AOPs, biological networks, and data analysis

Ed Perkins, Ph.D.,

US Army Senior Scientist (ST) Environmental networks and toxicology US Army Engineer Research and Development Center Vicksburg, MS 39180

- Bridging biological networks and AOPs
- Using Omics data with AOPs

Adverse Outcome Pathways are:

-Pragmatic and simple representations of essential events

-Composed of measurable Events generally representing in vitro or in vivo assays

Rinita

- Linear but can be integrated to form networks

Adverse Outcome Pathways are:

-Pragmatic and simple representations of essential events

-Composed of measurable Events generally representing in vitro or in vivo assays

Thyroid hormone synthesis

alcium signal pathway

- Linear but can be integrated to form networks

Life is complicated

KEGG thyroid signaling pathway

Omics can tell us a lot about what's happening in tissue

But this doesn't fit well into the simple AOP concept

AOPXplorer – Simple and Complex networks

Networks will bridge AOPs and biological pathways using KE communities

Multiple components per Key Event

AOPXplorer – Simple and Complex networks

Networks will bridge AOPs and biological pathways using KE communities

Example: Monitoring of effects of chemicals in rivers on caged fathead minnows using transcriptomics

Maumee river and Detroit river

Sampling of the rivers has indicated a high incidence of tumor in native fish Adult males exposed 4 days in rivers. Gene expression in liver analyzed.

How do we use AOPs to link observed effects to outcome of concern?

Liver gene expression

Use Key event components and subnetworks to relate to AOP

KEGG pathways in Cancer

AhR activation leading to liver cancer network

Liver Cancer AOP

We first developed a detailed AhR cancer network

We fit the subnetworks of genes and pathways to relevant events in the AOP

AOP for AhR activation leading to liver cancer

We imported transcriptomic, gene enrichment, PCR, and inferred values for genes in network

Session: /var/folders/sv/p50_tdkx5c	z80b_6d7xd4cqn7frm1b/T/temp_cytoscape2	296461078676117144.cys	
💐 ╁ 🧉 🖬 🚮 🗖	Import C	Columns From Table	
▼ □ × sylmethionine	Target Table Data		
	Where to Import Table Data: Select a Network Collection	To a Network Collection	0
	Network Collection:	Cancer AOPN 🗘	
DNMT3A	Import Data as:	Node Table Columns	
	Key Column for Network:	shared name ᅌ	
	Case Sensitive Key Values:		
CYCD1 CYCD1 CYCD1 Cyclin-CDK Co Cyclin-CDK Co Table Panel	Preview Click on a column to edit it. GENE_SYMBOL_X (GROSIL > 1. THOC1 FAM44B TK1 ACAA2 KPNA2 GNAS	5 • E Location • Nucleus	Select All Select Non Matching.Attribute UF_Ppr_AF_103867 UF_Ppr_AF_105248 UF_Ppr_AF_116212 CONTIG7055 UF_Ppr_AF_116291 SINGLET_13179 UF_Ppr_AF_108857
-			
			Cancel OK

KE components underlying Liver Cancer AO

The AOP network with gene expression or other data may be useful in a weight of evidence for assessing and communicating potential for Cancer in exposed animals

Table of KE and KE components for AhR leading to cancer

Activation of AHR in the liver	SWANC	CLARKO	TOLEDO	WYAND	GROSIL	TRENT
AHR upstream activation						
CYP1A1				6.20	1.0	
Oxidative Stress						
NFE2L2 upstream regulator	158	2.75	4.88	4.61	1.830	2.7%
NRF2-mediated Oxidative Stress Response		-1	1		-1	-1
DNA damage/alkylation						
Cell Cycle: G2/M DNA Damage Checkpoint Regulation						
DNA Double-Strand Break Repair by						
Homologous Recombination zscore	1.005+0	1.015+0	0 1,008+00	1,005+00		
DNA Double-Strand Break Repair by Non-						
Homologous End Joining	1.005+0			1,000+00		
Activation of DNA repair gene	s ALKB	H genes	s, XRCC	L and 5,	and DN	IA
metr	ylatior	genes				
Apoptosis	SWANC	CLARKO	TOLEDO	WYAND	GROSIL	TRENT
p53 Signaling z-score	-0.47140452	1	0 1.23099444	-1.25	1 1.050550563	
Cdkn1a/p21 expression	0.62296290					0.60133277
Proliferation						
VEGFAB	0 59460300		0.59494233			
Vegf activation				-0.57	7 -1.715	
MYCA expression			0.91181952	3		
MYCB expression	2.27	2.3631	1 3.212	2.286	5 2.317	2.277
cell proliferation of tumor cell lines p value	1.43E-15	2.73E-12	2 3.41E-18	1.69E-17	7 8.30E-25	1.95E-21
cell proliferation of tumor cell lines z score	2.16	1.84	0.464	2.381	0.743	0.596
Tumor						
liver tumor (p-value)	4.66E-16	2.27E-14	4.53E-09	9.75E-14	6.48E-39	2.27E-14
liver tumor (z. score)	0.590	2 085	5 1 410	0 588	2 2 2 7 3	2 085

AOPXplorer + High throughput transcriptomics = AOP-based hazard assessment

Identify hazard threshold or safe exposure limit based on change in pathways known to lead to Adverse Outcome

uncertainty factor. EPA IRIS RfD has1000x uncertainty factor. Bootstrap natural Spline Metaregression (Burgoon et al 2016)

Quantitative approaches for AOPs

Translation of an AOP into a quantitative and computational AOP model

A qAOP captures response-response relationships between Key Events

qAOP model is dependent upon the question being asked

Simple models for Screening level questions Prioritization

Complex models for

Quantifying impacts on populations High Biological fidelity and lower uncertainty

AOPs are conceptual models for qAOPs KE KE KE KR KE Α AOP \mathbf{O} Must incorporate the AOP, but ... KR KE KE KE KE Α qAOP 0 May not model all details of the AOP KE KE KE KE KR Α EC EC EC Or they could have С a more detail EC EC d е

The TRACE levels of documenting qAOPs

Level Step **Description and examples** - Predict an endpoint of regulatory relevance in chemical hazard and Development Problem formation risk assessment - Estimate which combination of MIE/KE is required to trigger an AO Model design and formulation Decide whether TKTD, statistical or correlative models may best (≠ programming) describe the quantitative relations required in the anticipated decision making context. Implementation Implement the model. A combination of different models targeting the need to describe different KERs by different approaches may be considered. Parametrization and Obtain parameters for the different AOP levels from literature, the calibration AOP-KB, or by conducting additional experiments. Thresholds that trigger KEs or differential equations describing relationships -are parametrization. Verification and sensitivity Test whether the quantitative model adequately describe the relation Analysis of MIE, KE and AO and identify parameters that would have the analysis strongest impact on the AO prediction. Validation Validate the model using different chemicals Application Quantification of Compare to experimental data and estimate the deviation, identify uncertainties data gaps Results Decide whether the confidence is sufficient, the problem can be addressed. Repeat Rerun steps to optimize the Revise and repeat the modeling chain if performance deviates from model or adopt the problem the expected results. formulation (increase feasibility)

Transparent and comprehensive **model** evaluation and documentation.

Types of models and needs

	Description of Key Event Relationship	Relevant Models & Analyses	Typical Data Needs	Case Studies and Applications
AOP	Directed: $KE_A \rightarrow K_B$ e.g. all KERs in AOP represent a causal linkage	Network/graph analyses techniques	Graph structure providing the connectivity with KEs	
	Directed and signed relationship: $KE_A \xrightarrow{\pm} KE_B$ e.g. increasing and decreasing, i.e. $\uparrow KE_A \Rightarrow \downarrow KE_B$	[a]		
	Direction and scalar-weighted relationship: $KE_A \stackrel{\pm w_{A,B}}{\rightarrow} KE_B$ e.g. simple weights	[a]	Expert judged weights	Semi-quantitative weight of evidence analysis
AOP	Direction and functional relationship: $KE_A \xrightarrow{f} KE_B$			
	Probabilistic, e.g. probability of KE activation	Bayesian Networks	Expert judged probabilities, Experimental data	predicting MoA, predicting states of KE
	Non-linear, e.g. saturable response	Regression modelling	Experimental data on KEs under different levels of perturbation	
	Time-dependent, e.g. acute vs chronic KE activation	Ordinary differential equation (ODE) Individual based models, Leslie projection matrix	Independent parameter measurement temporal response data	Predicting temporal response on HPG axis {Conolly, 2017 #8177} Dynamic Energy Budget Modelling (case study?) (relevant ABM example)

Making AOP models

Application of qAOP models

Predicting effect of assay measurements of events in an AOP network

BISCT: Bayesian Inference for Substance and Chemical Toxicity

Node Name	Probability Node Active	Probability Node Inactive	
xr	0.9146166942269095	0.08538330577309054	
shp	0.9600049377330028	0.039995062266997235	
xr	0.03820189573315146	0.9617981042668485	
opara	0.9825216509386533	0.01747834906134661	ſ
nsd17b4	0.9966636270441364	0.0033363729558637274	
atty_acid_beta_oxid	1.0	0.0	
rh1	0.062317604948029265	0.9376823950519708	
ntorc2	0.31216955755495784	0.6878304424450421	
akt	0.2912995083943976	0.7087004916056024	
fabp	0.3077300343196365	0.6922699656803635	
nflux	0.0	1.0	
oparg	1.0	0.0	
as	0.06431722805348873	0.9356827719465112	
ntorc1	0.3121695575549579	0.6878304424450421	
apkc	0.9111399684630369	0.08886003153696316	
srebp1	1.0	0.0	
scd1	1.0	0.0	
ipogenesis	0.0	1.0	
steatosis	0.01	0.99	

Software Version 1.0.0 Content Pack 1.0.0

Developed by: Lyle D. Burgoon, Ph.D.

US Army Corps of Engineers, Engineer Research and Development Center

Environmental Laboratory

Bioinformatics and Computational Toxicology Group

Funded by the US Army Environmental Quality and Installations Program

STEATOSIS AOP Bayes Net v1.1 with real data

Data was taken from the Angrish, et al (2017, Mechanistic Toxicity Tests Based on an Adverse Outcome Pathway Network for Steatosis, https://doi.org/10.1093/toxsci/kfx121 (https://doi.org/ 10.1093/toxsci/kfx121)).

We did not reanalyze the data – we took the data directly from the paper.

We aligned the assay data from Angrish, et al to our Steatosis AOP Bayes Nets, and calculated predictions.

Our results concur with those presented by Angrish, et al.:

Chemical Steatosis

22(R)-hydroxycholesterol	No	(99% certain)
amiodarone	No	(99% certain)
cyclosporin A	Yes	(99% certain)
T0901317	Yes	(99% certain)
Troglitazone	No	(99% certain)
Wyeth-14,643	No	(99% certain)

Quantitative Prediction of Reproductive/Population Effects in Fish: Linking Relevant Models Across an AOP

Conolly et al. 2017. Quantitative adverse outcome pathways and their application to predictive toxicology.

Summary

- Biological networks can be integrated into AOPs
 - Useful for hypothesis driven analysis of mixture effects
- Transcriptomics can be useful for examining AOPs with integration of KE components and subnetworks
- Descriptive AOPs can form the basis of quantitative AOP models
- qAOP models vary widely in type and applicationbut can be very simple of complex

Thanks!

USACE ERDC

- Natalia Garcia-Reyero
- Lyle Burgoon

Caged fish studies

EPA – ORD

- Gary Ankley
- Brett Blackwell
 Marc Mills
- Tim Collette
- John Davis
- Keith Houck
- Kathy Jensen
- Mike Kahl

- Carlie LaLone
- David Miller
- Jenna Cavallin
 Jonathan Mosley
 - Shibin Li
 - Quincy Teng
 - Joe Tietge
 - Dan Villeneuve
 - Huajun Zhen

AOP modeling

Lyle Burgoon, Stefan Scholz, Roman Ashauer, Rory Conolly, Brigitte Landesmann, Cameron Mackay, Cheryl Murphy, Nathan Pollesch, James R. Wheeler, and Anze Zupanic

AOPXplorer and networks are available as a Cytoscape app from with in Cytoscape. See Lyle Burgoon (Lyle.D.Burgoon@usace.army.mil)