Starting Soon: Remediation Management of Complex Sites

- Remediation Management of Complex Sites, RMCS-1 http://rmcs-1.itrcweb.org
- Download PowerPoint file
 - CLU-IN training page at http://www.clu-in.org/conf/itrc/rmcs/
- Download flowchart and checklist for reference during the training class
 - http://www.clu-in.org/conf/itrc/RMCS/Excerpts_from_ITRC_RMCS-1 2017.docx

Use "Join Audio" option in lower left of Zoom webinar to listen to webinar Problems joining audio? Please call in manually

Dial In 301 715 8592 Webinar ID: 841 942 52034#

Welcome – Thanks for Joining this ITRC Training Class

Remediation Management of Complex Sites

Remediation Management of Complex Sites (RMCS-1) ITRC Technical and Regulatory Guidance document

Sponsored by: Interstate Technology and Regulatory Council (www.itrcweb.org)
Hosted by: USEPA Clean Up Information Network (www.cluin.org)

Housekeeping

- Course time is 2½ hours
- This event is being recorded

- Questions and feedback
 - Throughout training:
 type in the "Q & A" box
 - At end of class: Feedback form available from last slide
 - Need confirmation of your participation today? Fill out the feedback form and check box for confirmation email and certificate

ITRC (<u>www.itrcweb.org</u>) – Shaping the Future of Regulatory Acceptance

- Host organization
- Network
 - State regulators
 - All 50 states, PR, DC
 - Federal partners

ECOS

DOE

DOD E

EP

- ITRC Industry Affiliates
 Program
- Academia
- Community stakeholders
- ► Follow ITRC

Disclaimer

- Full version in "Notes" section
- Partially funded by the U.S. government
 - ITRC nor US government warranty material
 - ITRC nor US government endorse specific products
- ITRC materials available for your use – see <u>usage policy</u>
- Available from <u>www.itrcweb.org</u>
 - Technical and regulatory guidance documents
 - Online and classroom training schedule
 - More...

Meet the ITRC Trainers

John Price III
Washington Department
of Ecology
Richland, WA
509-372-7971
John.Price@ecy.wa.gov

Chuck Newell
GSI Environmental Inc.
Houston, TX
713-522-6300
cjnewell@gsi-net.com

David Alden
Tersus Environmental
Wake Forest, NC
919-523-6233
david.alden@tersusenv.com

Elisabeth Hawley
Geosyntec Consultants
510-289-0521
ehawley@geosyntec.com

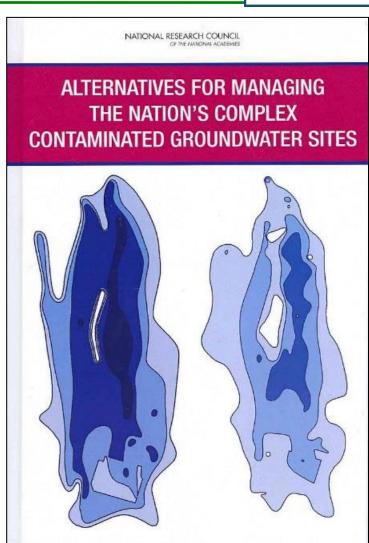
Read trainer bios at https://clu-in.org/conf/itrc/rmcs/

The Challenge – Meeting Site Objectives at Complex Sites

- Complete remediation (no use restrictions) is a significant challenge at complex sites
- ▶ ITRC team definition of a complex site:
 - Remediation progress is uncertain and remediation may not achieve closure or even longterm management within a reasonable time frame
 - "Reasonable time frame" for restoring resources to beneficial use is subject to interpretation and depends on site circumstances

The Challenge – Meeting Site Objectives at Complex Sites

Aerial view of the Rocky Flats Site, Colorado ITRC RMCS-1 Figure 15 (DOE 2017)


Delineating TCE plume in a residential area near Middlefield-Ellis-Whisman (MEW) Site, California ITRC RMCS-1 Figure 12 (CPEO 2016b)

Complex Sites Nationwide

- National Research Council reported contaminant levels at 126,000 sites inhibit site closure
- ► Roughly 10% are "complex"
- Cost to complete = \$127 billion
- Clear need for additional guidance

National Research Council, 2013

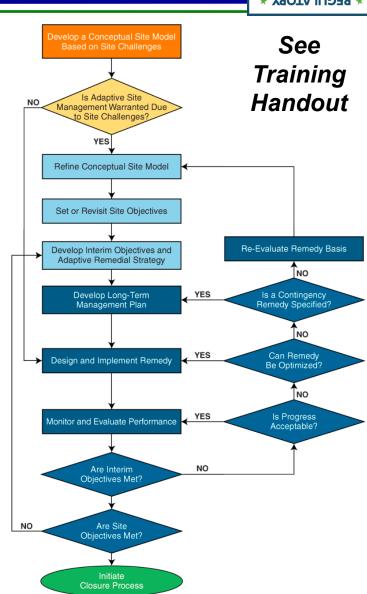
ITRC Guidance for Complex Sites

- Recommended process for complex sites
 - Adaptive site management
- Consolidates existing guidance, best practices, tools, and technologies
- ▶ 16 case studies realworld applications

ITRC Technical and Regulatory Guidance Remediation Management of Complex Sites RMCS-1

http://rmcs-1.itrcweb.org

Adaptive Site Management Comprehensive, Flexible, and Iterative



Chapter 2. Site Challenges

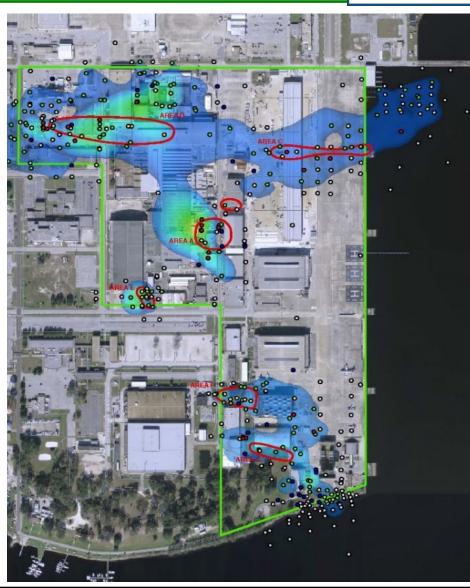
Chapter 3. Remediation Potential Assessment

Chapter 4. Adaptive Remedy Selection

Chapter 5. Long-Term Management

ITRC RMCS-1 Chapter 1, Figure 1

Benefits of Adaptive Site Management

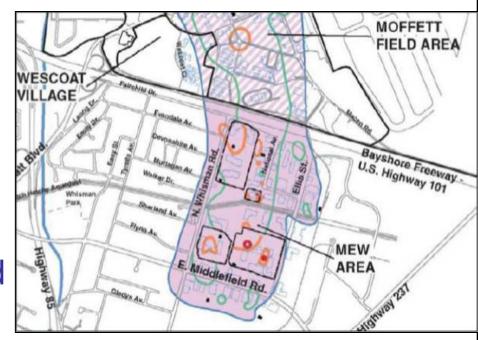


- Maintain protection of human health and the environment and fulfill regulatory obligations
- Base decisions on robust conceptual site models
- Streamline decision making and save costs
- Demonstrate interim progress that leads to longterm results
- Reduce barriers to using available remedial approaches
- Return sites to beneficial reuse

Case Study: Naval Air Station Jacksonville, Florida, Operable Unit 3

- Used adaptive site management
 - Discontinued interim remedial actions
 - Refined conceptual site model
 - Determined key exposure pathways
 - Adopted a risk-based remedial approach
- Several pilot studies, innovative tools and technologies

Key to Your Success Engage Stakeholders


- Stakeholders include citizen and Tribal communities, environmental advocacy members, and members of the affected public
- Methods for stakeholder involvement
 - Existing cleanup program processes
 - Restoration Advisory Board/stakeholder meetings
 - Public outreach and community meetings
 - Planning process
 - Adaptive site management

Case Study: Stakeholder Involvement at Middlefield-Ellis-Whisman Site

- Community members are constructive partners in decisionmaking
- Model permit process for cooperation between regulators and local land use planning jurisdictions

Vapor intrusion study area at Middlefield-Ellis-Whisman (MEW) site, California ITRC RMCS-1, Figure 10, CPEO 2016a

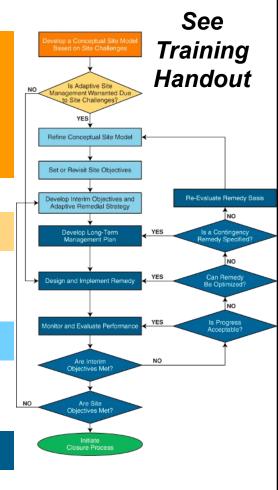
After Today's Training We Expect You Will Be Able To:

- Identify and integrate technical and nontechnical site challenges presented by complex sites
- Use the Remediation Potential Assessment
- Apply adaptive site management principles
- Develop a long-term performance-based action plan
- ► Effectively engage stakeholders
- Access additional resources
- ▶ Communicate the value of this guidance

Today's Road Map

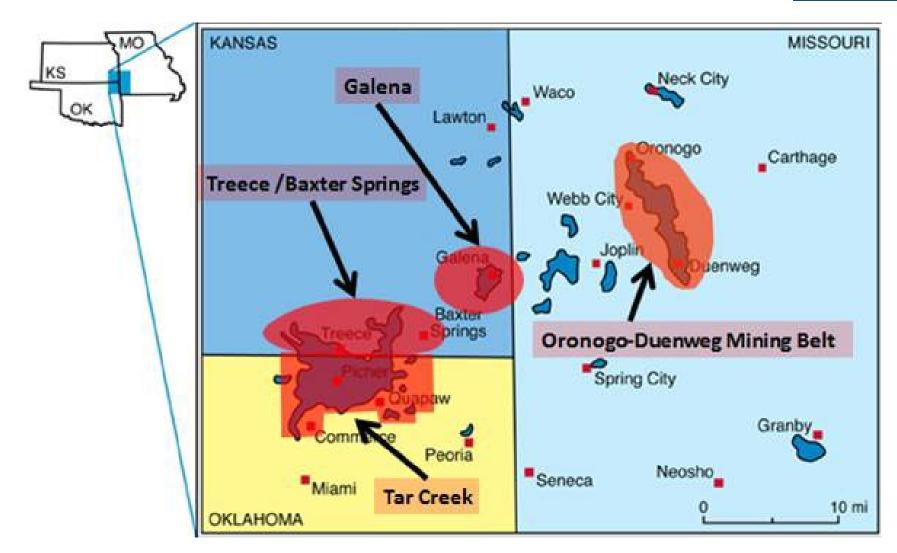
- Site challenges
- Remediation Potential Assessment
- Questions and answers
- Adaptive remedy selection
- Long-term management
- Preparing you to take action
- Questions and answers

Site Challenges Learning Objective



Identify and integrate technical and nontechnical site challenges into a holistic approach to remediation

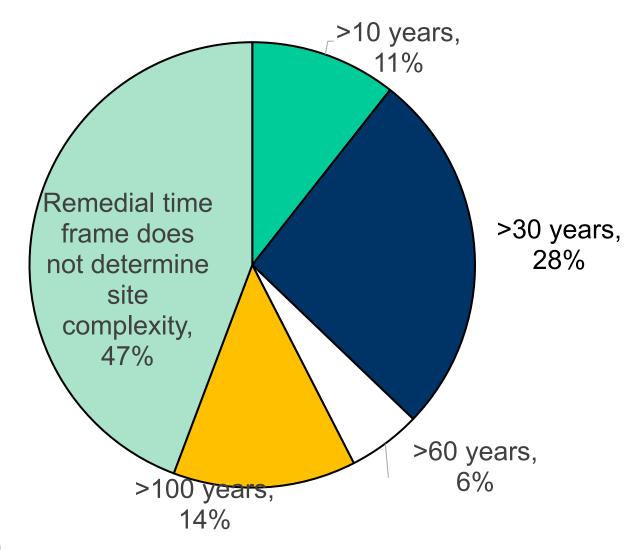
Chapter 3. Remediation Potential Assessment


Chapter 4. Adaptive Remedy Selection

Chapter 5. Long-Term Management

Complex Site?

ITRC RMCS-1, Figure 37, modified from Kansas Geological Survey, 2001


Description of a Complex Site

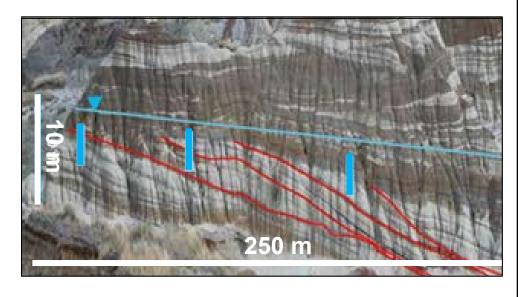
- ▶ At "complex sites", remediation progress is uncertain and remediation is not anticipated to achieve closure or even long-term management within a reasonable time frame
- Both technical and non-technical challenges can impede remediation
- ▶ Identifying challenges can improve the conceptual site model (CSM) and maximize remedial effectiveness

ITRC Survey Results: Diversity of Responses – Remedial Time Frame

Identify Site Challenges

Technical Examples

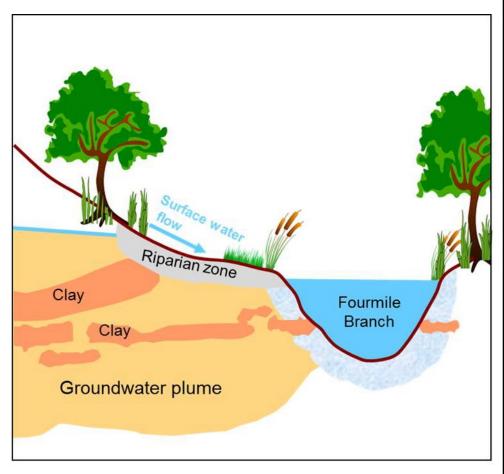
- Geologic
- Hydrogeologic
- Geochemical
- Contaminant-related
- ▶ Large-scale


Non-Technical Examples

- Site objectives
- Changes over long time frames
- Regulatory
- Institutional controls
- Land use
- Funding

Identify Technical Challenges Geologic Conditions

- Geologic heterogeneity/ preferential flow paths
- Fractured bedrock
- ► Karst bedrock
- Low-permeability media



Clay units (dark colored) dip from upper left to lower right, an example of stratigraphic heterogeneity Photo courtesy of Hubbard 2015

Identify Technical Challenges Hydrogeologic Conditions

- Extreme or variable groundwater velocities
- Fluctuating water table
- Deep contamination
- Surface water and groundwater interactions and impacted sediment

Surface water/groundwater interactions downgradient of F-Area, Savannah River Site, South Carolina

Identify Technical Challenges Geochemical Conditions

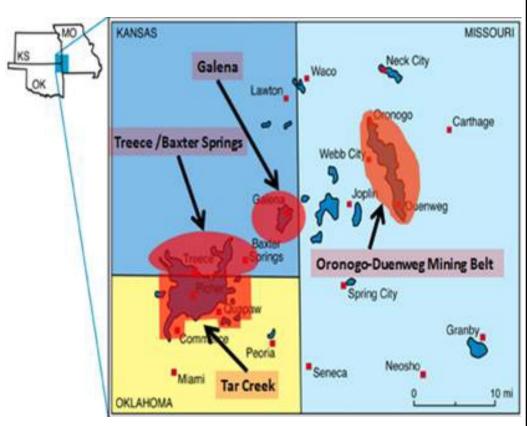
- Extreme geochemistry
 - Alkalinity, pH, redox conditions, salinity, ionic strength, hardness
- Extreme groundwater temperatures
 - Geothermal sources
 - Low temperatures, permafrost

Low temperatures decrease biological activity at North Slope Refinery, Alaska, Redbullet16 / Wikimedia Commons

Identify Technical Challenges

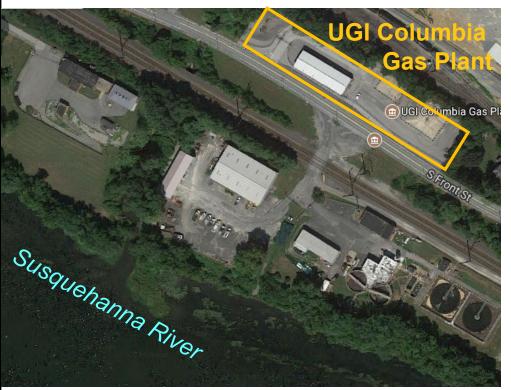
Contaminant-Related Conditions

- Light or dense nonaqueous phase liquids (LNAPL or DNAPL)
- Recalcitrant contaminants
- High concentrations or multiple contaminants
- Emerging contaminants


ITRC RMCS-1, Table 2; ITRC ISC-1 2015;

ITRC IDSS-1 2015; ITRC Fractured Rock and PFAS Team Fact Sheets, 2017

Identify Technical Challenges Large-Scale Sites



- Location and extent of contamination
- Depth of contamination
- Number, type and proximity of receptors
- Extensive or comingled plumes

Technical Challenges Case Study: UGI Columbia Gas Site, Pennsylvania

Google Maps 2017

 Residual tar in river sediments, groundwater and deep in fractured bedrock

► Tar will slowly dissolve over centuries

Identify Non-Technical Challenges

- Site objectives
 - Changing site objectives
 - Societal expectations
 - Green and sustainable remediation
- Managing changes over long time frames
 - Phased remediation
 - Future use
 - Site management

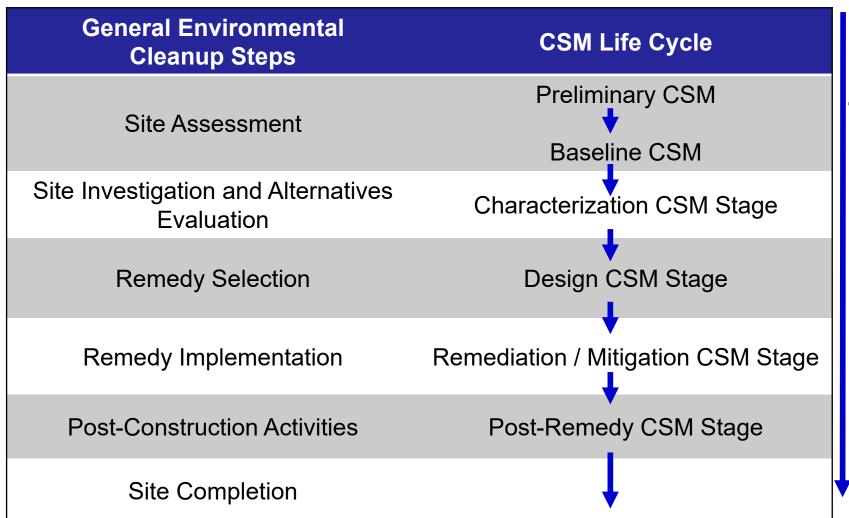
- Regulatory
 - Federal and state cooperation
 - Changing laws and regulation
 - Orphan sites
 - Contaminants
 without regulatory
 guidance/criteria

Identify Non-Technical Challenges

- ► Institutional controls
 - Tracking and managing
 - Enforcing
 - Long-term management
- ▶ Land use
 - Changing land, water use
 - Multiple owners
 - Site access
- Funding
 - Lack of funds, political influence on program funding

Deer graze on Rocky Flats National Wildlife Refuge in Colorado Footwarrior, Wikimedia Commons

Non-Technical Challenges Case Study: Velsicol Site, Michigan



- Contaminated city wells and Pine River
 - DNAPL pools 100 feet deep
- Livestock impacts and community economic hardship
- Limited funding prompted stakeholder involvement

Conceptual Site Model Maturity

USEPA, 2011a. Environmental cleanup best practices: Effective use of the project life cycle conceptual site model. EPA 542-F-11-011.

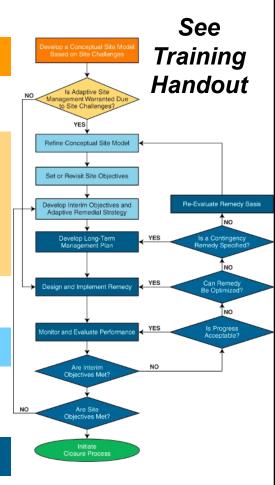
Site Challenges Summary

- Complex sites typically have multiple challenges
- Both technical and non-technical challenges can impede remediation
- ▶ Identifying them can improve the conceptual site model and maximize remedial effectiveness

Today's Road Map

- **►** Introduction
- Site challenges
- ► Remediation Potential Assessment
- Questions and answers
- Adaptive remedy selection
- ► Long-term management
- Preparing you to take action
- Questions and answers

Remediation Potential Assessment Learning Objective


Chapter 2. Site Challenges

Chapter 3. Remediation Potential Assessment

Use the Remediation Potential Assessment to identify whether Adaptive Site Management is warranted due to site challenges

Chapter 4. Adaptive Remedy Selection

Chapter 5. Long-Term Management

Remediation Potential Assessment Process and Outcome

Process

- Screening tool uses
 weight-of-evidence
 approach to assess if site
 is likely to achieve
 remedial objectives in a
 reasonable time frame
- Basis for aligning expectations with actual remediation potential
- Promotes effective and transparent interaction

Outcome

- Site objectives are attainable OR
- Remediation potential is low – consider adaptive site management

Develop a Conceptual Site Model
Based on Site Challenges

Is Adaptive Site
Management Warranted Due
to Site Challenges?

"Can You Get There?"

- ▶ Small, shallow site
- Sandy water bearing unit
- Low concentrations
- Benzene (attenuates fast)
- Very little non-aqueous phase liquid

Source: DanTD / Wikimedia Commons

"Can You Get There?"

- Small, shallow site
- Sandy water bearing unit
- Low concentrations
- BTEX (attenuates fast)
- Very little NAPL

- Large site, deep contamination
- Much of source under buildings
- Sand, silt, fractured clays
- Not much biodegradation
- ► Need > 99.9% reduction

Sources: DanTD / Wikimedia Commons, GSI Environmental

Remediation Potential Assessment Purpose

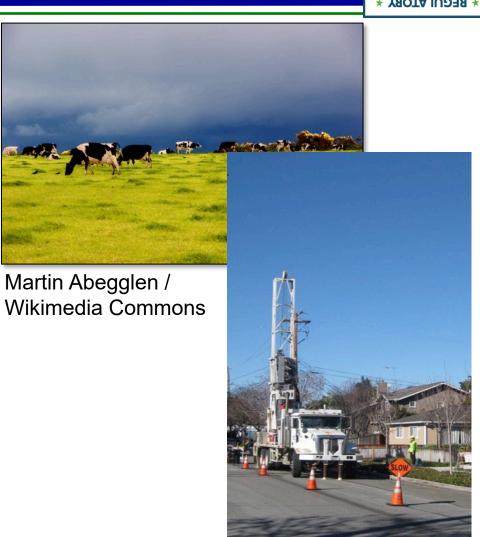
▶ Intended to inform the remedial decision process and determine if adaptive management process is beneficial

- Can allow for greater transparency and facilitate future reviews of the process
- ► Flexible process that can be modified as appropriate for the site

Remediation Potential Assessment (RPA)

DOES:

- Allow flexibility and sitespecific input in an iterative process
- Require detailed supporting data on the nature and extent of contamination
- Consider remediation potential of individual factors in context of other pertinent factors


DOES NOT:

- Provide a means to avoid requirements
- Evaluate whether a site is complex
- Directly consider cost
- Produce a default decision

8 Questions...

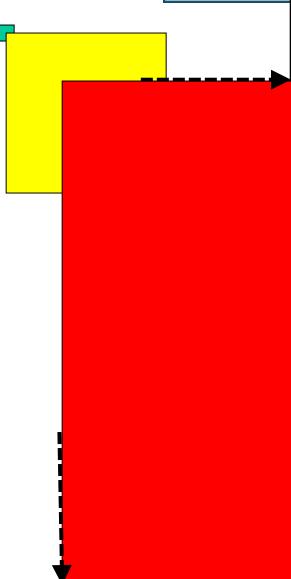
1. How difficult is it to work at the surface of the site?

ITRC RMCS-1 Figure 12, CPEO, 2016b

8 Questions...

1. How difficult is it to work at the surface of the site?

Laurent Deschodt / Wikimedia Commons


2. How difficult is it to drill at the site?

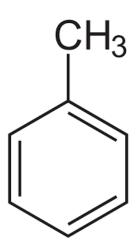
Wilson44691 / Wikimedia Commons

3. What is the scale of the source zone or plume?

3. What is the scale of the source zone or plume?

90%?

4. What contaminant concentration reduction is needed?

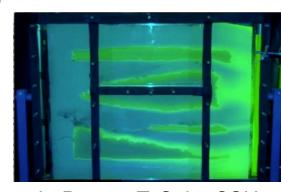

99%?

99.9%?

99.99%?

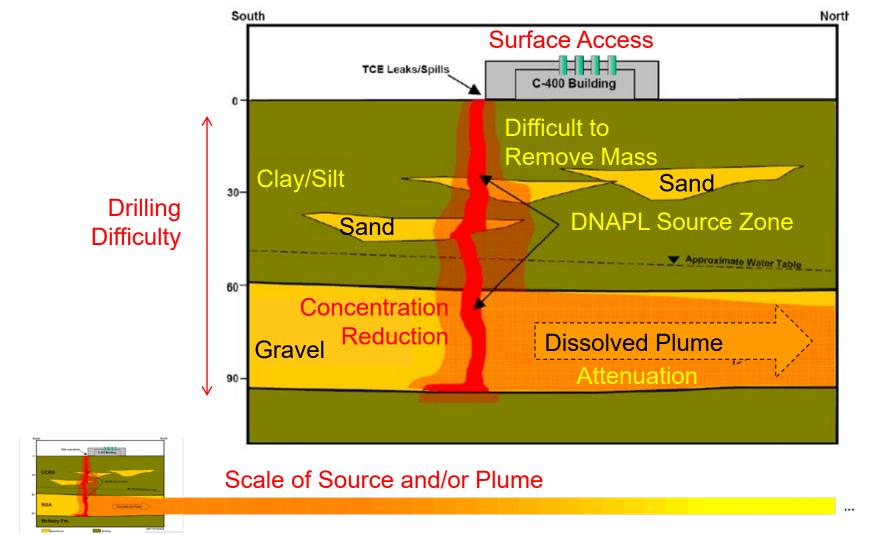
- 3. What is the scale of the source zone or plume?
- 4. What contaminant concentration reduction is needed?
- 5. Do the key site constituents readily attenuate relative to the travel time to receptors?

Sources: Dschanz / Wikimedia Commons; Public Domain



- 3. What is the scale of the source zone or plume?
- 4. What contaminant concentration reduction is needed?

Al Silonov / Wikimedia Commons

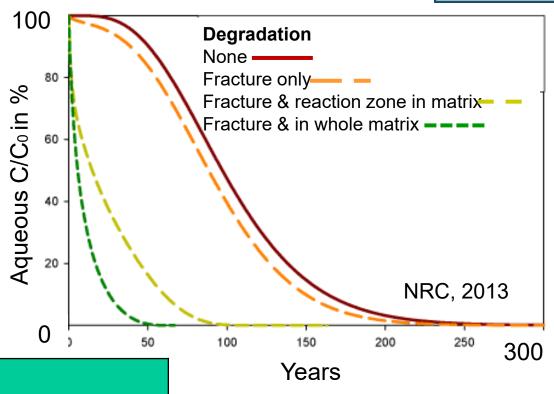

- 5. Do the key site constituents readily attenuate relative to the travel time to receptors?
- 6. Does difficult-to-remove mass exist at the site?

L. Donor., T. Sale, CSU

Case Study: Paducah Gaseous Diffusion Plant, Kentucky

ITRC RMCS-1, Figure 43 (DOE 2010a)

7. What is the predicted performance for available remedial technologies?



ESTCP Project ER-201120

MARCH 2016

8. What is the predicted time frame for achieving interim and site objectives?

Model/Analysis

USEPA REMChlor or REMFuel Model

Natural Attenuation Software

Matrix diffusion

Concentration vs. time
First order rate calculations

Remediation Potential Assessment Matrix of Evaluation Criteria

- Evaluate each criteria as high, moderate or low
- Weight criteria to reflect relative importance
- Assess conclusion

Evaluation	Likelihood of Achieving Remediation Objectives			
Criteria	High	Moderate	Low	
Access	✓			
Drilling feasibility	√			
Scale		√		
Concentration reduction			✓	
Attenuation	√			
Difficult-to- remove mass			✓	
Technology performance	√			
Time frame		√		
Total checked:	4	2	2	

Remediation Potential Assessment Matrix of Evaluation Criteria

- Evaluate each criteria as high, moderate or low
- Weight criteria to reflect relative importance
- Assess conclusion

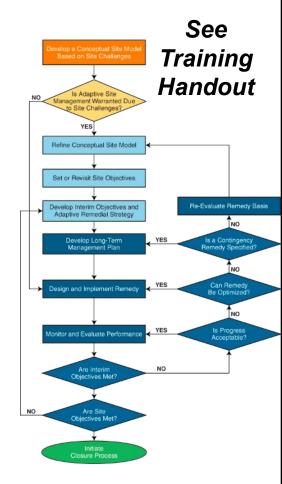
Evaluation	Likelihood of Achieving Remediation Objectives		
Criteria	High	Moderate	Low
Access		√	
Drilling feasibility	√		
Scale		√	
Concentration reduction			✓
Attenuation		√	
Difficult-to- remove mass			✓
Technology performance			✓
Time frame			✓
Total checked:	1	3	4

- ► Has the existing remedy been effectively operated and maintained?
- Are aquifer conditions or contaminant sources adequately characterized? Have they changed?
- ► Are concentrations reductions occurring at the rate anticipated?
- ▶ Does the selected remedy adequately address contaminants and/or hydrogeologic conditions?
- ➤ Can interim and/or site objectives (and contaminantspecific cleanup levels) be met with other technologies within a reasonable time frame?

Remediation Potential Assessment Summary

- Screening tool provides a valuable process; does not produce a default decision
- You answer eight technical questions and use Weight-ofevidence to assess if site is likely to achieve remediation objectives
- Allows flexibility and site-specific input in an iterative process
- ▶ Goal: Determine if...
 - Site objectives are likely attainable OR
 - Remediation potential is low Adaptive Site Management will be important

Q&A Break



Chapter 2. Site Challenges

Chapter 3. Remediation Potential Assessment

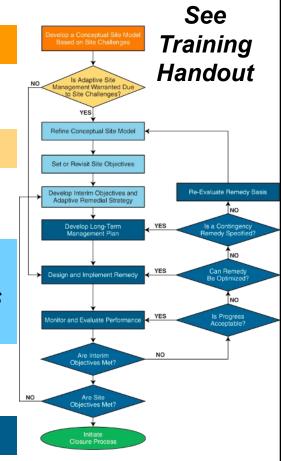
Chapter 4. Adaptive Remedy Selection

Chapter 5. Long-Term Management

Today's Road Map

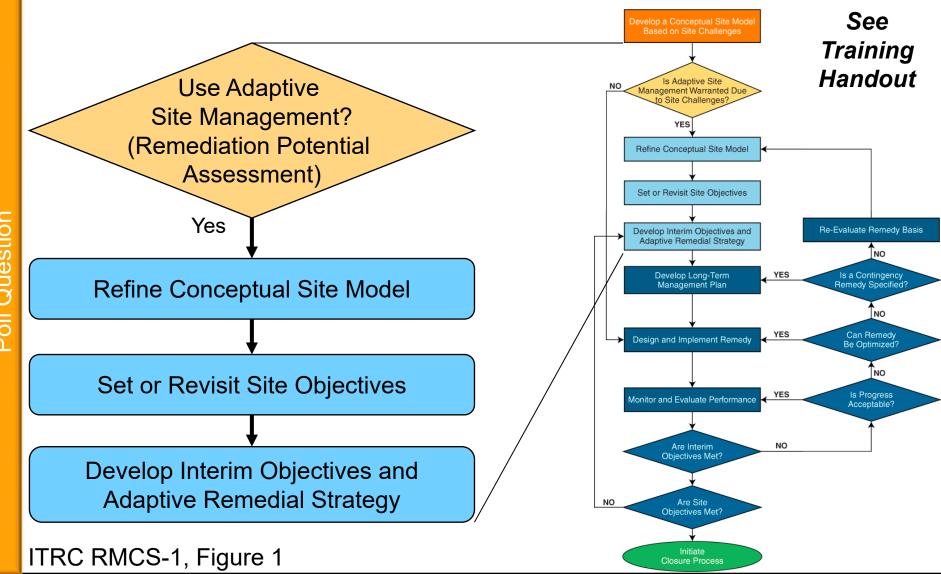
- Site challenges
- Remediation Potential Assessment
- Questions and answers
- ▶ Adaptive remedy selection
- Long-term management
- Preparing you to take action
- Questions and answers

Learning Objective


Chapter 2. Site Challenges

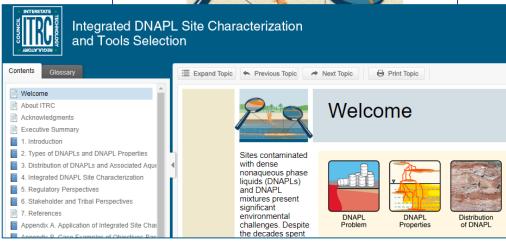
Chapter 3. Remediation Potential Assessment

Chapter 4. Adaptive Remedy Selection


Understand and apply adaptive site management principles

Chapter 5. Long-Term Management

Adaptive Remedy Selection

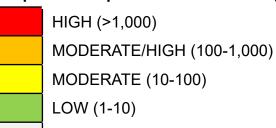


Refine Conceptual Site Model

- Prior to revisiting remedy
 - Are site challenges described?
 - What inhibited remediation progress?
 - What are data gaps?
- Tools for remedy evaluation

ITRC ISC-1 2015

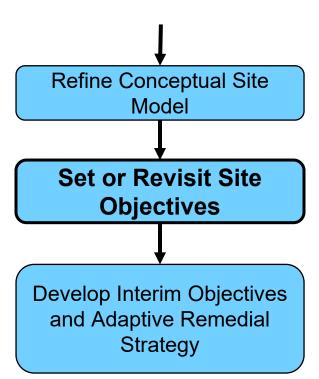
http://www.itrcweb.org/DNAPL-ISC tools-selection/


Conceptual Site Model Australia Case Study

Phase	Soi	ırce	Proxim	al Plume	Distal	Plume
Permeability/ Transmissivity	Low	High	Low	High	Low	High
Soil vapor						
DNAPL			NA	NA	NA	NA
Groundwater						
Sorbed						

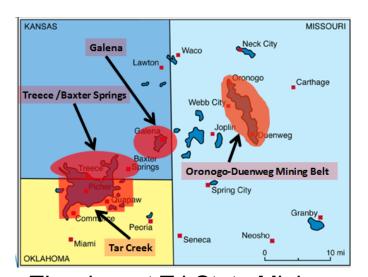
LEGEND

Equivalent aqueous concentration (mg/L)


NOT APPLICABLE (NA)

20-Compartment model summarizing the conceptual site model of contaminant mass at the site. ITRC RMCS-1, Figure 69 and Appendix B

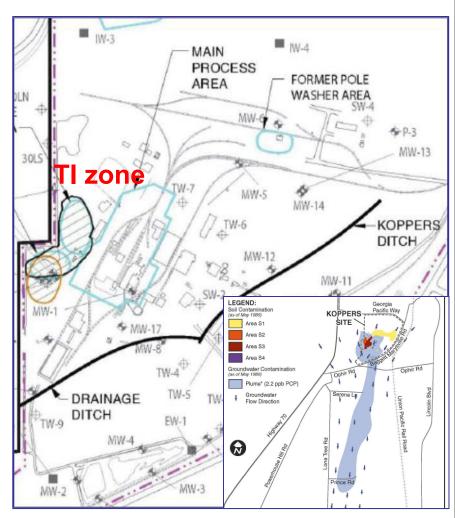
Set or Revisit Site Objectives


- ➤ **Site objectives** are overall remedial expectations, including protecting public health and the environment
- ► **Set** site objectives
 - Consider complexities
 - Consider different geologic or operable units, source area and plume -- "site segments"
- Revisit site objectives
 - If progress is insufficient despite optimization

Site Objectives at Complex CERCLA Sites

- Protect human health and environment
- ▶ Meet Applicable or Relevant and Appropriate Requirements (ARARs) or criteria for ARAR waiver
 - Inconsistent application of state standards
 - Fund balancing
 - Equivalent performance
 - Interim measures
 - Greater risk
 - Technical impracticability (TI)

TI waiver at Tri-State Mining District (Oklahoma, Kansas, Missouri)


CERCLA - Comprehensive Environmental Response, Compensation and Liability Act

ITRC RMCS-1 Chapter 4, 40 CFR 300.430(f)(1)(ii)(C), USEPA 1993, 2012

Case Study: ARAR Waiver at a Wood Treatment Facility, Oroville, California

- ▶ Complexities
 - Recalcitrant creosote and pentachlorophenol DNAPL
 - Drinking water aquifer
- Record of Decision amendment included TI waiver
 - Groundwater goal within 4acre area is containment, not restoration

TI zone at the Koppers Oroville, California wood treatment facility

CERCLA Sites Alternate Concentration Limits

- Alternate concentration limits can be used in groundwater only if
 - Groundwater discharges to surface water
 - No statistically significant increase in concentrations downstream
 - No exposure to off-site contaminated groundwater prior to discharge
- No recent case studies identified

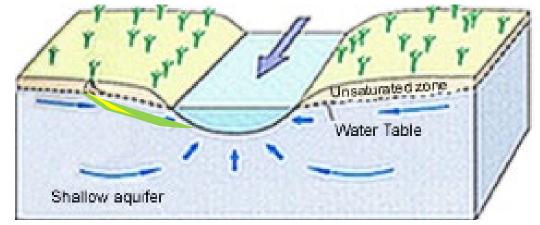
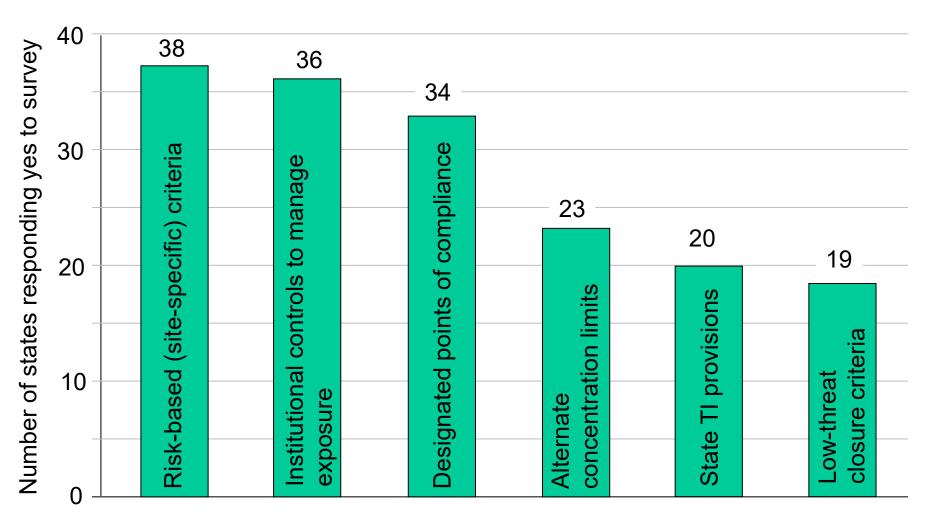


Image from U.S. Geological Survey

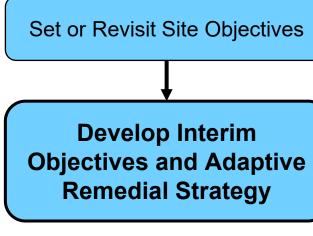
RCRA and Other State Programs ITRC Survey



- ► Team surveyed states about their approaches
 - RCRA, Brownfields, Underground Storage Tank programs
 - Responses from 40 states
- Does your state allow the following to meet site objectives...
 - ...as a primary means?
 - ...after the original selected remedy fails to reach site objectives within the planned remedial time frame?

RCRA – Resource Conservation and Recovery Act (for hazardous waste management)

RCRA and Other State Programs



Develop Interim Objectives and Adaptive Remedial Strategy

- ▶ Interim objectives are intermediary goals that guide progress towards achieving site objectives
- Adaptive remedial strategy is a combination of technologies and approaches to meet interim objectives

Refine Conceptual Site Model

ITRC RMCS-1, Figure 1

Interim Objectives

- ► Should be Specific Measurable Attainable Relevant and Timebound (SMART)
 - Contaminant mass flux or discharge decrease by [x]% within [#] years
 - Target degradation rates met within [#] years
 - Capping to prevent direct exposure
- Guide short-term decisions and actions
 - Optimization
 - Technology transitions
- ▶ Meeting interim objectives → progress

Select Adaptive Remedial Strategy Step 1. Identify Options

- Biological treatment
- Chemical treatment
- Thermal treatment
- Removal
- Enhanced extraction
- Source flux reduction

- Contaminant mass flux reduction
- Pump and treat
- Permeable reactive barriers
- Enhanced attenuation
- Monitored natural attenuation

- Hydraulic containment
- Passive hydraulic barrier
- ▶ Discharge zone treatment
- ► Vapor intrusion mitigation
- Institutional controls
- Alternative water supply

Options	Description and References
In situ biological treatment	Applying an amendment into the aquifer to bioremediate a targeted volume (ITRC 2002, 2008, Parsons 2004, USEPA 2000, DOE 2002)
Source flux reduction	Applying remediation or containment to reduce the flux of contaminants moving from the source zone to the plume (ITRC 2008b, 2010b, Looney et al., 2006)
Institutional controls	Applying administrative restrictions to prevent contaminant exposure or other actions that would negatively impact contamination (USEPA 1997a, 2009b, 2010a, ITRC 2016b)

ITRC RMCS-1 Table 10 for complete listing

Select Adaptive Remedial Strategy Step 2. Compare Remedial Approaches

- ► Follow regulatory process
 - Assess using threshold and balancing criteria for CERCLA, RCRA sites
- Additional considerations due to complexities
 - How does each remedial approach address complexities?

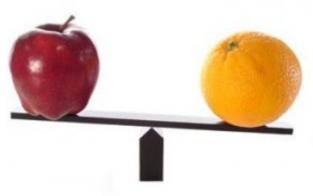
CERCLA Nine Criteria

Threshold Criteria

- 1. Overall protection of human health and the environment
- 2. Compliance with ARARs

Balancing Criteria

- 3. Long-term effectiveness and permanence
- 4. Reduction of toxicity, mobility or volume
- 5. Short-term effectiveness
- 6. Implementability
- 7. Cost


Modifying Criteria

- 8. State acceptance
- 9. Community acceptance

Select Adaptive Remedial Strategy Step 2. Compare Remedial Approaches

- ► Additional considerations
 - Level of confidence in ability to implement remedy
 - Synergy with other technologies/approaches
 - Adaptability over time
 - Information gained to improve future decisions
 - Robustness of design including interim objectives, metrics, and performance monitoring data
 - Other

70 Select Adaptive Remedial Strategy Step 3. Remedy Selection

▶ Prepare a matrix of site objectives and remedies for each area of the site

Site Objectives	Selected Remedy		
	Source	Plume	
Objective #1	Technology 1	Technology 1	
	Technology 2	Technology 3	
Objective #2			
Objective #3			

⁷¹ Case Study: Rocky Mountain Arsenal, Colorado

72 Rocky Mountain Arsenal, Colorado **Remedy Components**

Site	Selected Remedy		
Objectives	On-Site	Off-Site	
Source removal and treatment	Waste and soil treatment, stabilization Excavation Groundwater extraction and treatment	Off-post groundwater intercept and treatment system	
Containment	Boundary treatment systems Slurry walls Stabilization/capping	Boundary treatment systems	
Protection of human health and ecology	Capping Land use restrictions Unexploded ordnance disposal Alternate water supply	National wildlife refuge Deed restrictions Long-term monitoring Five-year reviews Trust for potable water supply and distribution Medical monitoring Biomonitoring Trust for long-term O&M	

Document Remedial Approach

- ► Articulate how components work together
- ► For each component of the remedial approach
 - Describe technology
 - State interim objectives
 - State how the performance will be evaluated (performance metrics)
- ► Follow regulatory program requirements for documentation
- Can facilitate remedy transitions

Engaging Stakeholders and Tribes Stakeholder and Tribal Perspectives

- Stakeholder and Tribal concerns and values
- Gathering and organizing information
- Creating a forum
- ▶ Influencing decisions
- Advisory boards
- Technical assistance

SanjibLemar / Wikimedia Commons

Engaging Stakeholders and Tribes Responsible Party Perspectives

- Seek out community members
- Provide them with tools to participate constructively
- Build trust for effective outreach
- Organize public meetings
- Share technical documents, information
- Work with media

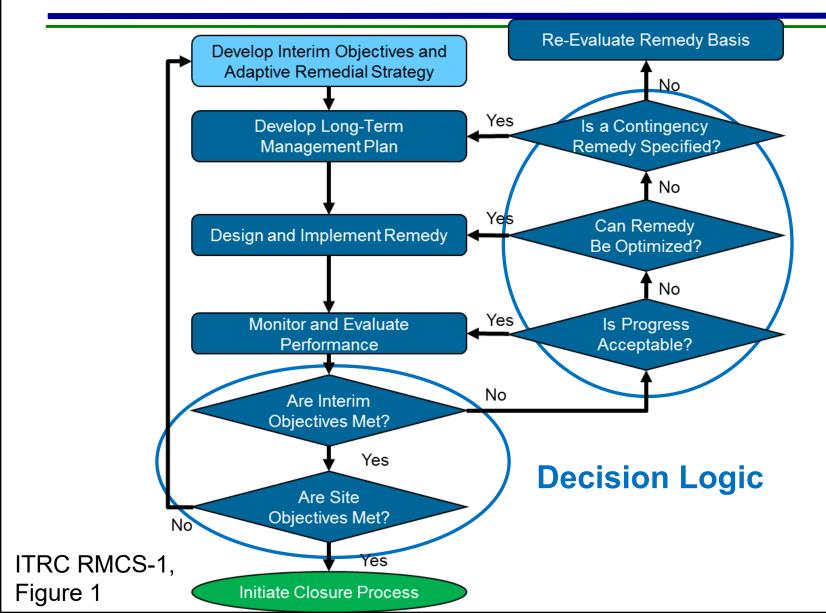
Energy.gov / Wikimedia Commons

Summary Adaptive Site Management Principles

- Refine conceptual site model
- Set or revisit site objectives
 - Survey highlights flexibility of some state programs in setting or revisiting site objectives
- Build adaptive remedial strategy
 - May need multiple technologies, phases for each site area
 - Set interim objectives to guide remedial progress
- ► Repeat process if remedy is not on track

Today's Road Map

- Site challenges
- Remediation Potential Assessment
- Questions and answers
- Adaptive remedy selection
- ► Long-term management
- Preparing you to take action
- Questions and answers

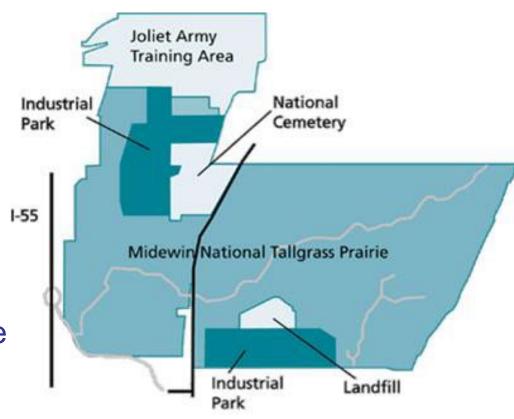

Learning Objective

Adaptive Site Management

Develop Long-Term Management Plan Purpose and Value

- ► Learn via process (living site-specific document)
 - Identify weak links
 - Inform decision makers
 - Engage stakeholders
- Provide a completion strategy (many decades)
- Document remedy expectations and progress
- Expedite remedy re-evaluations and transitions
- ► Make timely remediation management decisions

Develop Long-Term Management Plan Plan Components



- Completion strategy
- Description of the selected remedy
- Expected performance over time
 - Performance model predictions
- ► Timeline and criteria for monitoring and periodic evaluations
- Decision logic for remedy transitions
- Project risks and uncertainty

Develop Long-Term Management Plan Completion Strategy

- Path to achieve site objectives
 - Likely iterative for complex sites
 - Collaborative process
- Consider options to maximize future land use
- ► Consult relevant guidance

Map of proposed future uses for Joliet Army Ammunition Plant, Illinois (ITRC RMCS-1 Figure 36)

Examples: ITRC RPO-3, USEPA 2014. Groundwater remedy completion strategy

Develop Long-Term Management Plan Project Risks and Uncertainty

- Process to identify and respond to key project risk events
 - Identify and assess potential project risks
 - Actions to reduce risk (e.g., filling a data gap)
 - Use contingency planning tools

Technical/Regulatory Guidance

Project Risk Management for Site Remediation

March 2011

ITRC RRM-1, 2011

http://www.itrcweb.org/GuidanceDocuments/RRM-1.pdf

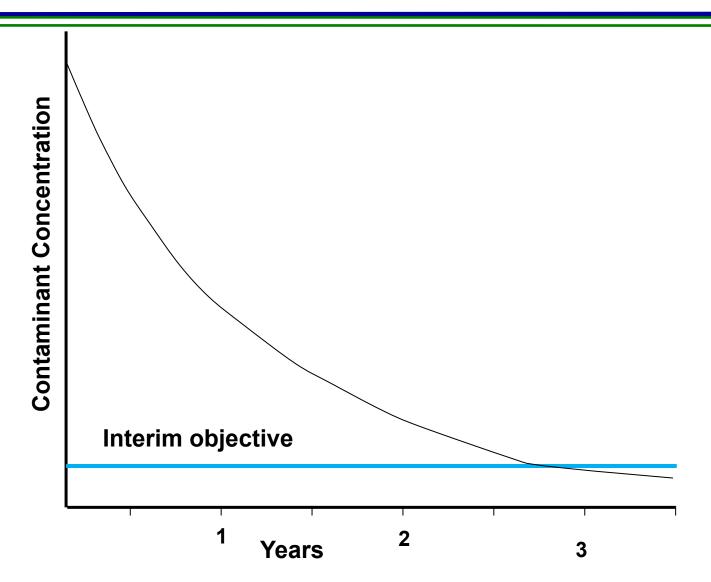
Download risk register template:

https://clu-in.org/conf/itrc/rrm/

ExampleRRMForms.docx

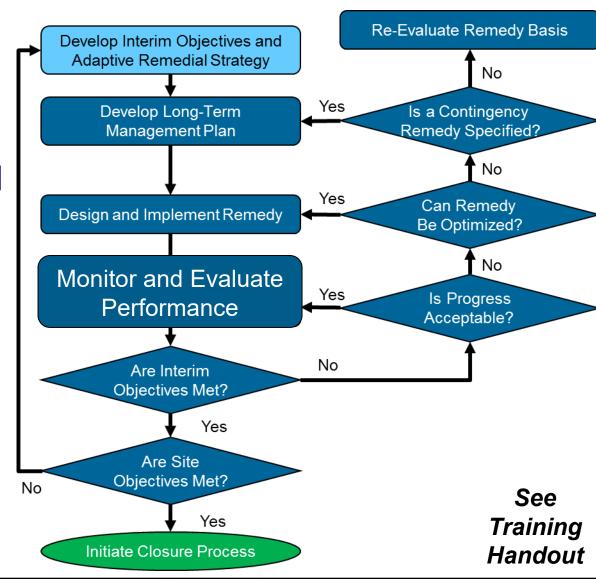
Develop Long-Term Management Plan Describe the Selected Remedy

- Remedy for each site segment (e.g., plume, source area, off-site plume)
- ► Interim objectives, performance metrics
 - May need to set these during long-term management phase
 - Time frame predicted to meet interim objectives
- ▶ Maintenance and monitoring considerations


Develop Long-Term Management Plan Example Description - Selected Remedy

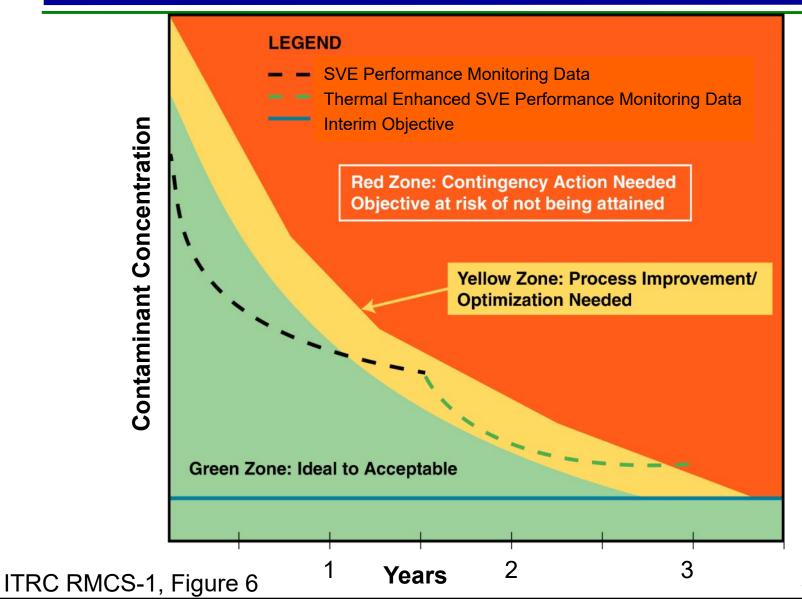
Site Objective	Remedy Component	Interim Objective/ Performance Metric
Remediate contamination	In situ treatment	Reduce contaminant concentrations by 1 order of magnitude
Control migration	In situ treatment	Reduce mass flux from the source area by 80%
	Pump and treat	Demonstrate capture using multiple lines of evidence
Prevent exposure	Engineering controls	Maintain engineering controls and fencing per operation and maintenance plan
	Institutional controls	Deed restriction for land and groundwater use

Develop Long-Term Management Plan Example - Performance Model Prediction



ITRC RMCS-1, Figure 6; ITRC GRO-1, 2016; ITRC GSMC-1, 2013

Monitor and Evaluate Performance



- Schedule for monitoring and periodic evaluations stated in long-term management plan
- Monitoring
 program aligned
 with performance objectives

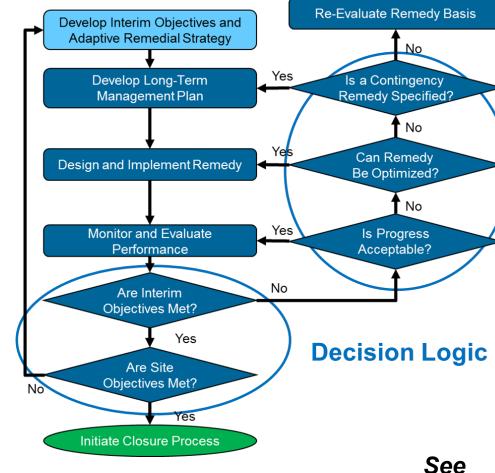
Monitor and Evaluate Performance Compare Actual and Predicted Performance

SVE – Soil vapor extraction

Monitor and Evaluate Performance

Periodic Evaluation Checklist Example

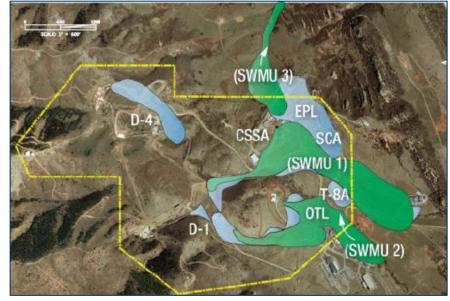
▶ Site


- See Training Handout
- Contaminant properties known and considered?
- Has source mass been evaluated?
- Are plume dynamics well understood, increasing, shrinking or stable?
- Are contaminant concentrations decreasing and on target to achieve objectives?
- ▶ Technology
 - Performance evaluation
 - Technology alternatives cost/benefit analysis

Decision Logic

Potential Outcomes of Periodic Evaluations

- Remedy/remedy phase is complete OR
- Remedy is on trackOR
- Optimization is needed OR
- Revised remedial approach is warranted



Training Handout

Example: Reaching Technology Limits at a Colorado Site

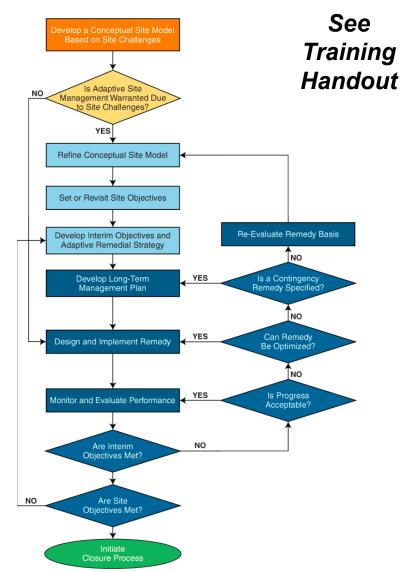
- ► TCE and NDMA in fractured rock 125 feet deep
- Enhanced in situ bioremediation for TCE
 - Reached asymptotic concentrations above action levels
- Pilot studies of other technologies ineffective
- Transitioned to MNA and institutional controls

Trichloroethylene (TCE) in bedrock (blue) and alluvial (green) aquifers after in situ bioremediation (Image from Brock 2012)

Long Term Management Summary

- Value of a plan
- ► Plan components
- Monitor and evaluate performance
- ► Follow decision logic

Today's Road Map

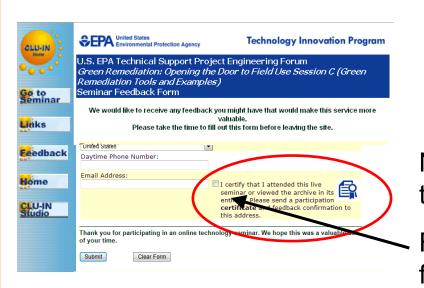


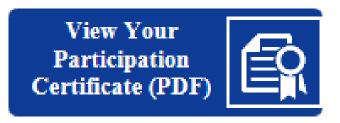
- Site challenges
- Remediation Potential Assessment
- Questions and answers
- ▶ Adaptive remedy selection
- ▶ Long-term management
- Preparing you to take action
- Questions and answers

Our Opportunity to Improve

- Science and technology give us options for challenging sites
- A robust and iterative conceptual site model is key to success
- Consensus-driven interim objectives help us make progress
- Adaptive site management facilitates finding an achievable path to common goal

What Actions Can You Take To Make Progress at Complex Sites?


- ▶ Use and encourage use of the ITRC Guidance
- Know your site technical and non-technical challenges
- Assess the remediation potential at your site(s)
- Apply adaptive site management principles
- Get your stakeholders involved early and develop consensus-based interim objectives
- Schedule periodic evaluations of remedy performance to track remedy progress and make improvements


Thank You

- ▶ 2nd question and answer break
- ▶ Links to additional resources
 - http://www.clu-in.org/conf/itrc/RMCS/resource.cfm
- ► Feedback form *please* complete
 - http://www.clu-in.org/conf/itrc/RMCS/feedback.cfm

Need confirmation of your participation today?

Fill out the feedback form and check box for confirmation email and certificate.