Welcome – Thanks for joining us.
ITRC’s Internet-based Training Program

An Overview of The Triad Approach: A New Paradigm for Environmental Project Management

Technical and Regulatory Guidance for the Triad Approach: A New Paradigm for Environmental Project Management

This training is co-sponsored by the EPA Office of Superfund Remediation and Technology Innovation

Presentation Overview:
This ITRC training course introduces the Triad concept and highlights how this process can increase the effectiveness and quality of environmental investigations. Key terms are defined and the advantages and disadvantages are discussed. The concepts embodied in the three legs of the Triad approach are discussed including systematic project planning, dynamic work strategies, and real-time measurement technologies. The Triad approach can be thought of as an initiative to update the environmental restoration process by providing a better union of scientific and societal factors involved in the resolution of contamination issues. It does this by emphasizing better investigation preparation (systematic project planning), greater flexibility in field work (dynamic work strategies), and advocacy of real-time measurement technologies, including field-generated data. The central concept that joins all of these ideas is the need to understand and manage uncertainties that affect decision making.

The Triad approach relies on technological, scientific, and process advances that offer the potential for improvements in both quality and cost savings. The cost-saving potential is considered to be significant but is only now being documented by case studies. Some case studies are discussed, including the savings of time and money attributed to using the Triad approach. This training explains the relationship of the Triad to previous regulatory guidance, and offers a discussion of issues that may affect stakeholders. An example is given of a state’s efforts to formally adopt the Triad approach into their existing regulatory program. The training concludes by directing trainees to additional resources for further study. The ITRC guidance document, “Technical and Regulatory Guidance for the Triad Approach: A New Paradigm for Environmental Project Management,” developed by the ITRC Sampling, Monitoring and Characterization Team serves as the basis for this training course.

ITRC (Interstate Technology and Regulatory Council) www.itrcweb.org
Training Co-Sponsored by: EPA Office of Superfund Remediation and Technology Innovation (www.clu-in.org)
ITRC Course Moderator: Mary Yelken (myelken@earthlink.net)
The Interstate Technology and Regulatory Council (ITRC) is a state-led coalition of regulators, industry experts, citizen stakeholders, academia and federal partners that work to achieve regulatory acceptance of environmental technologies and innovative approaches. ITRC consists of more than 40 states (and the District of Columbia) that work to break down barriers and reduce compliance costs, making it easier to use new technologies and helping states maximize resources. ITRC brings together a diverse mix of environmental experts and stakeholders from both the public and private sectors to broaden and deepen technical knowledge and advance the regulatory acceptance of environmental technologies.

Together, we’re building the environmental community’s ability to expedite quality decision making while protecting human health and the environment. With our network approaching 7,500 people from all aspects of the environmental community, ITRC is a unique catalyst for dialogue between regulators and the regulated community.

For a state to be a member of ITRC their environmental agency must designate a State Point of Contact. To find out who your State POC is check out the “contacts” section at www.itrcweb.org. Also, click on “membership” to learn how you can become a member of an ITRC Technical Team.
Although the information in this ITRC training is believed to be reliable and accurate, the training and all material set forth within are provided without warranties of any kind, either express or implied, including but not limited to warranties of the accuracy, currency, or completeness of information contained in the training or the suitability of the information contained in the training for any particular purpose. ITRC recommends consulting applicable standards, laws, regulations, suppliers of materials, and material safety data sheets for information concerning safety and health risks and precautions and compliance with then-applicable laws and regulations. ECOS, ERIS, and ITRC shall not be liable for any direct, indirect, incidental, special, consequential, or punitive damages arising out of the use of any information, apparatus, method, or process discussed in ITRC training, including claims for damages arising out of any conflict between this the training and any laws, regulations, and/or ordinances. ECOS, ERIS, and ITRC do not endorse or recommend the use of, nor do they attempt to determine the merits of, any specific technology or technology provider through ITRC training or publication of guidance documents or any other ITRC document.

Copyright 2007 Interstate Technology & Regulatory Council, 444 North Capitol Street, NW, Suite 445, Washington, DC 20001

Here’s the lawyer’s fine print. I’ll let you read it yourself, but what it says briefly is:
• We try to be as accurate and reliable as possible, but we do not warrantee this material.
• How you use it is your responsibility, not ours.
• We recommend you check with the local and state laws and experts.
• Although we discuss various technologies, processes, and vendor’s products, we are not endorsing any of them.
• Finally, if you want to use ITRC information, you should ask our permission.
ITRC – Course Topics Planned for 2005

New in 2005
- Environmental Manag. at Operational Outdoor Small Arms Ranges
- Guidance for Using Direct-Push Wells
- In Situ Chemical Oxidation – Advanced Course
- Mitigation Wetlands
- Permeable Reactive Barriers: Lessons Learn and New Direction
- Radiation Site Cleanup
- Unexploded Ordinance Site Investigation/Site Remediation
- More in development……..

Popular courses from 2004
- Alternative Landfill Covers
- Characterization and Remediation of Soils at Closed Small Arms Firing Ranges
- Constructed Treatment Wetlands
- Geophysical Prove-Outs
- Performance Assessment of DNAPL Remedies
- Radiation Risk Assessment
- Remediation Process Optimization
- Surfactant/Cosolvent Flushing of DNAPLs
- Triad Approach

Training dates/details at: www.itrcweb.org
Training archives at: http://cluin.org/live/archive.cfm

More details and schedules are available from www.itrcweb.org under “Internet-based Training.”
Presentation Overview

- Triad Overview
- Detailed Triad Materials
- Questions & Answers
- Other Regulatory Guidance and Stakeholder and Tribal Issues
- Case Study Highlights
- State Implementation of Triad
- Questions & Answers
- Links to Additional Resources
- Your Feedback

Logistical Reminders

- **Phone line audience**
 - Keep phone on mute
 - *6 to mute, *7 to un-mute to ask question during designated periods
 - Do NOT put call on hold
- **Simulcast audience**
 - Use ? at the top of each slide to submit questions
- **Course time = 2 ¼ hours**

No associated notes.
Meet the ITRC Instructors

Stuart J. Nagourney
New Jersey Department of Environmental Protection
Office of Quality Assurance
Trenton, NJ
609-292-4945
stu.nagourney@dep.state.nj.us

William M. Davis, Ph.D.
Tricorder Environmental, Inc.
Decatur, GA
404-378-3326
wmdavis@tricorders.com

Katherine J. Owens
Paragon Professional Associates
Idaho Falls, ID
208-522-3151
paragon@ida.net

Instructor Biographies:

Stuart J. Nagourney: Stuart Nagourney is Team Leader of ITRCs Sampling, Characterization, and Monitoring Team. He is a Research Scientist with the New Jersey Department of Environment Protection in the Office of Quality Assurance. Mr. Nagourney has been Manager of Analytical Laboratories for the Argus Division of Wilco Corporation and Bureau Chief for Inorganic and Radiological Services for the NJDEP in addition to holding staff position in state and federal government agencies. He holds a B.S. in Chemistry from Brooklyn College and a M.S. in Inorganic and Physical Chemistry from Indiana University, Bloomington. Mr. Nagourney is an adjunct Professor of Chemistry at The College of New Jersey, serves on several national committees reviewing analytical test methods and provides peer review for numerous chemistry journals. Mr. Nagourney’s responsibilities in the area of quality assurance and technology implementation include auditing of certified environmental testing laboratories, review of DEP programs for adherence to quality principles, implementation of ISO certification, development of new reference materials to insure test method validity and development of staff training courses.

William M. Davis, Ph.D.: Dr. Davis received his B.S. degree in Chemistry (1976) from Florida State University. He received his M.S. degree in Analytical Chemistry (1985) from Florida State University and his Ph.D. degree in Water Chemistry (1993) from the Environmental Sciences and Engineering Department at the University of Florida. For his Ph.D. research, Dr. Davis specialized in the application of sophisticated analytical chemistry to investigate the interaction of pollutants with natural matrices. Dr. Davis was formerly a Research Chemist with the US Army COE Ecosystem Processes and Effects Branch, Environmental Laboratory, Waterways Experiment Station (WES), Vicksburg, MS. During his tenure at WES, he participated in basic research on the fate of explosives and hydrophobic contaminants in soils and sediments. Also at WES, Dr. Davis was a principal participant in the Site Characterization and Analysis Penetrometer System Program developing sensors for in situ detection of petroleum contamination, explosives and volatile organic compounds in both soil and groundwater. He is currently Vice President for Technical Services at Tri-Corder Environmental, Inc where he leads the company’s program applying field measurement technologies to site characterization within the context of the Triad approach.

Katherine J. Owens: Ms. Katherine Owens has spent the past 12 years as an advocate for public participation in hazardous waste remediation activities at the Idaho National Engineering and Environmental Laboratory (INEEL). Katherine spent six years at the INEEL as a project manager of Regulatory, Tribal, and Public Involvement for the U. S. Department of Energy (DOE) Buried Waste Integrated Demonstration Program. She continued on in that same capacity for the DOE Mixed Waste Focus Area and was instrumental in the development and implementation of the Tribal and Stakeholder Involvement Plans for both programs. After leaving the INEEL, Katherine spent five years at the Idaho Water Resources Research Institute at the University of Idaho as a project manager overseeing water related research projects directly and indirectly involved with INEEL activities. Most recently Katherine has provided various business/project management and public communication services through her consulting firm Paragon Professional Associates. Katherine has a B.S. degree in Corporate Training from Idaho State University and a M.S. degree in Environmental Studies from the University of Idaho.
What You Will Learn……

► Understanding of the Triad approach
► Importance of the systematic planning element
► Potential for both time and cost savings
► Regulatory issues to consider prior to utilization of the Triad approach
► Potential stakeholder issues and concerns
► An approach that was used to formally implement the Triad approach within a state

No associated notes.
Current United States Site Remediation Status and Policies

- More than 100,000 sites require remediation
- State and federal regulations control process
- Inflexible project plans only use fixed laboratory methods
- Cleanups often require multiple mobilizations
- Final decision can take > 10 years
- Cost of remediation is very high

No associated notes.
Problems with Current Remediation Model

- Interested parties cannot agree on decision points
- Data only acceptable if produced by regulator-approved methods in fixed-based laboratories; this implies “definitive data” with little or no uncertainty. THIS IS NOT TRUE!
- Budget limits number of samples; this limits spatial definition of pollution
- Quality of site decisions are compromised by limited amount of information

The “data” here refers to analytical chemistry data for pollutant/contaminant concentrations in the environmental media encountered with cleanup of hazardous waste sites.

The current data quality model functions as if the following assumptions were true:
• “Data quality” is determined by the documentation and accuracy of the laboratory analytical method procedures
• Analytical accuracy for environmental samples can be ensured by using one-size-fits-all regulator-approved methods
• QC checks using ideal matrices (reagent water, clean sand) are representative of method performance for real-world samples
• Laboratory QA is substitutable for project QA (i.e., if method performance is in control, project decisions are trustworthy)
• After the selection, performance, and interpretation of analytical methods has been “standardized,” analytical chemistry expertise is no longer needed either at the project or lab level since all potential variables that could affect the usefulness of data have already been accounted for
A Better Remediation Model

- Focus on activities to minimize data uncertainty
- Anything that compromises data representativeness compromises data quality
- “Data” representativeness = sampling representativeness + analytical representativeness
- Project-specific planning: matches scale(s) of data generation with scale(s) of decision making

A scientifically sound model for environmental data quality is based on managing all uncertainties that could significantly impact the ability of data to defensibly support project decision making. In contrast to the first generation data quality model, a second generation data quality model will avoid assuming that
• Standard methods guarantee analytical representativeness; and that
• Analytical representativeness guarantees data representativeness.

The following premises are at the foundation of a second generation data quality model:
• “Data quality” is determined according to data’s ability to support correct conclusions and decision making
• Anything that compromises data representativeness compromises data quality
• “Data” representativeness consists of both sampling representativeness and analytical representativeness
 • Sampling representativeness is a multifaceted concept that includes sample support (both initial sampling and subsampling), sampling design, and sample preservation
 • Analytical representativeness is a function of selecting target analytes appropriate to the decision to be made, selecting analytical methods applicable to those target analytes, and interpreting the analytical results correctly recognizing the likelihood and impact of non-specific analytical responses or interferences.
• The purpose of project-specific planning is to match the scale(s) of data generation with the scale(s) of decision making.
• Scientifically sound project decision making requires technical expertise to manage sampling and analytical uncertainties
Solution: Triad

The Triad Approach

Systematic Project Planning Uncertainty Management Dynamic Work Strategies

Real-time Measurement Technologies

No associated notes.
Systematic Project Planning identifies key objectives and decision points through use of a conceptual site model (CSM)

Overall objective of Triad is to minimize uncertainty in both data and decisions.
Triad: Dynamic Work Strategies

- Dynamic Work Strategies give experts working in the field the flexibility to make decisions and change direction based upon information as it is acquired.

Overall objective of Triad is to minimize uncertainty in both data and decisions.
Triad: Real-time Measurements

- **Real-time Measurement Technologies** acquire and use data in near or real-time to support site decisions.

Overall objective of Triad is to minimize uncertainty in both data and decisions.
Resource Allocation: Traditional vs. Triad

- Systematic Planning
- Dynamic Work Strategies
- Real-time Measurements

Traditional Triad

No associated notes.
Conceptual Site Model (CSM)

- The primary product of the Triad approach is an accurate CSM
- Correct decisions depend on an accurate CSM
- The CSM includes
 - Physical site setting
 - Regional environmental setting
 - Land use description
 - Contaminant regime and site investigations
 - Potential risks and potential receptors

No associated notes.
No associated notes.
Where Has Triad Been Successfully Implemented?

► Large DOE sites with extensive range of pollutants including metals, organics, and radiologic waste
► Military installations requiring expedited decision making
► Industrial and research centers with unknown contaminants
► Smaller brownfields sites including dry cleaners and gasoline stations where contaminants are known

No associated notes.
Triad and NORISC

- NORISC = Network Oriented Assessment of In-situ Screening of Contaminated Sites
- Consortium of European Union academia and government agencies to remediate hazardous waste sites
- Technical goals similar to Triad, but emphasize use of Decision Support Software (DSS)
- Early involvement of stakeholders key

No associated notes.
Applicability/Advantages of Triad

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower life cycle costs</td>
<td>Higher up front costs</td>
</tr>
<tr>
<td>Better investigation quality</td>
<td>Change in approach to data quality</td>
</tr>
<tr>
<td>Faster investigation, restoration, and redevelopment</td>
<td>Negative bias towards field generated data</td>
</tr>
<tr>
<td>Greater confidence in data and decisions</td>
<td>Lack of tools to manage decision uncertainty</td>
</tr>
<tr>
<td>Improved communication with stakeholders</td>
<td>Need to train all parties</td>
</tr>
<tr>
<td>More effective cleanups</td>
<td></td>
</tr>
</tbody>
</table>

The Triad Approach Is Broadly Applicable

The Triad approach is a conceptual framework developed by synthesizing various strategic improvements to environmental investigation planning, execution, and evaluation. It is applicable across all types of environmental programs.
Life-cycle Costs Must Be Considered

- Planning is generally more time consuming and costly with Triad projects
- Analytical cost varies; it may be equal to, less than, or greater than a conventional project
- Field measurement technologies are generally less costly on a per unit basis, but more samples are analyzed
- Reduced mobilizations avoid repeated planning, field execution, and analytical cost
- Accurate characterization reduces the uncertainty in site remediation, often leading to significantly reduced volumes requiring remediation

Bottom Line: Significant cost savings occur with Triad projects on a life cycle basis

Triad’s major advantage – Life-cycle Cost Savings
Key Triad Issues and Concerns

► Will leaders of federal and state regulatory agencies endorse and advocate the use of Triad?
► Can state and federal regulators be convinced to change their current practice to accommodate a new concept like Triad?
► Can sufficient numbers of practitioners be trained to make Triad profitable and practical?
► Can site owners and insurers become convinced that decisions from a Triad project are certain and legally defensible?

No associated notes.
Detailed Triad Materials

William (Bill) M. Davis, PhD

No associated notes.
Triad: Systematic Project Planning

- Ask the right questions “e.g., why am I doing this?”
- Collaborate with stakeholders to define project goals (including regulators)
- Form multi-disciplinary decision and core technical teams
- Provide on-site technical team with technical flexibility
- Involve statistical or judgement based sampling design
- Assumes iterative approach
- Overall objective is to minimize uncertainty

Systematic Project Planning Is the Key

The dynamic work strategy and real-time measurement technology components of the Triad approach may not be applicable to some sites. However, systematic project planning to establish clear objectives is essential for all environmental restoration projects.

Project Initiation (provide the answers to who, what, why)

Assemble Project Team
Define Project Objectives
Identify Key Decision Makers
Define Decisions to Be Made
Develop Initial Conceptual Site Model (CSM)
Planning vs. Implementation

(Systematic Project Planning)

Project Outcome (Sec 2.4.1) Project Decisions (Sec 2.4.2) Conceptual Site Model (Sec 2.4.3) Data (Sec 2.4.4)

(Project Implementation/Resolution)

(The thought process flow reverses from the Systematic Planning stage to the Implementation Stage)

Decision Strategies Are Determined During Systematic Project Planning

Decision strategies are determined with the input of stakeholders and the approval of regulators. If too little information is available to know which decision strategy would be best, the factors driving the selection of one strategy over another (e.g., selecting a cleanup strategy rather than a containment option) are determined. These factors can be arrayed into a matrix or decision tree, which is resolved as the needed information is gathered during implementation of the dynamic work strategy.
Static Work Plans (SWPs) vs. Dynamic Work Plans (DWPs)

- SWPs assign sampling locations before mobilization and rarely change them in the field
 - DWPs develop sampling strategies but are prepared to change based on results of field measurements to address sampling uncertainty
- SWPs make few field measurements
 - DWPs are built around field measurement technologies
- SWPs consider the conceptual site model (CSM) during planning, modify it after completion of field work
 - DWPs consider the CSM as constantly changing during the project
- SWPs decisions are made in the office before field work
 - DWPs anticipate and plan for decisions to be made in real time to address uncertainties in the evolving CSM

No associated notes.
Triad: Real-time Measurement Technologies

- Employ field analytical methods (FAM) to delineate site
- FAMs quicker and cheaper than lab-based measurements
- FAMs are a supplement to, not a replacement for, conventional laboratory measurements
- Must understand precision and accuracy of FAMs
- Process information in the field; speed up decision making

Field Program
Sampling and Analysis to Fill Data Gaps
Data Validation, Verification, and Assessment
Managing Uncertainty in Site Characterization Using the Triad Approach

Central Concept = Uncertainty Management

Each Triad project is different and uncertainty is managed by moving these tools in and out until the remaining uncertainty is of an acceptable level for the site-specific decision.

This slide was provided courtesy of Tri-Corders Env., Inc. and Hayworth Eng. Sci., Inc.

The Triad approach explicitly focuses on the identification and management of sources of decision uncertainty that could lead to decision errors. The Triad explicitly manages the largest source of data uncertainty, which is data variability caused by the heterogeneity of chemical contaminants and the impacted environmental matrices.
Field Methods Alone Do Not Make a Triad Project

Just as using a dynamic work strategy alone does not equate to using the Triad approach, neither does the sole use of field methods. Systematic project planning to select the right analytical methods and to develop proper QC protocols is essential to Triad’s goal of managing uncertainty.

Avoid Requirements for Fixed Percentages of Split Samples

Arbitrary percentages of QC samples, such as “10% split sample confirmation” nearly always fail to provide convincing evidence to “confirm” that field data are reliable. Split sample evidence is usually equivocal. Split samples are not a substitute for in-field method QC to demonstrate the method is working properly. Split samples should be selected on the basis of the analytical information these samples provide to enable interpretation of nonspecific analyses, and to provide the low reporting limits and analyte-specific data needed for risk assessment or to demonstrate regulatory closure compliance.
Triad Approach Requires a Tool Box of Site Assessment Tools

No associated notes.
DSITMS Approved by US EPA
SW 846 Method 8265

http://www.epa.gov/epaoswer/hazwaste/test/index.htm
No associated notes.
The Data Quality “Chain”

It is risky to simply assume that generic procedures are representative for project specific decisions!

No associated notes.
Data Is Generated on Samples

Perfect Analytical Chemistry + Non-Representative Sample

“BAD” DATA

Distinguish: Analytical Quality from Data Quality

No associated notes.
Oversimplified Data Quality Model

Methods = Data = Decisions

Screening Methods → Screening Data → Uncertain Decisions

“Definitive” Methods → “Definitive” Data → Certain Decisions

Distinguish:
Analytical Methods from Data from Decisions

No associated notes.
Triad and Site Remediation

Current

- **Expensive lab sample**
- Incomplete site characterization

- **Remediation**
- Remediation incomplete
- Additional characterization and remediation needed

Triad

- **Less expensive analyses**
- Complete site characterization

- **Remediation**
- Remediation complete

- **Site restoration completed to a higher level of quality in one effort**

High Density Sampling vs. Analytical Perfection

Decision errors about risk and remediation are an unavoidable consequence of traditional work strategies that rely on fixed laboratory analyses. Since such analyses are expensive, relatively few samples can be analyzed compared to the number needed to accurately characterize heterogeneous contaminant distributions.

High analytical quality data points are seldom needed to refine the CSM. High analytical quality analyses are useless without a reliable CSM that demonstrates the representativeness of those data points.

The Triad Approach Is Efficient

The Triad approach offers the potential for significant **cost savings**. Cost savings up to 50% have been observed. The cost savings potential increases with site complexity.

Time savings can also be significant. Systematic project planning establishes clear project goals and the associated decision logic so that a dynamic work strategy can reduce the number of field mobilizations.
The increased impetus the Triad places on field analysis should not imply that laboratory analysis is of lesser importance. Data derived from fixed laboratories continue to play an important role in analysis of contaminants not currently amenable to field analysis and to evaluate the effectiveness of analytical data obtained in the field. Samples split between the field and fixed laboratory are required when comparison analysis is needed to help interpret results from nonspecific or biased analytical methods.
The CSM creates the setting within which the analytical contaminant data are evaluated and understood. The CSM consists of chemical, physical, and biological data that are organized into text, graphics, tables, or some other useful representation (or “model”) able to support site decision making. Different decisions may require different representations of the CSM. For example, decisions about groundwater contamination migration or cleanup need a CSM that emphasizes hydrogeology and contaminant concentrations and fate information; whereas decisions about contaminant exposure require a CSM that focuses on identifying all potential receptors and exposure pathways.

Heterogeneity Is Addressed in the CSM

The CSM is the primary tool used to:

- predict the degree of contaminant heterogeneity and the nature of spatial patterning and migration pathways;
- verify whether those predictions were accurate;
- assess whether heterogeneity impacts the performance of statistical sampling plans;
- understand “data representativeness;” and integrate knowledge of heterogeneity and spatial patterning into decisions about exposure pathways, selecting remedies, designing treatment systems, and long-term monitoring strategies

Better Quality Control

Triad systematic planning revolves around the identification and management of things that can cause decision errors. This is the essence of quality control.

Quality control within the context of a dynamic work strategy is much more effective at catching mistakes than traditional work strategies relying on static work plans and fixed laboratory analyses. Results are immediately compared with the current CSM.
How Do You Know When Enough (Data) Is Enough?

Using the Triad approach allows the decision to stop taking data to be made with confidence BEFORE you leave the site.

No associated notes.
No associated notes.
Other Regulatory Guidance and Stakeholder and Tribal Issues

Katherine J. Owens

No associated notes.
Triad concepts are not new. It is the integration of the concepts that is new. Triad should be seen as an extension of other regulatory guidance.

ITRC has been involved with "accelerated" efforts for site characterization since 1995 and has published several technical guidance documents on those technologies. These early efforts served as building blocks to help support today’s Triad approach.

These documents can be accessed via the ITRC Website (www.itrcweb.org).

Refer to Sections 3.1 – 3.7 of the Triad document, Relationships to Existing Guidance.
Triad Is Consistent with any Guidance that Recognizes the Following:

- Decisions are based on scientific, economic, and social considerations
- Data must be representative of target populations
- Data quality must be based on sampling representativeness, not solely on laboratory analytical procedures
- Data collection must be tailored to specific decisions developed during the systematic planning process and design of the Conceptual Site Model
- Appropriate scientific/technical expertise must be involved throughout project planning and implementation

Reference: Section 3.0 in the Triad document, Relationships to Existing Guidance.
Triad and Stakeholders

- All Triad components are designed to involve stakeholder participation
- Stakeholders have a right to be involved in defining project outcomes
- On-going communication between the project team and stakeholders is key

The underlying premise and success of Triad depends on stakeholder participation and trust among the project team members. The most important component of Stakeholder involvement in Triad is during the systematic planning stage when defining project objectives for the development of the conceptual site model takes place. Since Triad is a dynamic process and subject to change based on real-time measurement data, it is important for ongoing communication with the stakeholders. This can be accomplished through periodic meetings, site visits, and status reports.
Who Is a Stakeholder?

Anyone with an interest in the outcome of the project...

- State regulator
- Landowner
- Problem holder
- Private citizen
- Business owner
- Consultant/contractor
- Other government agencies
 (e.g. city, county, other federal agencies)

Refer to Section 7.0 of the Triad document, Stakeholder Concerns.

Historically, the term stakeholder usually is understood to mean the “public.” However, in Triad, a stakeholder is defined as anyone with an interest in the outcome of the project. It is contingent upon the Triad project team to determine other “affected” stakeholders that need to be brought into the process, including state regulators, representatives of tribal, federal, and municipal governments, landlords, business owners, adjacent property owners, etc. This can be accomplished via public meetings, posted announcements, and contacts with state or other environmental oversite agencies.
Potential Stakeholder Concerns

- Affected stakeholders are not limited to adjacent property owners
- Residents of neighboring states (countries) are not protected by geographical boundaries
 - Down wind
 - Down river
 - Aquifer

It is important to note that affected stakeholders are not necessarily limited to adjacent property owners. For instance, those who live downstream of a contaminated site may be affected even if they are not in the immediate vicinity of the site.
Tribal Concerns

- Tribal members may have treaties that grant fishing, hunting, or other access to property outside of their present day reservations.
- Tribal governments need to be involved early and often and participate in all phases of the project decision making.

Tribes may have treaties or other pacts with the federal government that grant them fishing, hunting, or access rights in places that are not necessarily near their present-day reservations. In other words, non-adjacent tribes may have legal rights involving the contaminated site or other property affected by the contamination, even though they do not own the property or live adjacent to the site.
Regulatory Issues: Misconceptions about Triad

- “The Triad approach is equivalent to giving the contractor a blank check”
- “I do not have time to review data every day”
- “If the data produced by the field measurement technologies are not definitive, it is not useful (for decision making, for risk assessment….)”
- “Field measurements are made without (proper) QC”
- “How can we trust the contractors to make the correct decisions?”
- “We have been doing Triad for years already”

This slide lists actual comments taken from regulators on the McGuire Air Force Base project.

Because of the dynamic nature of Triad and the empowerment that is given to the core technical team for making on-site decisions, it is imperative that trust be established within the project team. This approach requires a fundamental change in philosophical and business practices and is quite possibly the most significant element of the Triad process. All parties involved enter into a partnership for defining project goals and objectives during the systematic planning process, the development of the conceptual site model, and selection of field analytical methods.

It is important to remember that we are not asking regulators to close sites using field analytical data alone. In most cases, the high density data is used to select sampling locations for more definitive data. This process provides everyone with the level of data and analytical quality they need to feel comfortable making the tough decisions. Many practitioners who think that they have already been using Triad are missing one of the most critical aspects: managing uncertainty.
Regulator Involvement

- Triad projects differ significantly from conventional projects in how regulators are involved in planning and execution
- Triad projects often employ new and innovative technologies
- Most successful Triad projects have regulator involvement early and often
- Regulators should be true stakeholders in project success
- The members of the project decision team, including the regulators, must trust each other

The major difference between Triad projects and conventional projects is the role of the regulator. In Triad, the regulator is an active participant in the project decision team and is involved in all three phases of the project. As such, the regulator becomes a true stakeholder in the project and is subject to a certain degree of risk in that the regulator is invested in the project’s success or failure.

Trust among team members is essential for the success of Triad projects.
Regulatory Barriers

► Regulatory barriers.....real vs. perceived
► Triad is a process
► NO SPECIFIC REGULATORY BARRIERS have been identified that prohibit Triad
► Institutional barriers are the greatest challenge
► Acceptance of field analytical methods for on-site decision making

There are no set rules or mandates that prohibit Triad. Most regulatory barriers to Triad are institutional. Historically, regulators are guided in their oversight work by agency business practices created to enforce state law and regulations resulting in a very prescriptive approach to project oversight. Triad projects do not fit into the existing regulatory compliance paradigm due to the participatory role of the regulator on the project team. The success of a Triad project requires a true partnership of all team members fostering creative and innovative approaches to planning, work plan development, and application of field analytical methods.
Potential Regulatory Concerns

- Organizational culture and bureaucratic inertia
- Defending the quality of Field Analytical Methods (FAM) data
- Discriminating between analytical quality and data quality
- Legal defensibility of FAM data and Triad
- Certification of FAMs
- Conflicts with state law, policy, and/or guidance
- Lack of guidance for state regulators
- Defining action levels during project planning
- Associating uncertainty with specific decisions

Refer to Section 5.0 of the Triad Document; “Regulatory and Other Barriers”
Overcoming Regulatory Concerns

<table>
<thead>
<tr>
<th>Organizational and Business Practice Inertia</th>
<th>Acceptance of Field Generated Data</th>
<th>Legal Defensibility of FAM Data</th>
<th>Conflicts with State Law and Policy</th>
<th>Lack of Written Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish training for regulators and practitioners</td>
<td>Expand lab accreditation, certification programs to include FAMs</td>
<td>Refer to peer reviewed articles in professional journals</td>
<td>Document problems as they arise during Triad projects</td>
<td>Create guidance on how to practice Triad (New Jersey)</td>
</tr>
<tr>
<td>Educate senior management</td>
<td>Consider qualifying practitioners on selected FAMs</td>
<td>Refer to the Triad central Website Criteria</td>
<td>Utilize experience gained in other states</td>
<td>Compile successful Triad implementation case studies</td>
</tr>
<tr>
<td>Create a cadre of trained staff in Triad projects</td>
<td>Strike a balance between regulation and project specific QC</td>
<td>Technique has been validated and tested</td>
<td>Change state law, policy, and guidance to remove barriers</td>
<td>Associating Uncertainty to Specific Decisions</td>
</tr>
<tr>
<td>Develop a state peer network of experienced Triad users</td>
<td>Remind staff of SW-846 accepted FAMs</td>
<td>Rates of potential error associated with the relevant testing are known</td>
<td>Defining Action Levels During Planning</td>
<td>Using decision support software (NORISC)</td>
</tr>
<tr>
<td>Draw upon experience of previous investigations to demonstrate time and cost savings</td>
<td>Utilize experience gained in other states to predict similar issues</td>
<td>Technology has been peer reviewed and accepted in science community</td>
<td>Publicize case studies where action levels were defined</td>
<td>Seek out professional judgment of experienced FAMs practitioners</td>
</tr>
</tbody>
</table>

No associated notes.
Case Study Highlights

William (Bill) M. Davis, PhD

No associated notes.
Triad Case Studies

- Fernald Uranium Processing Facility, Ohio
 - $34 million saved
- Varsity Cleaners, Florida
 - $300 – 450 thousand saved, time savings
- Wenatchee Tree Fruit Study, Washington
 - $500 thousand saved, time savings
- Assunpink Creek Brownsfields Site, New Jersey
 - Unquantified time and cost savings
- McGuire Air Force Base C-17 Hanger Site, New Jersey
 - $1.3 million saved, 18 – 24 months saved
- Pine Street Barge Canal, Vermont
 - $45 million saved, site reduced from 70 to 38 acres

No associated notes.
McGuire Air Force Base, New Jersey
C-17 Hanger Site Investigation

The problem

► Construction of a new hanger for C-17 aircraft delayed by recently discovered potential CI solvent source
► Very limited groundwater sampling indicated up to 1% of solubility limit PCE
► Same data indicated limited distribution of shallow dissolved phase
► Apparent dechlorination underway at site
► Construction to begin in early June 2003

No associated notes.
Major Topics include:

- Brief History of the Boeing Michigan Aeronautical Research Center (BOMARC) site
- Transportation Options considered
- Transportation Solution worked out between Air Force/Army/Navy
- Key current/future BOMARC project milestones
McGuire Air Force Base, New Jersey
C-17 Hanger Site Investigation

The Approach: Use Triad to locate chlorinated solvent source and plume

- DQO process used to plan project
- Decision team
 - US Air Force
 - NJ DEP
 - US EPA Region 2
- Core technical team
 - US Air Force
 - NJ DEP
 - US EPA Region 2
 - Hayworth Engineering Sciences
 - Tri-Corders Environmental
 - SAIC
- Technology
 - CPT deployed MIP, soil and groundwater sampling tools
 - Geoprobe soil and groundwater sampling
 - Tri-Corders direct sampling ion trap mass spectrometer
 - Groundwater Modeling System for data management

No associated notes.
McGuire Air Force Base, C-17 Hanger Investigation Results

- **14 field days**
- **15 MIP penetration**
- **15 Geophysical CPT penetrations**
- **>20 continuous soil core logged**
- Data collected using DSITMS and EPA Method 8265
- **33 soil sampling locations, 234 discrete soil analyses**
- **45 groundwater sampling locations, 162 discrete groundwater analyses**
- **244 QC analyses**

 Sampled at 108 plan view locations

 Determined source had been removed when oil/water separator was removed

 Completely mapped dissolved phase plume

 Confirmed natural attenuation was occurring

 Provided data for interim remedial action design

 Completed planning, field work, and IRA design within seven weeks

 IRA including well installation and soil removal completed within four months

 IRA decisions made by regulators and site managers within six days of demobilization from the site

 Hanger construction project back on schedule
<table>
<thead>
<tr>
<th>Groundwater Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMER 2227</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conceptual Site Model Before and After</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSM Feb 2003, results of 5 groundwater samples collected 29 Jan 2003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORMER 2227</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,750 ppb PCE*</td>
</tr>
<tr>
<td>2,360 ppb TCE</td>
</tr>
<tr>
<td>840 ppb DCE</td>
</tr>
<tr>
<td>67 ppb VC</td>
</tr>
</tbody>
</table>

| CSM 15 May 2003, based on results of 15 MIP penetrations, 15 Geophysical CPT penetrations, 234 discrete soil analyses, and 162 discrete groundwater analyses |

No associated notes.
State Implementation of Triad

Stuart J. Nagourney

No associated notes.
New Jersey Triad Implementation Efforts

- New Jersey Technical Regulations (N.J.A.C. 7:26E) have always encouraged the use of FAMs for site delineation for “at risk” efforts
- ITRC Triad had New Jersey leadership (Team Leader and ITRC State Point of Contact)
- Triad was strongly endorsed by NJDEP management
- NJDEP staff developed and implemented a Triad implementation plan

No associated notes.
New Jersey Triad Implementation Plan

- Received endorsement by NJDEP management
- Created an interdisciplinary project team
- Identified a subset of NJDEP staff and managers who would be interested in working on Triad projects
- With EPA and ACE, developed training for managers and staff (>300 staff trained)
- Wrote Triad implementation guide for NJDEP

No associated notes.
New Jersey Triad Implementation
FAM Certification

► NJDEP has a laboratory certification program for DW, WW, SHW and air matrices
► 4 categories of FAMs to be included
 • Immunoassay
 • GC
 • GC/MS
 • XRF
► Certification process will involve
 • Review of applicant qualifications
 • Review of applicant SOPs
 • On-site audits
► Goal is to blur distinction between data collected in the field from that obtained in a fixed laboratory

No associated notes.
Triad; The Bottom Line

Significant Cost Savings

Significant Time Savings

No associated notes.
Questions & Answers

No associated notes.
Thank You for Participating

For more information on ITRC training opportunities and to provide feedback visit: www.itrcweb.org

Links to additional resources:
http://www.clu-in.org/conf/itrc/triad/resource.cfm

Your feedback is important – please fill out the form at:
http://www.clu-in.org/conf/itrc/triad

The benefits that ITRC offers to state regulators and technology developers, vendors, and consultants include:
- Helping regulators build their knowledge base and raise their confidence about new environmental technologies
- Helping regulators save time and money when evaluating environmental technologies
- Guiding technology developers in the collection of performance data to satisfy the requirements of multiple states
- Helping technology vendors avoid the time and expense of conducting duplicative and costly demonstrations
- Providing a reliable network among members of the environmental community to focus on innovative environmental technologies

How you can get involved with ITRC:
- Join an ITRC Team – with just 10% of your time you can have a positive impact on the regulatory process and acceptance of innovative technologies and approaches
- Sponsor ITRC’s technical team and other activities
- Be an official state member by appointing a POC (State Point of Contact) to the State Engagement Team
- Use ITRC products and attend training courses
- Submit proposals for new technical teams and projects