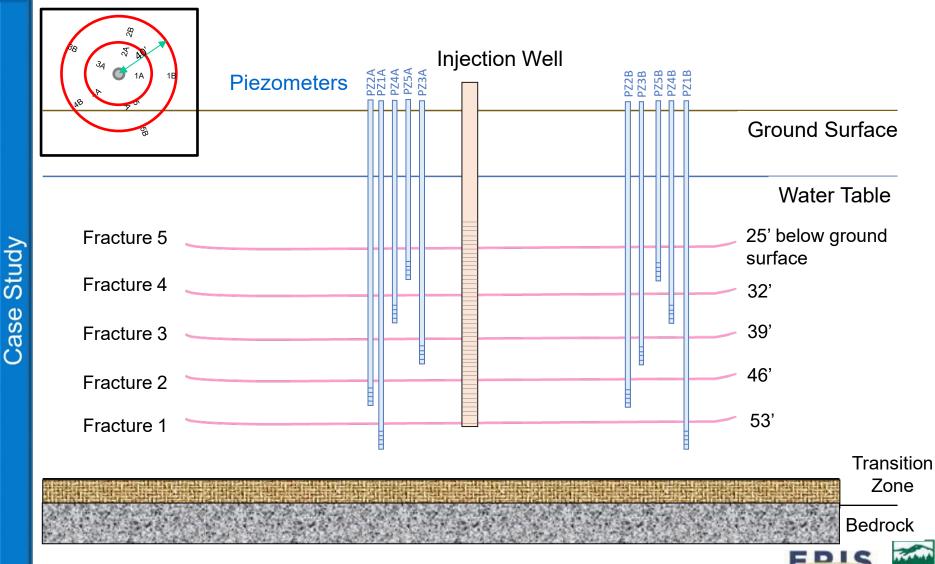


Figure used with permission of Elizabeth Rhine

Optimization 2 – Startup

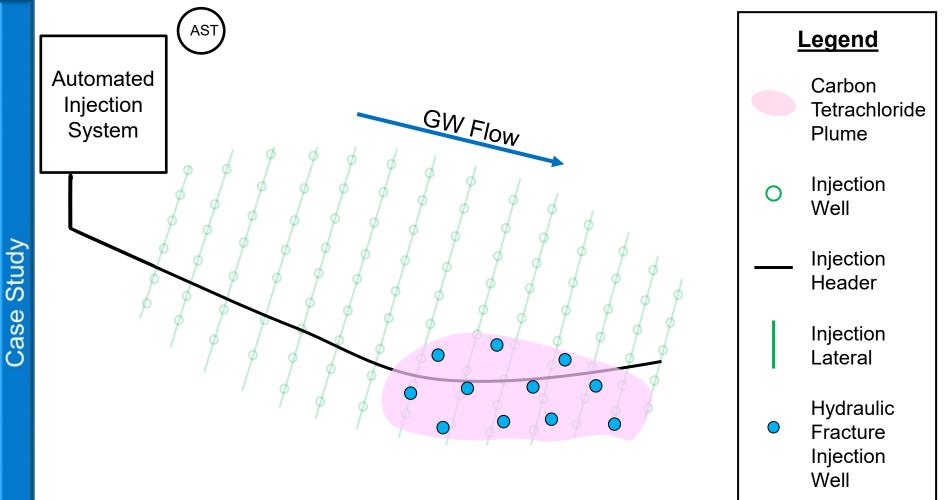
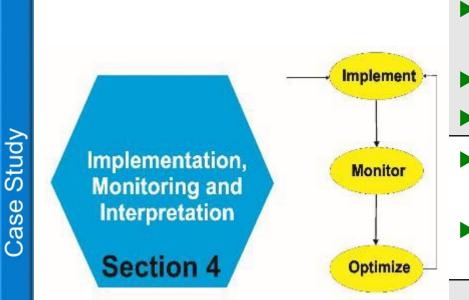


Figure with permission of Elizabeth Rhine



- Nine months to complete the hydraulic fracture pilot study and install 11 fracture sets
- MNA monitoring during that period

- Nominal rebound in areas where MCLs were achieved
- Back-diffusion (e.g., equilibrium) limited to areas with high clay content per RDC borings

92

- ROI of each fracture ~45 feet
- Installed 11 fracture sets and injection wells on 75-foot centers
- Automated injection system
- Injected once a month
- After two injection events, TOC concentrations at optimal levels
- Evidence of reductive dechlorination observed in 6 months
- After 9 months, transitioned to MNA

Redox Parameter Evaluation

ECO

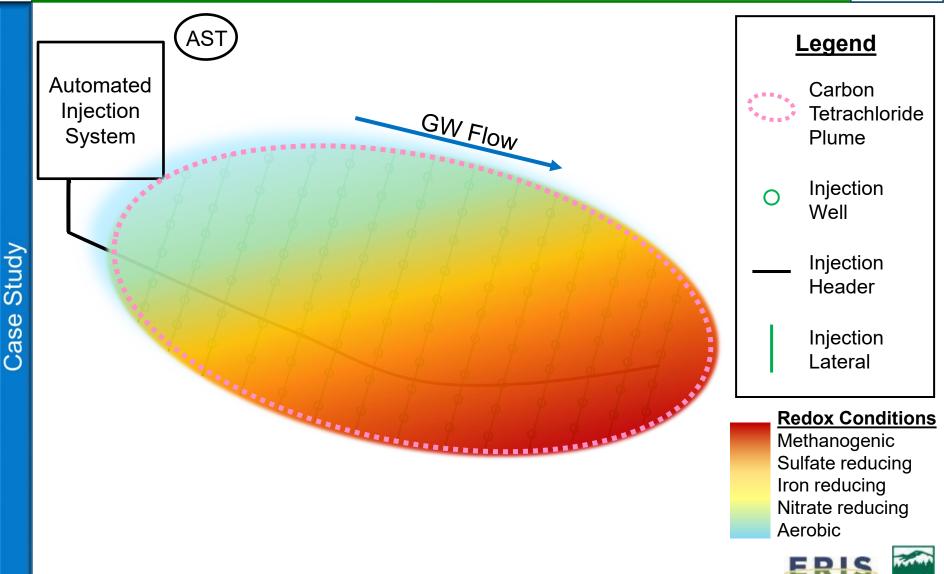
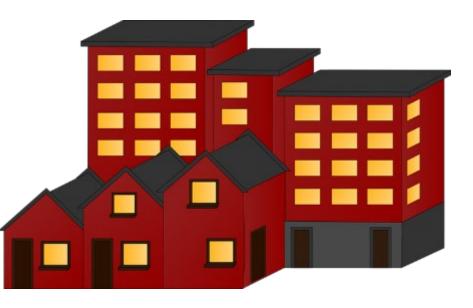


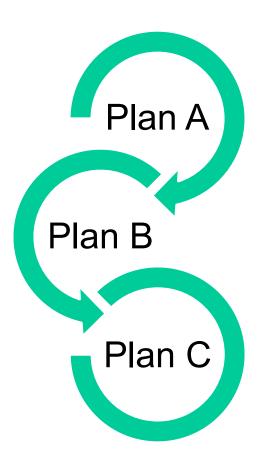
Figure used with permission from Elizabeth Rhine

- Know when to transition to another technology or MNA
- Consider:
 - Cost/benefit of additional remediation
 - Point of diminishing returns
 - Regulatory framework
 - Final site use



- Original Brownfield agreement restricted use to industrial
- Only buyer to express interested wanted to build apartments
 - More stringent criteria
 - Agreed to meet residential criteria because it was cheaper than holding on to the property

With engineering controls, land use restrictions lifted and residential development allowed


Treating the 4.1-acre TTZ achieved MCLs or close to MCLs throughout

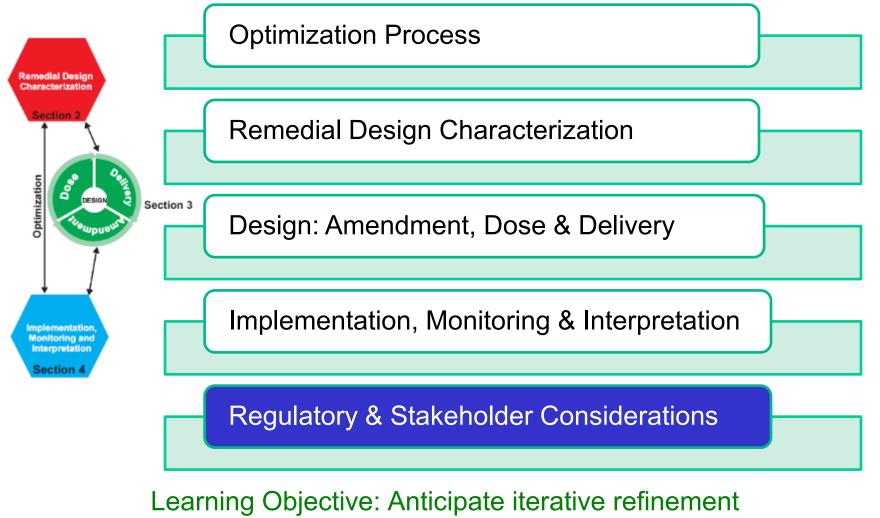
- Natural attenuation in the remaining 8 acres downgradient
- Bedrock aquifer also naturally attenuated

- What's the future use of the property?
- For this site, transitioned to MNA when concentrations were below 5 times the MCL
- Different states may allow MNA at higher concentrations

- Including the original P&T remedy, there were 4 cycles of optimization to reach MNA
- Monthly evaluation was critical to maintain schedule for redevelopment
- Evaluate contingency plans up front, and be ready to implement if the data suggest it is needed

Graphic developed by and used with permission from Elizabeth Rhine

- Aerobic biostimulation
- Chemical oxidation (ISCO)
- Chemical reduction (ISCR)
- Surfactant/co-flushing


- Tables and Links to Fact Sheets
 - Monitor parameters appropriate for the remedy
 - Data interpretation guidelines
 - Optimization recommendations
- Sample Frequency

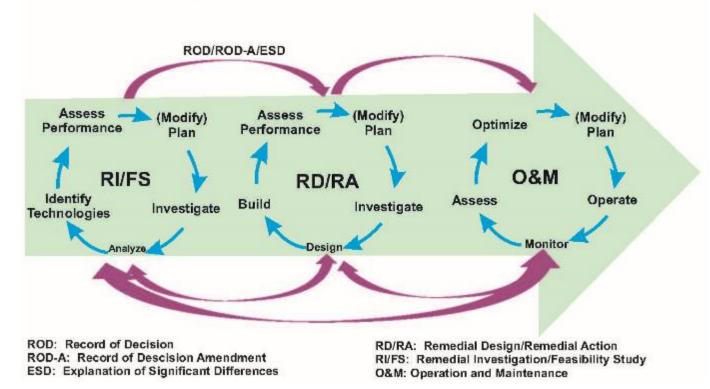
99

- Dependent on site-specific conditions
- Varies by reaction time of amendment
- ISCO monitoring is very different from EISB
- Contingency Planning
 - Have one

¹⁰⁰ **Presentation Road Map**

for remedy design and regulatory approvals

Regulatory Considerations



Statutory Challenges

101

- Procedural Challenges
- Adaptive Management needs to become part of the regulatory process

Adaptive Management's Application in the Superfund Process

EPA www.clu-in.org/conf/tio/AdaptiveManagement-Stakeholders

¹⁰² Stakeholder Considerations

Proactive Approach

- Communicate all relevant information
- Discuss unknowns and update as information becomes available
- Regular communication
- Media
 - Single official point of contact with a professional, trusted relationship with media
 - Train all communicators and prepare for questions
 - Clear, concise fact sheets

¹⁰³ Overall Course Summary – Call to Action

RDC is key to developing detailed Conceptual Site Model

Design of amendment, dose and delivery is an iterative process with multiple feedback loops

Monitoring and data analysis to inform adaptive implementation and feedback optimization

Appendix F Checklist

Performance Evaluation & Optimization of In situ Remediation

Predictable and Optimized Outcome for In Situ Remedies using sound science and engineering

2nd question and answer break

Links to additional resources

http://www.clu-in.org/conf/itrc/OIS-ISRP/resource.cfm

Feedback form – please complete

http://www.clu-in.org/conf/itrc/OIS-ISRP/feedback.cfm

CLU-IN	CERA Environmental Protection Agency Technology Innovation Program		
	U.S. EPA Technical Support Project Engineering Forum Green Remediation: Opening the Door to Field Use Session C (Green Remediation Fools and Examples)		
Ge to Seminar	Seminar Feedback Form We would like to receive any feedback you might have that would make this service more		
Links	valuable. Please take the time to fill out this form before leaving the site.		
Feedback	Turkh See I		
Home	Email Address:		
CLU-IN Studio	entitety. Please send a packagation certificate and feedback confirmation to this address.		
	Thank you for participating in an online technology cominar. We hope this was a valuable use of your time.		
	Submit Clear Form		

View Your Participation Certificate (PDF)

Need confirmation of your participation today?

Fill out the feedback form and check box for confirmation email and certificate.

