Ecological Considerations: Bioaccumulation Assessment

Focus: Organic Chemicals

Office of Science Policy's Contaminated Sediments Virtual Workshop Fall 2019

Yes or No Slide

- How many of you have sites where chemical residues in fish are of concern?
- ♦ YES OR NO

Chemical Residues in Fish

Function of both chemical concentrations in sediment and water.

Fish in simple food web

Approaches to Predicting Chemical Residues in Fish

Empirical

» uses field measured BSAFs or BAF^{fd}s

Mechanistic

» use food chain models to predict chemical residues in fish

Empirical and mechanistic approaches:

- » compatible which each other
- » one can be used to support the other

Empirical: Chemical Residues in Fish

Bioaccumulation Expressions

» Sediment basisBSAF= C_{lipid} / C_{soc} » Water basisBAF^{fd}= C_{lipid} / C^{fd}

BSAF & BAF^{fd} must be self consistent

» predict the same chemical residue in fish

Empirical Methods

Incorporates all bioaccumulation processes

» trophic transfer, metabolism, sediment-column water disequilibrium, bioavailability, organism growth, ...

Ecosystem specific

- » incorporates
 - Existing external loading scenarios
 - > Fluxes from sediments
 - > Contaminant burdens in sediments

Challenges with Empirical Methods

- Predictive power dependent upon "stable" conditions at the site
 - » Sediment-column water chemical disequilibrium
 - » Sources of chemical to the site
 - » Food web structure
 - » ...

Analytically

- » BSAFs easy to measure
 - Assessing predictive power can be difficult
- » BAF^{fd}s more difficult to measure
 - Concentrations in water often very low

Mechanistic Models

For each organism:

$$\frac{dC_f}{dt} = k_1 \times C_w + k_d \sum_{i=1}^n (f_i \times C_{prey,i}) - (k_2 + k_G + k_M + k_E) \times C_f$$

Mechanistic Models: Steady-State Solution

Steady-state solution: dC_f/dt = 0

$$C_f = \frac{(k_1 \times C_W + k_d \sum_{i=1}^n (f_i \times C_{prey,i}))}{(k_2 + k_G + k_M + k_E)}$$

One equation for each species

Mechanistic Models: Dynamic Solution

For each organism:

$$\frac{dC_f}{dt} = k_1 \times C_w + k_d \sum_{i=1}^n (f_i \times C_{prey,i}) - (k_2 + k_G + k_M + k_E) \times C_f$$

One differential equation for each species

» Use numerical integration techniques

Mechanistic Methods

Many food chain models

- » Thomann
- » Gobas
- » Arnot & Gobas
- » Mackay (fugacity models)
- » FishRand-Migration
- » Aquatox
- » QEA-Anchor
- » Bass
- » ...

steady-state steady-state steady-state steady-state dynamic & probabilistic dynamic dynamic & steady-state dynamic

Mechanistic Methods at Superfund Sites

Many food chain models

- » Thomann
- » Gobas
- » Arnot & Gobas
- » Mackay (fugacity models)
- » FishRand-Migration
- » Aquatox
- » QEA-Anchor
- » Bass
- » ...

steady-state steady-state steady-state steady-state dynamic & probabilistic dynamic dynamic & steady-state dynamic

Mechanistic Methods

Models require:

- » Ecosystem conditions
 - > Chemical concentrations in water & sediment
 - > Temperature
 - > DOC, POC, SOC
- » Food chain structure
- » Organism specific parameters
 - > weights, lipid contents, growth rates, in vivo metabolism rates, diets, migration/movement, ...
- » Chemical specific parameters: K_{ow}

Challenges in Developing Mechanistic Models

Inadequate site-specific data

- » Concentrations in water often limited or non-existent
- » Never enough data for fish
- » Data for forage fish, invertebrates & phytoplankton lacking

Poorly understood inputs

- » Dietary preferences
- » Migration/movement & foraging behavior

Dynamic Solutions

- » Require time varying inputs
 - → Complex modeling for inputs: EFDC and SEDZLJ \rightarrow → Concentrations in sediment & water
 - > Environmental conditions: temperature, SS, DOC ...
 - > Biota behavior

Challenges in Developing Mechanistic Models

Implications

- » Models highly calibrated to the available data.
- » Non-unique calibrations
 - Different combinations of inputs may lead to the same predicted residues but with very different implications for remedial options.
 - > Lower Duwamish River Superfund Site
 - Probabilistic version of Arnot-Gobas model with 114 individual model inputs
 - Virtually all defined by probability distributions and optimized using Monto Carlo methods

Some cautions and thoughts

Before launching into developing model

- » Understand the need for developing food chain model
 - > What level of complexity is needed for answering your site's question
 - Simple empirical data?
 - Simple steady-state model?
 - Dynamic (time variant model)?
- » Costs increase with complexity
- » Time to complete increases with complexity

Measured residues in the fish are the truth!

PFAS Class Per- and Polyfluorinated Alkyl Substances

- Models discussed don't apply
- Lots of research on models for PFAS

For discussion in the extra 30 minutes

Remedial action: Add Activated Carbon to Sediment What processes are impacted? What are the effect on residues in the purple fish?

Question and Answer Time

Time for Q&A on Bioaccumulation

