Pore Water Remedial Goals (PWRGs) for the Protection of Benthic Organisms

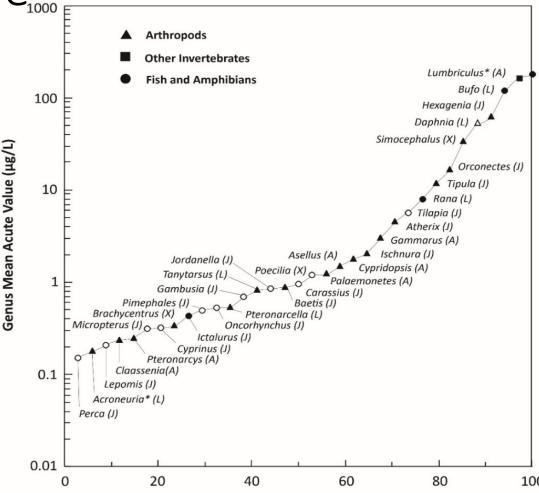
- Sediment toxicity testing on samples from your site
- YES or NO

- Goal today:
 - Show how PWRGs and sediment toxicity testing data can be examined together
 - When consistent
 - Reasonably assured
 - A. The causes of toxicity are identified properly
 - B. PWRGs will be protective of benthic organisms at the site

EPA/600/R-15/289 | October 2017 | www.epa.gov/research

EPA United States Environmental Protection Agency

> Developing Sediment Remediation Goals at Superfund Sites Based on Pore Water for the Protection of Benthic Organisms from Direct Toxicity to Non-ionic Organic Contaminants


Office of Research and Development National Human and Environmental Effects Research Laboratory

Guidance Approach

- Two basic elements
 - Method of measuring/inferring freely dissolved chemical concentrations in sediment pore water
 - Threshold chemical concentrations that delineates acceptable and unacceptable exposures

Acceptable and Unacceptable Exposure Thresholds from EPA's Ambient Water Quality Criteria (AWQC) for Aquatic Life_{1000 E}

- Species sensitivity distribution for Endrin
 - Freshwater species
- Final Acute Value (FAV) 5th percentile
 - 0.1803 μg/L
- Final Acute to Chronic Ratio (FACR)
 - 3.106
- Final Chronic Value (FCV)
 - 0.05805 μg/L

Percentage Rank of Freshwater Genera

Toxicity Testing Results

PAH mixture species sensitivity distribution genus mean acute values for marine and freshwater toxicity testing species

Species	Genus Mean Acute Value (µmole/ g octanol)	Percentage Rank of Genera
5 th Percentile distribution value	FAV = 9.32	5.0%
Hyalella azteca**	13.9**	10.2%**
Leptocheirus plumulosus	19.0	22.4%
Rhepoxynius abronius	19.9	26.5%
Eohaustorius estuarius	22.1	32.6%
Ampelisca abdita	30.9	55.1%
Chironomus tentans	68.4	79.5%

Follows Superfund's eight-step ecological risk assessment guidance

1) Screening Level Characterization of the Nature and Extent of Contamination

- A. Measure f_{OC} and C_s for all COCs ($\mu g/kg$ -dw) in surficial sediments across the site
- B. Compute C_{SOC} (µg/kg-OC) for all COCs

2) Screening Level Ecological Risk Assessment

- C. Compute Toxic Units (TUs) for COCs
 - For single toxicant case, $TU = C_{SOC}/ESB$
 - For mixture of toxicants,
 - For each COC: $TU_i = C_{SOC,i} / ESB_i$
 - Total TUs = $\sum TU_i$

ESB=Equilibrium Sediment Benchmark Developed by EPA 2003, uses EqP theory Assumes all organic carbon in sediments is from diagenesis of plant materials. Conservative, units – μg/g_{oc}

3) **Problem Formulation**

• Develop CSM, exposure pathways, and assessment endpoints

4) Study Design and DQO Process

 Develop Work Plan (WP) and Sampling and Analysis Plan (SAP) in support of CSM and data needs

5) Site Investigation and Data Analysis

- D. Passively sample surface sediments where total TUs > 1.0
- E. Derive C_{free} and K_{OC} values for surface sediments with total TUs > 1.0

6) Risk Characterization

7) Baseline Ecological Risk Assessment

- F. Compute Toxic Units (TUs) for COCs
 - For single toxicant case, PWTU = C_{free}/FCV
 - For mixture of toxicants, for each COC in the mixture:
 - Compute pore water TU for each COC, PWTU_i = C_{free,i}/FCV_i
 - Compute total mixture pore water TUs, PWTU_{Mixture} = ΣPWTU_i
- G. For locations where:
 - Total PWTUs \leq 1.0, little potential for risk to benthic organisms.
 - Total PWTUs > 1.0, unacceptable risks to benthic organisms indicated, proceed to Remedial Goal Development

8) Remedial Goal Development

PWRGs expressed on bulk sediment basis ($C_{S:PWRG} \mu g/kg dry weight$):

Derive site specific $f_{OC:SS}$ and $K_{OC:SS}$ values $K_{OC:SS} = C_S / (f_{OC:SS} \times C_{free})$

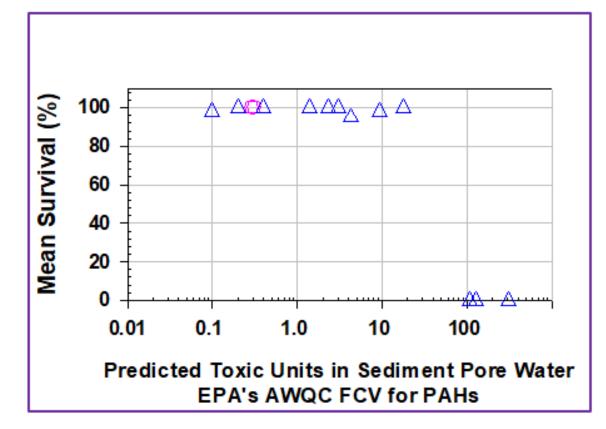
a) For single toxicant, PWRG on bulk sediment basis: $C_{S:PWRG} = K_{OC:SS} \times f_{OC:SS} \times C_{free:PWRG}$ where $C_{free:PWRG} = FCV$ or $C_{S:PWRG} = C_S \times (1/PWTU)$ where PWTU = C_{free}/FCV

8) Remedial Goal Development

b) For mixture of toxicants:

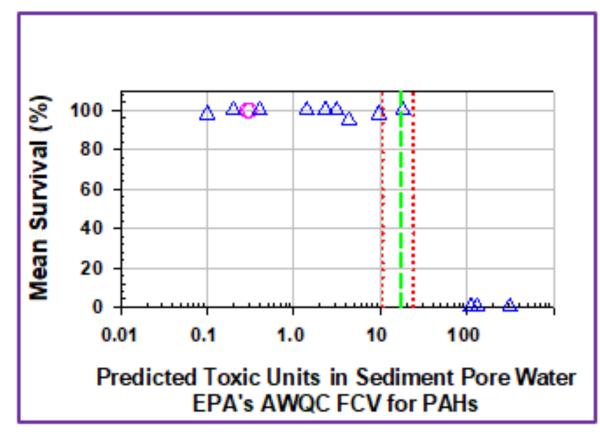
Derive site-specific composition of the mixture PWRG for each COC:

 $C_{S:PWRG,i} = K_{OC:SS,i} \times f_{OC:SS} \times C_{free,i} \times (1/PWTU_{Mixture})$


 $PWTU_{i} = C_{free,i}/FCV_{i}$ $PWTU_{Mixture} = \sum PWTU_{i}$

PWTU_{Mixture} = 58.7 TUs 1/PWTU_{Mixture} = 1.70%

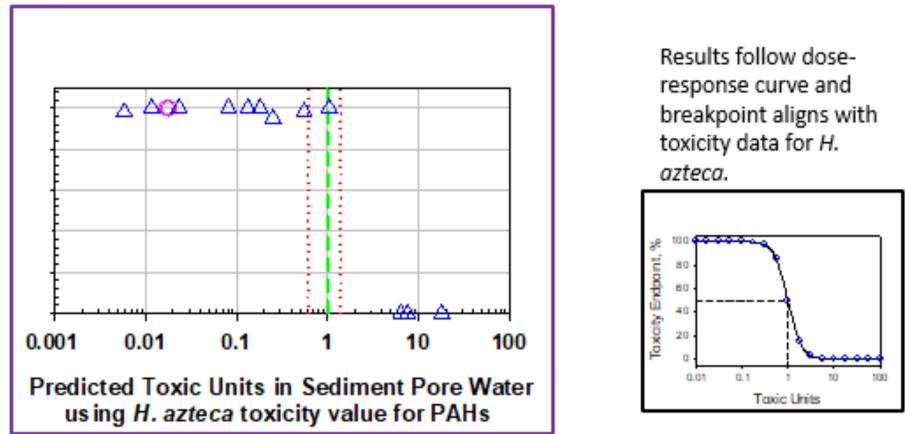
Total bulk concentration of mixture:


 $C_{S:PWRG,Mixture} = \Sigma C_{S:PWRG,i}$

Toxicity Testing Results:

Hyalella azteca survival in 28-day toxicity tests with sediments contaminated with PAHs (Kreitinger et al 2007).

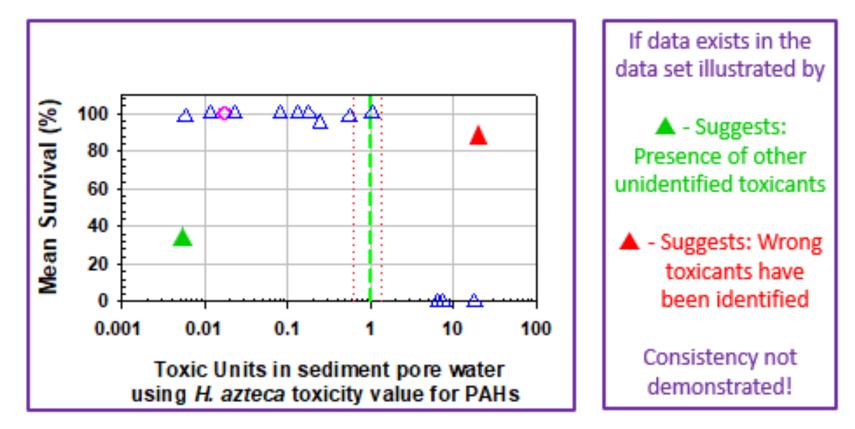
Toxicity Testing Results:



H. azteca less sensitive than the AWQC 5th percentile for PAHs.

Hyalella azteca survival in 28-day toxicity tests with sediments contaminated with PAHs (Kreitinger et al 2007).

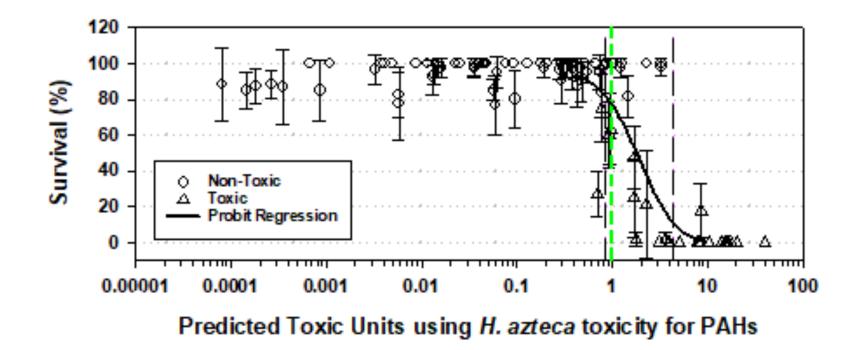
--- and •••• lines are the mean and 95% confidence levels for the EC50 derived from the water-only toxicity testing data for *H. azteca*.


Toxicity Testing Results:

Hyalella azteca survival in 28-day toxicity test with sediments contaminated with PAHs (Kreitinger et al 2007).

--- and •••• lines are the mean and 95% confidence levels for the EC50 derived from the water-only toxicity testing data for *H. azteca*.

Toxicity Testing Results



Hyalella azteca survival in 28-day toxicity test with sediments contaminated with PAHs (Kreitinger et al 2007).

--- and •••• lines are the mean and 95% confidence levels for the EC50 derived from the water-only toxicity testing data for *H. azteca*.

Toxicity Testing Results

- 28-day survival data for 97 samples from six MPG and two Al-smelter sites (Hawthorne et al. 2007)
 - Results:
 - Form dose-response shape
 - Breakpoint between toxic and non-toxic samples

Long-Term Monitoring

- With PWRGs
 - Know breakpoint between acceptable and unacceptable exposures
 - Site specific
 - Bulk and/or pore water basis
- In a long-monitoring program
 - Concentrations over time allows documenting
 - Trends towards acceptable thresholds or
 - If acceptable thresholds are present and maintained.
 - Allows potentially less toxicity testing in the monitoring program

Summary

- When PWRGs and toxicity testing data are consistent
 - Reasonably assured
 - A. The causes of toxicity are identified properly
 - B. PWRGs will be protective of benthic organisms at the site
- PWRGs
 - Accounts for contaminant bioavailability considerations

• Questions