SEPA

Chlorinated Solvent Bioremediation: Fundamentals and Practical Application for Remedial Project Managers

Presented by:

Christopher Marks, Ph.D. & Carolyn Acheson, Ph.D.

US Environmental Protection Agency

Chlorine

Hydrogen 🦿

Office of Research and Development Vinvicul National Risk Management Research Laboratory

CLU-IN Webinar Nov. 14, 2018 -Dichloroethene

Source: Accelerated Bioremediation of Chlorinated Solvents, Interstate Technology and Regulatory Council and Remediation and Technology Development Forum, 2003

Bioremediation of Chlorinated Solvents

Source: Accelerated Bioremediation of Chlorinated Solvents, Interstate Technology and Regulatory Council and Remediation and Technology 2 Development Forum, 2003

Part I: Introduction to Chlorinated Solvent Properties and Anaerobic Reductive Dechlorination

Terminology

- Anaerobic: Microbial metabolic processes occurring in the absence of oxygen.
- Anaerobic Reductive Dechlorination: The biological removal of a chlorine atom from an organic compound and replacement with a hydrogen atom in a reducing environment.
- **Biodegradation aka biotransformation:** Biologically mediated reactions which convert one chemical to another. For example, PCE is converted to TCE when anaerobic reductive reactions remove a chlorine molecule.
- **Bioremediation:** The engineered approaches using microorganisms to biodegrade contaminants.
- **Biostimulation:** The addition of organic electron donors and nutrients to enhance the rate of reductive dechlorination by the native microflora.
- **Bioaugmentation:** The addition of beneficial microorganisms to enhance the capacity for reductive dichlorination.
- **Dense nonaqueous-phase liquid (DNAPL):** An organic liquid that is more dense than water and is not miscible in water.
- **Monitored Natural Attenuation (MNA):** A remediation approach that involves routine contaminant monitoring and relies on the natural contaminant attenuation processes through physical, chemical, and biological mechanisms without intervention.

Key Properties of Chlorinated Solvents

• Aqueous Solubility: Some chlorinated ethenes and ethanes have higher solubility in water as compared to other common NAPL groundwater contaminants such as BTEX hydrocarbons.

• Density (or Specific Gravity):

Polychlorinated ethenes/ethanes are more dense than water, will sink within groundwater systems.

- **Miscibility:** <u>Immiscible</u> (do not mix) with water and form distinct liquid-liquid phases (NAPL).
- **Viscosity:** Low viscosity (readily flow), even lower than water. These compounds will rapidly infiltrate soil profiles.
- **Volatility:** Highly volatile compounds that will readily partition to the gas phase and form vapor plumes in the vadose zone.

€PA

Sequential Microbial Reductive Dechlorination Pathway

<u>Chloroethenes - Alternative DCE isomers may be produced through abiotic reactions</u>

Part II: Microbial Players and Processes Responsible for Anaerobic Reductive Dehalogenation

€PA

What are Microorganisms?

- Microbes are tiny (<0.2 750 μ m) single-celled organisms that are ubiquitous in any and all habitats.
- Groundwater may typically contain $10^3 10^6$ cells/mL.
- Obtain required sources of carbon, nitrogen, phosphorous, nutrients, etc. from their habitat.
- They make their energy through coupled oxidationreduction reactions of both organic and inorganic compounds and drive the majority of planetary elemental cycles (e.g. C, N, P, S, etc.).
- Usually live in complex diverse communities.
- Have extremely diverse metabolic capacities with species acting as generalists (lots of potential substrates) and specialists (single or select few metabolic processes)
- Microbial communities are responsive to environmental changes such as contamination.

Image by Lewis Lab (Northeastern University) from https://soilsmatter.wordpress.com/2014/09/02/the-living-soil/

- Many different microbial species are capable of partial reductive dechlorination.
- Only species of *Dehalococcoides* have been shown to dechlorinate VC to ethene.
- Environmental investigations have revealed that complete reductive dechlorination of PCE and TCE is only observed in groundwaters with detectable Dehalococcoides populations

€PA

Dehalococcoides mccartyi (Dhc): the Model Dehalogenating Microorganism

- Obligate organohalide-respiring organism. Makes all of it's energy from reductive dehalogenation.
- Requires strictly anoxic and reducing-conditions in the environment
- Dehalogenation activity at temperatures 15 30°C and pH 6.5 –
 8.0.
- Requires acetate, hydrogen (electron donor), and vitamin B12 production from other microorganisms in the environment
- Capable of dehalogenating a wide range of chlorinated/brominated contaminants: alkanes, alkenes, and aromatic compounds.
- Different strains have different reductive dechlorination capacities:
 - Some strains can degrade VC to ethene, while others produce cDCE or VC as toxic end products
 - Differences are based upon the different reductive dehalogenase genes they possess.

Source: Löffler et al. (2013) IJSEM 63, 625-635

The Subsurface Anaerobic Food Web

Part III: Chlorinated Solvent Behavior in the Terrestrial Subsurface

DNAPL Plume Life Cycle: Early Stage

- Initial migration is predominantly downward into the subsurface.
- Heterogeneity of the subsurface profile greatly influences distribution.
- Ganglia (DNAPL disconnected from the main body) may form in pore spaces and flow paths in both saturated and vadose zones.
- Pools of DNAPL may form on low-permeability zones if sufficient contaminant is present.

DNAPL Plume Life Cycle: Mature Stage

- Horizontal plume development
 - Liquid (DNAPL) flow driven by gravity
 - Dissolved-phase driven by groundwater flow
 - Vapor plume develops in vadose zone from volatilization of DNAPL plume
- Sorption into lowpermeability zones occurs

Back Diffusion from Clay

- DNAPL pools are initially the predominant source of dissolved-phase contaminants
- Sorption into the underlying low-permeability clay layer occurs while the DNAPL pool is present.
- Once the DNAPL pool is gone (removal or dissolution), the chlorinated solvents stored within the low-permeability zone now diffuse back into the higher-permeability saturated zone.
- The clay layer now becomes a significant source of dissolved phase plume contaminants.

Image source: Sale, T.C. and C. Newell. (2011) ESTCP Project ER-05 30.

Consequences of Fractured Bedrock

- High density and low viscosity drive DNAPL downward within bedrock.
- Fractures act as preferential flow paths:
 - Early movement is mostly downward.
 - Groundwater flow drives dissolvedphase plume development along fractures with time
- Sorption into rock matrices occurs around fractures with time
- Fracture network complexity makes DNAPL location and quantification challenging

Part IV: Strategies for the Bioremediation of Chlorinated Solvents via Anaerobic Reductive Dechlorination

Passive Treatment: Monitored Natural Attenuation (MNA)

- Natural attenuation relies on physical, chemical, and biological contaminant reduction mechanisms (e.g. biodegradation, volatilization, dilution, etc.) native to the site.
- Continued thorough **monitoring** of contaminant and transformation product concentrations is essential throughout the remediation project.
- MNA may be used as the sole remediation strategy, but is commonly applied in conjunction with or following active treatment measures.

- Lines of evidence to support the use of MNA:
 - Presence of transformation and terminal end products (e.g. ethene without accumulation of VC)
 - Presence of the required microorganisms (Dehalococcoides with bvcA and/or vcrA genes)
 - Sufficient site characteristics to support the process (reducing conditions, anoxia, circumneutral pH, sufficient electron donor, etc.)
 - Degradation rates (bench or field studies) sufficient to achieve remediation objectives within reasonable timeframe and low exposure risk.

€ FP

Active Treatment: Biostimulation

- **Biostimulation:** The addition of organic electron donors and nutrients to enhance the rate of reductive dichlorination by the native microflora.
- The essential stimulant for chlorinated solvents is readily fermentable organic materials to serve as electron donors.

Soluble Substrates (e.g. lactate or molasses):

- Rapidly consumed by subsurface microorganisms
- Can be applied as a water solution
- Injected continuously or with high frequency

Slow-release Substrates (e.g. ethyl lactate or vegetable oils):

- Consumed over prolonged times by subsurface microbial communities
- Applied as water emulsions (more uniform distribution) or as straight oils (less uniform distribution)
- Injected only once or possibly every few years
- Growth-supporting nutrients (nitrogen, phosphorus, etc.) may also be added to further support microbial activities.
- Can also be used to drive groundwater to anoxic reducingconditions.

€PA

Active Treatment: Bioaugmentation

• **Bioaugmentation:** The addition of beneficial organisms to promote contaminant biodegradation.

• Bioaugmentation cultures for ARD are mixed communities containing:

- Dehalococcoides with genes for complete dehalogenation
- Microbes capable of fermenting complex and simple organics to supply acetate, hydrogen, vitamin B12.
- Cultures must be handled and applied in the field to maintain cell viability (i.e. reducing-conditions).

• Bioaugmentation can only be effective if the groundwater chemistry is conducive to the growth/activity of the supplied organisms. Biostimulation is used to ensure the groundwater conditions are appropriate and then bioaugmentation is applied.

• Bioaugmentation is an effective strategy to deal with accumulated cDCE or VC within chlorinated solvent plumes. It may also be used to increase the rate of anaerobic reductive dechlorination.

https://toxics.usgs.gov/highlights/bioaugmentation.html

Biologically-based Permeable Reactive Barriers (PRBs)

- Engineered porous subsurface structures composed of reactive substrates to treat groundwater contaminants as they flow through the unit.
- They rely on passive hydraulic processes to route the contaminant plume through the wall for remediation.
- PRB solid substrates can be mulch, compost, chitin, etc.
- PRBs are installed by trenching/excavation and are generally only used at sites with shallow contamination.
- Can be applied in different ways:
 - Source zone-treatment by placing perpendicular to groundwater flow-path to intercept contaminant plume.
 - Upstream of contaminant plume to remove alternative electron acceptors to promote better source zone treatment conditions.
- Key considerations are placement location, substrate material reaction rates, and retention times to ensure adequate contaminant biodegradation within the PRB.

Image source: US EPA from http://hazmatmag.com/2017/10/in-situremediation-of-tetrachloroethylene-and-itsintermediates-in-groundwater

Conceptual Site Models are Essential

• **Conceptual Site Models (CSMs)** show the potential source area and current plume characteristics (e.g. size & concentrations)

• CSMs provide essential information for treatment strategy decision making, so developing a high quality CSM must be the first step in building a remedial action plan at every site.

- CSMs reflect the content they are based upon:
 - More high quality data = better CSM
 - Low quality and/or low data coverage = poor CSM
 - "Garbage In means Garbage Out"
- CSMs should be "living documents" that are updated as new site data becomes available.
- Key elements of a high-quality CSM:

SEPA

- Geology and hydrogeology
- Contaminant types, distribution, fate, and transport
- Proposed release zone and mechanism
- Potential exposure mechanisms
- Groundwater physicochemical conditions

Image source: https://www.esaa.org/wp-content/uploads/2015/06/05-Paper09.pdf

Recommended Monitoring

Baseline and Each Groundwater Sampling:

- Chlorinated solvents and transformation products (PCE, TCE, DCE, VC)
- Dissolved gases
 - methane, ethane, and ethene
 - Oxygen (DO)
- Organic carbon: usually as total (TOC) and/or dissolved organic carbon (DOC)
- Alternative electron acceptors: nitrate, iron, manganese, sulfate
- Groundwater physicochemistry:
 - Oxidation-reduction potential (ORP),
 - pH, temperature, conductivity
 - Alkalinity and chloride

Molecular Monitoring (qPCR):

- Dehalococcoides 16S rRNA gene (Dhc)
- Reductive dehalogenase genes: tceA, bvcA, vcrA
- Baseline to determine if augmentation is needed
- Routinely to monitor introduced organisms if bioaugmentation used.

Others that may be helpful:

- Major cations: baseline recommended and as needed
- Sulfide: routinely if high sulfate concentrations (>20 mg/L) are present

Part V: Evaluating Treatment Performance

Evaluating if anaerobic reductive dechlorination is working at a site

Multiple lines of evidence :

- Is there a reducing environment?
 - Geochemical data
 - Groundwater VOC data
- Is reductive dechlorination occurring?
 - Groundwater VOC data moles rather than mass
 - Evaluate dilution vs treatment
 - Mole fractions
 - Tracers
- Is there evidence of complete mineralization?
 - Groundwater VOC data
 - Bench or pilot scale data
 - Microbiological data

All data is not required but may be helpful

In general, more data = stronger conceptual site model

Practical Considerations

Is the data reliable?

- Were appropriate sampling methods used?
- Were appropriate measurement methods used?
- What are the calibration ranges for probes?
- When were probes calibrated or checked?

SEPA

Reducing Environment Needed

Conditions must be and stay anaerobic

Examine the groundwater data

- Depletion of electron acceptors (NO_3^-, SO_4^{-2})
- No dissolved oxygen < Img/L¹
- Field ORP < -100 mV¹
- Depletion of electron donors (ED) often reported as TOC
- Observation of anaerobic products such as methane or ethane

Anaerobic microbes use electron acceptors in preferential order: nitrate, manganese, ferric iron, sulfate, and carbon dioxide (Source: Parsons 2004).

Other measurements must be supportive of ARD such as 5 < pH < 9¹

¹U.S. EPA. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128.

Reducing Environment ? Example Data I

elapsed time	тос	Sulfate as Sulfur	Methane	Ethene	Ethane	рН	DO	ORP
(days)	(mg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)		(mg/L)	(mV)
0	328	100	7270	1050	42.5	7.08	0.07	-172
25	254					6.31	3.19	-221
31	236	400	7730	935	36.6	6.6	0.77	-116
63	324	200	9120	2210	69.8	6.96	0.27	-174
95	293	200	10400	1720	60.4	7.35	0.2	-174
129	144	100	9910	1110	36.9	7.21	2.75	-139

Electron donor added throughout pilot

- ORP < 100 mV
- DO mostly < I mg/L
- pH neutral
- TOC and sulfate decreasing
- Methane, ethene, and ethane increasing

Conclusion

- Evidence of reducing environment suitable for ARD based on ORP, pH, methane, and most sulfate data
- DO probe may not be reliable

Reducing Environment ? Example Data 2

elapsed time	тос	Sulfate as Sulfur	Methane	Ethene	Ethane	рН	DO	ORP
(days)	(mg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)		(mg/L)	(mV)
-490	22		3880	27.1	2	6.32	0.17	-190.2
-397						6.37	0.96	-41.9
-315	23.6	1000	5350	954	76.7	6.14	0.73	-137
-49	28.1		3110	56.6	6.8	6.57	0.06	-87.1
-14	19.5	1560	4850	143	13.7	6.68	1.31	-139.7
28	10.5	1960	3000	113	4.8	6.15	5.09	-129
57	11.9	1900	2600	282	7.3	6.48	1.75	-326.9
83	11.7	1810	2770	45	2.5	7.13	0.32	-146.2
111	10.9	1840	3890	57.7	5.8	6.24	0.1	-226.6

After day 0 (shaded), electron donor added continuously and ground water recirculation system started – data as reported

- ORP < -100 mV
- DO increase, not correlated to ORP
- pH neutral
- TOC low and sulfate increasing
- Methane, ethene, and ethane decreasing

Conclusion

- Conditions marginal for ARD
- GW recirculation may be changing concentrations
- DO probe may not be reliable
- More ED may be needed

Is Reductive Dechlorination Occurring?

Lines of Evidence

SEPA

- Mass Balance based on chemical data
 - Sequential conversion of solvents to ethene or ethane
 - Generation of chloride
 - Not useful for marine influenced sites
 - > 2x background ¹
- Dilution vs Treatment
 - Use tracers
 - Proportions of solvents changing with time

¹U.S. EPA. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128.

Use a molar basis

\$EPA	Mola	ar Basis		
CI CI CI CI CI CI CI CI CI CI CI CI CI C	HCI CI CI CI TCE	HCI H C = C CI	$ \begin{array}{c} HCI \\ H \\ H \\ H \\ C = C \\ CI \\ CI \\ VC \end{array} $	$\begin{array}{c} HCI \\ H \\ H \\ H \\ H \\ \end{array} \begin{array}{c} H \\ H \\ H \\ H \\ H \end{array} \begin{array}{c} H \\ H \\ H \\ H \\ H \end{array} $
Molecular _{165.8} Weight (g/mole)	131.4	96.95	62.50	28.05
Mass basis 165.8 (mg/L)	131.4	96.95	62.50	28.05
Mole Basis 1 (mmole/L)	1	1	1	1

*⇒***EPA**

Data Interpretation Tools I

Chemical	Mass Conc (mg/L)	Molecular Weight (g/mole)	Mole Conc (mmoles/L or mM)
PCE	0	165.8	0
TCE	40	131.4	0.3
cDCE	0.54	96.95	0.005
VC	0	62.50	0
Ethene	0	28.05	0
Total			0.305

Mole based data – Concentration expressed in moles/L

Molar Conc TCE = Mass Conc of TCE/ molecular weight of TCE

Molar sum of chlorinated solvents - Units moles/L

• Sum of all molar concentrations in the degradation pathway

Total Conc = Mol Conc_{PCE} + Mol Conc_{TCE} + Mol Conc_{cDCE} + Mol Conc_{VC} + Mol Conc_{Ethene}

Data Interpretation Tools 2

Chemical	Mass Conc (mg/L)	MW (g/mole)	Mole Conc (mM)	Mole Fraction
PCE	0	165.8	0	0
TCE	40	131.4	0.3	0.98
cDCE	0.54	96.95	0.005	0.02
VC	0	62.50	0	0
Ethene	0	28.05	0	0
Total			0.305	

Mole fractions – No units

- Ratio of molar concentration of a solvent to total conc
- Useful in evaluating dilution vs treatment

 $MFTCE = \frac{Mol Conc_{TCE}}{Total Conc}$

Data Interpretation Tools 3

Chemical	Mass Conc (mg/L)	MW (g/mole)	Mole Conc (mM)	Mole Fraction	Chlorines/ molecule	Calc Cl number
PCE	0	165.8	0	0	4	4*0
TCE	40	131.4	0.3	0.98	3	3*0.3
cDCE	0.54	96.95	0.005	0.02	2	2*0.005
VC	0	62.50	0	0	1	1*0
Ethene	0	28.05	0	0	0	
Total			0.305			2.98

Chlorine number – no units

(4* Mol Conc_{PCE} + 3* Mol Conc_{TCE} + 2 * Mol Conc_{DCE} + I* Mol Conc_{VC})

CI Number =

- Useful in evaluating the extent of dechlorination
- Average number of chlorine per solvent molecule

total conc

- PCE dominated system, CI num. = 4
- DCE dominated system, CI num. = 2
- Complete dechlorination, Cl num. = 0

Example – Mass Basis

Example Data

SEPA

- Shows sequential conversion of solvents
- Difficult to determine if molar conversion is occurring

Mass

(mg)

 Next slide – same data on molar basis

Example – Mole Basis

Example Data

SEPA

- Shows sequential conversion of solvents
- Approximately equimolar amounts of solvents
- By 200 days, only ethene – complete conversion
- Easier to see trends

Data from SiREM, RTDF/SABRE study, 2005

SEPA

Mole Basis with Chlorine Number

- Cl number shows dechlorination progress
 - starting around 3 (TCE)
 - moving through 2 (cDCE)
 - ending up at 0 (Ethene)
- This ED type and amount was sufficient for full dechlorination
- This microbial community is capable of full dechlorination

Example Incomplete Treatment

Both show decrease in TCE and increase in cDCE

Mole Basis shows one to one conversion

₿EPA

Data from SiREM, RTDF/SABRE study, 2005

Incomplete Treatment with Chlorine Number

- Cl number shows the limited process of dechlorination
 - starting around 3 (TCE)
 - staying at 2 (cDCE)
- Progress may be limited by
 - type of ED
 - quantity of ED
 - microbial community
- Because the 1st microcosm showed complete dechlorination, problem
 - is probably the type or amount of ED
 - but different ED can cultivate a different microbial community

Example from Groundwater Well – Mass and Mole bases

- At day 0, added ED and changed the GW flow pattern potential for treatment and dilution
- Both graphs show decrease in TCE and changes in other species hard to distinguish treatment from dilution

€ FP

Example from Groundwater Well – Mole Fractions and Chlorine Number

 After 0, decrease in TCE relative to other species – probably not just dilution

EPA

- More gradual decrease in cDCE and VC with increase in ethene – indicating treatment occurring
- CI number draws all the data together – some conversion but add'l treatment needed

- After day 0, ED donor added continuously and GW flow pattern changed
- Mass based graph similar upward trend after day 0 for many species
- Mole based graph also show increasing amounts of solvents

- Mole Basis shows Cl number step change = not enough treatment/dilution
- Mole fraction
 - different shaped curves for cDCE,VC, and Ethene
 - High variability need more data

Good Data or Bad data?

- Will show data tables or graphs
- Via chat suggest interpretation

Reducing conditions?

Table shows data from inside (shaded) and outside a test cell

ORP

SEPA

- DO
- Sulfate/Sulfide
- Anaerobic gases

well	sulfate	sulfide	methane	ethene	рН	DO	ORP
location	mg/L	mg/L	mg/L	mg/L		mg/L	mV
inside	-	-	-	-	6.56	1.7	292
	-	-	-	-	6.75	3.4	319
	170	< 1	0.69	-	6.46	0.45	85
	146	< 1	2.8	-	6.38	0.65	-61
	42	< 1	3.6	0.09	6.85	1.1	-116
outside	-	-	-	-	6.75	3.4	319
	-	-	-	-	6.84	2.4	126
	28	< 1	0.007	-	6.83	1.6	178
	24	< 1	0.009	-	6.74	1.6	332
	38	< 1	0.85	0.02	7.23	2.3	245
	well location inside outside	well sulfate location mg/L inside - - - - 170 146 42 42 - - outside - 28 28 24 38	wellsulfatesulfidelocationmg/Lmg/Linsideinside170<1	well locationsulfatesulfidemethane mg/Linsideinside $ 170$ <1	well locationsulfatesulfidemethaneethene mg/L mg/L mg/L mg/L inside -1 -1 -1 -1 170 <1 0.69 -1 146 <1 2.8 -1 42 <1 3.6 0.09 outside $ 28$ <1 0.007 $ 24$ <1 0.009 $ 38$ <1 0.85 0.02	well locationsulfatesulfidemethaneethene pH inside-mg/Lmg/Lmg/Lmg/Linside6.566.75170<1	well locationsulfatesulfidemethaneethene pH DOlocationmg/Lmg/Lmg/Lmg/Lmg/Linside6.561.7inside6.753.4170<1

outside

From ITRC Bioremediation of Chlorinated Solvents, 2005

Set EPA

Reducing conditions?

Table shows data from inside (shaded) and outside a test cell

- ORP one value < -100 mV inside cell
- DO most > I mg/L
- Sulfate/Sulfide sulfate higher in treatment cell
- Anaerobic gases higher in treatment cell

- Unlikely to be reducing conditions
- Maybe more data
- Check sample and analytical methods

	well	sulfate	sulfide	methane	ethene	рН	DO	ORP
Date	location	mg/L	mg/L	mg/L	mg/L		mg/L	mV
Jun-95	inside	-	-	-	-	6.56	1.7	292
May-96		-	-	-	-	6.75	3.4	319
Jun-97		170	< 1	0.69	-	6.46	0.45	85
Mar-98		146	< 1	2.8	-	6.38	0.65	-61
Dec-98		42	< 1	3.6	0.09	6.85	1.1	-116
Jun-95	outside	-	-	-	-	6.75	3.4	319
May-96		-	-	-	-	6.84	2.4	126
Jun-97	,	28	< 1	0.007	-	6.83	1.6	178
Mar-98		24	< 1	0.009	-	6.74	1.6	332
Dec-98		38	< 1	0.85	0.02	7.23	2.3	245

From ITRC Bioremediation of Chlorinated Solvents, 2005

Reducing Environment?

- Day 0, ED added and GW flow pattern changed therefore possible treatment and concentration changes
- Data as reported

			Analytica	Field	Measurem	nents				
Elapsed time (days)	тос	Sulfate as Sulfur	Nitrogen, Ammonia	Methane	Ethene	Ethane	рН	EC	DO	ORP
	(mg/L) (µg/L)							(µS/cm)	(mg/L)	(mV)
0		LNAPL	Present; V	Vell Not Sai	mpled					
16		LNAPL	Present; V	Vell Not Sai	mpled					
25	5,650						6.79	497	4.66	-129.9
31	3,880	425		3,640	8,300	129	5.75	17,284	0.89	-39
63	3,600	1,000	7.0	5,030	12,600	171	6.28	24,251	1.83	-46.9
95	3,610	433	5.2	5,520	15,900	182	6.55	37,650	0.44	-45.9
130	1,820	1,000	4.3	4,510	14,300	129	6.54	28,445	0.46	-25.2
172	3,880	620	5.8	3,320	10,800	161	5.61	61,408	3.01	-324
198	1,730	404	3.4	4,850	20,400	1.0	6.51	32,102	1.22	-91.9

Reducing Environment?

			Analytica	l Results	Field	Measurem	nents			
Elapsed time (days)	тос	Sulfate as Sulfur	Nitrogen, Ammonia	Methane	Ethene	Ethane	рН	EC	DO	ORP
	(mg/L)			(µg/L)				(µS/cm)	(mg/L)	(mV)
0		LNAPI	Present; V							
16		LNAPI	Present; V	Vell Not Sa	mpled					
25	5,650						6.79	497	4.66	-129.9
31	3,880	425		3,640	8,300	129	5.75	17,284	0.89	-39
63	3,600	1,000	7.0	5,030	12,600	171	6.28	24,251	1.83	-46.9
95	3,610	433	5.2	5,520	15,900	182	6.55	37,650	0.44	-45.9
130	1,820	1,000	4.3	4,510	14,300	129	6.54	28,445	0.46	-25.2
172	3,880	620	5.8	3,320	10,800	161	5.61	61,408	3.01	-324
198	1,730	404	3.4	4,850	20,400	1.0	6.51	32,102	1.22	-91.9

- Reducing environment Questionable and high variability
- DO > I mg/L and ORP rarely < -100 mV
- **Possibly reducing due to:**
 - presence of methane, ethane and ethene
 - decreasing concentration of sulfate

- LNAPL
- Check sample and analytical methods

Treatment

- Molar basis
- X-axis is uniform

SEPA

- Sequential conversion through pathway
- TCE = ethene
- Multiple nondetects for solvents

Groundwater data – treatment?

From ITRC Bioremediation of Chlorinated Solvents, 2005

EPA Bad data that looks good mass basis no ethene or chloride data x-axis not consistent intervals **TCE decrease** \neq **DCE increase** one non-detect 18000 16000 TCE 14000 DCE -VC 12000 10000 Conc. 8000 (ug/l) 6000 4000 2000 0 21-Apr-95 13-Sept-96 8-Apr-97 1-Oct-97 2-Dec-97 19-May-98 28-Jul-98 26-Oct-98

From ITRC Bioremediation of Chlorinated Solvents, 2005

Molar conversion?

Molar conversion – not Ethene

- Mole basis
- Sequential conversion of TCE to DCE
- VC increases as DCE decreases but not proportional
- Includes ethene data
- But scale for ethene distorts amount relative to other solvents
- Possible that more ED needed or bioaugmentation

SEPA More information

Technical Support Centers

- Engineering Technical Support Center
 - <u>https://www.epa.gov/land-research/engineering-technical-support-center-etsc</u>
 - Ed Barth, Acting Director Barth.Edwin@epa.gov
 - John McKernan, Director McKernan.John@epa.gov
- Ground Water Technical Support Center
 - <u>https://www.epa.gov/water-research/ground-water-technical-support-center-gwtsc</u>
 - Dave Burden, Director Burden.David@epa.gov

Acknowledgements

- ITRC RTDF Bioremediation Consortium: Evan Cox, Dave Ellis, Paul Hadley, Ed Lutz, Dave Major, and Greg Sayles
- RPMs: Ron Leach, Mark Duffy
- SiREM: Sandra Dwortazek, Jeff Roberts Harkness et al. J Contam Hydrol 2012 (131):100-18.