The Application of Engineered Phytotechnology for Remedial System Optimization and Ultimate Site Closure – Two Case Studies

Ron Gestler & Jim Linton Geosyntec Consultants Walnut Creek, California

Design and Construction Issues at Hazardous Waste Sites

Presentation Summary

Brief introduction to *TreeWell*® Technology

- How it works and key benefits
- Risk management considerations

Example projects using TreeWell Technology

- Successful applications
- Its use as a replacement for Pump-and-Treat systems

Engineered Phytoremediation with TreeWell[®] Technology

The "Pump"

Tree pumping draws in groundwater with contaminants from targeted zone into Col

Untreated contaminants from the are drawn to the and treated by a rhizo number of potential processes Aeration Tubing -Camera Tube Residual contaminants may be taken up by the plan, and treated within the plant Root Sleeve[™]Liner (partially removed for clarity) A few remaining molecules may

pass through the plant and may be emitted into the strip herennethe transpiration stream

UV and Hydroxy Radicals

"Treatment"

Encourages downward root growth to the target saturated zone.

Root_Sleeve[™] liner (the "well casing") excludes non-target zones and surface water infiltration

A constructed phytoremediation system that targets a specific GW zone for remedial effect. Patented and designed by Geosyntec's partner firm ANS.

A hydraulic connection is established between plant roots and target groundwater, enabling the system to provide plume capture/hydraulic control.

The TreeWell System: Key Benefits

- Highly adaptable can be tailored to specific site conditions
- Effectively treats a wide range of contaminants organic and inorganic
 - Including some emerging contaminants: 1,4-dioxane & 1,2,3-TCP
 - Potential for PFAS
- Optimizes growing conditions; Mitigates phytotoxicity
- Pre-treatment option (reactive treatment media ZVI, etc.)
- Hydraulic control typically achieved within 3 to 4 growing seasons
- Active treatment delivered in a passive manner
- Green & Sustainable: solar-powered remediation, minimal O&M, resiliency through system design and plant selection
- Accepted as a proven and effective remedial alternative by EPA and various state agencies

It is a designed, engineered approach to using plants to address contaminant issues.

Why Use an Engineered Phytoremediation System?

Limitations of Conventional Phytoremediation

- Target groundwater too deep
- Site soils too poor, too compacted
- Contaminant concentrations too high
- Reliance on precipitation

Benefits of Engineered Phytoremediation using the TreeWell System • Control plant growth, manage site conditions and target the zone of remedial effect

- For GW as deep as 50' bgs (or more)
- Treat high contaminant concentrations
- Can reduce the time to meet remedial goals
- Allows plants to *thrive*

Risk Management Considerations

Requirements for Phytoremediation

<u>Success</u>

Vegetation

- Must thrive under site conditions (prioritize natives; beware of exotics)
- Must utilize targeted water

System

- Must create remedial effect
- Must ensure that the fate of the contaminants does not create additional problems (e.g., leaf accumulation of contaminants)

Reasons for Phytoremediation Failure

- Lack of phyto-specific site data Wrong application for site conditions or
- Wrong application poor design
- Poor planting techniques
- Poor operation/monitoring
- Unrealistic expectations
- Use of unsuitable plant species

VS.

Case Study 1: TreeWell Phytoremediation at

Danville, IL

- Manufacturing facility in Danville, Illinois
- Carbon Tetrachloride plume with DNAPL
- Primarily low K glacial till with sporadic sand zones
- Existing P&T system very inefficient, expensive (required batch operation)
- *TreeWell* phytoremediation system installed in 2015
- IEPA approved disabling P&T system in 2016; now abandoned

Background & Summary

Danville - Conceptual Design for Integrated Remediation

Design and Construction Issues at Hazardous Waste Sites

Modeled Groundwater Flow

Initial groundwater modeling performed prior to system installation

51 TreeWell units installed in 2015; additional 28 units in 2017

Excellent correlation of model predictions to observed hydraulic control

And here's what happened... **NS** OCTOBER 26-28, 2020

Design and Construction Issues at Hazardous Waste Sites

Hydraulic Control of CCL4 Plume

Original P&T system – source control without plume hydraulic control

TreeWell units capturing plume and hydraulic control has been established

Design and Construction Issues at Hazardous Waste Sites

Hydraulic Control Maintained Through Mid-Winter (Feb 2018)

Hydraulic containment maintained despite winter dormancy of

Comparison of Phytoremediation vs. P&T

Pump & Treat (Source Containment) System **Operational Years (1980 – 2016)**

100,000 Gallons per year – estimated maximum removal rate of groundwater or average of < 275 gallons per day (GPD) (<0.2 gpm)

Five pumping wells in operation - no significant/observable groundwater hydraulic influence (2013-2016 period)

<u>\$75K</u> - Average Annual Cost (approx). of O&M 2013 - 2016 (excluding treatment and groundwater monitoring)

P&T System was ineffective

System idled in 2016 during proof of concept/pilot of Engineered Phytoremediation System

Engineered Phytoremediation

>1,00,000 gallons per year is estimated current extraction rate via engineered phytoremediation (3 gpm +/-)

79 TreeWell Units - now provide *hydraulic control* of plume (51 trees in 2015 and 28 in 2017)

\$22K - Average Annual Cost of O&M (2016 - 2018); now near \$0

P&T System shut down in 2016; now dismantled

SAMPLE AND STREET STREET STREET Trees have demonstrated tolerance to CCL4

Design and Construction Issues at Hazardous Waste Site

Results To-Date Summary

The *TreeWell* phytoremediation system has:

- 1) Obtained hydraulic control of the plume in just two growing seasons;
- 2) Enabled abandonment of the P&T system; and
- 3) Received enthusiastic endorsement by IEPA

- Complete the ERH remediation at source area
- IEPA goals will then have been met
- <u>Apply for conditional closure (anticipated in</u> 2020)

Design and Construction Issues at Hazardous Waste Sites

Case Study 2: Sarasota, Florida

Site Background

- Manufacturing facility in Sarasota, Florida
- CVOC, 1,4-dioxane and arsenic groundwater plume in fractured bedrock
- Initial remedy: Long-term pump & treat system with UV/Peroxide
 - >\$300K/Year O&M costs
 - >20 Years to meet Remedial Goals

Geosyntec's TreeWell System Installation & Outcome

- 154 *TreeWell* units planted in 2013
- Planted four native wetland species eliminated permitting reqmts.
 - Restoration of distressed wetland (removal of invasives)
- Cost to implement: about the same as one year's O&M for the P&T system
- Hydraulic capture demonstrated by 2014; P&T system idled and later dismantled
- Groundwater concentrations significantly reduced

Sarasota, Florida

- Comparison of GW flow at time of *TreeWell* installation (Blue)
- Gradient reversal in only two growing seasons
 - Experience at Sarasota with predicted groundwater response versus actual has been applied to modeling of other sites with similar success

system installation (Yellow) vs. 18 months post-

Dissolved-phase concentrations have decreased significantly and rapidly since implementation

Sarasota, Florida Modeled vs Actual Groundwater Flow Performance of Phytoremediation System: Actual versus Groundwater Model Prediction

Sarasota, Florida **Modeled vs Actual Groundwater Flow**

Design and Construction Issues at Hazardous Waste Sites

Sarasota, Florida

In other words, an ineffective and costly P&T system was replaced with effective, low-cost phytotechnology...

No Further Action granted in 2016;

Site Closure (a Site Rehabilitation Completion Order) issued by FDEP in March 2019

- • A happy client **and** regulator
- Significant savings to the client
- Resulting in:

Summary of Phytoremediation Technology: Key Benefits

- Plant-based remediation technology can be very effective for site cleanup when designed and implemented correctly
- Highly adaptable to specific site conditions and contaminants
- Applicable to some emerging contaminants (including possibly PFAS)
- Applicable to many sites: cold climates, dry climates, deep and/or confined aquifers, sites with covers/caps, etc.
- Potential of significant cost-savings over conventional treatment options: Typical TW Unit cost = \$2,000 to \$5,000
- Great *alternative to P&T* systems
- Green & Sustainable technology
- Well-accepted by regulatory community
- Numerous secondary benefits

Thank You

<u>Contact Information</u>: *Ron Gestler (925) 278-8688* rgestler@geosyntec.com

TreeWell Technology Information: https://geosyntec.com/treewell

