Successful High Density Sludge (HDS) Treatment Plant Design for Acid Mine Drainage

Presented by:

Jim Stefanoff, P.E., P.Eng. 999 W. Sprague Ave., Suite 500 Spokane, WA 99201 Phone: 509-981-5015 Jim.Stefanoff@jacobs.com

Presentation Overview

- Objective: Provide a working-level understanding of the basic HDS process and information needed for successful design
- Part 1: History and Description
- Part 2: Process Basics
- Part 3: Major Component Design
- Part 4: HDS plant Photos
- Questions?

HDS History

- HDS = High Density Sludge
- Developed in late 1960s by Bethlehem Steel Corporation, Pennsylvania
- Bethlehem was struggling with large volumes of lime treatment sludge
- Developed to improve metal removal treatment of acidic waters and reduce sludge volumes
- Initial focus was coal mine drainage

What HDS Does

- Compared to conventional lime treatment
 - Provides enhanced removal of dissolved metals
 - Is a more stable process
 - Produces denser and better handling sludge
 - Reduces equipment scaling

Scaling Caused by Conventional Lime Treatment

Conventional Lime Treatment

Source: S.T. Herman

Relative Sludge Volumes

Negatives of Conventional Lime Treatment

- Creates very small particles (sludge)
- Particles difficult to settle
- Sludge is mostly water, typically 97-99%
- Sludge takes considerable disposal space
- Equipment prone to scaling
 - Scale caused by chemical precipitation due to supersaturation. This is different than "caking" due to drying

Source: S.T. Herman

Development of the First HDS Plant by Bethlehem Steel

Fig. 4—Flow diagram: HDS demonstration plant at Coal Mine 32.

Fig. 5-Laboratory high density sludge plant.

Fig. 6-High density sludge pilot plant.

Fig. 7-High density sludge demonstration plant.

Part 2: Process Basics

- Topics Covered:
 - How and why HDS works
 - Basic design concepts

The "Key" to HDS

 Sludge recycle with lime (hydroxide) coating

The 5 Basic HDS Steps

- Step 1: Recycle sludge to small mixed tank (A Reactor)
- Step 2: Add lime to the tank
- Step 3: Mix lime/sludge with mine water in Reactor B and aerate if needed
- Step 4: Settle sludge
- Step 5: Repeat Steps 1 4

Inside Reactor A (Sludge/Lime Mix Tank)

Lime
Coating (hydroxide)

Representation of Conventional Ferric Hydroxide Particle with Attached Water

Reactor A removes the water so particles can grow

Source: S.T. Herman

Inside Reactor B

New layer of sludge ·

Particles "grow" with every recycle

Inside Reactor B

Inside Reactor B

Idealized HDS Particle

Idealized HDS Particle

We do **NOT** want non-HDS particles because they will attract new precipitates—we want the new precipitates to grow on the HDS particles

Jacobs

Idealized

HDS

Particle

Thickener

- of the HDS process
- Purpose
 - Performs solids settling and sludge thickening
- What Happens
 - Solids flocculate (combine) in the centerwell, then settle to the bottom, usually assisted with polymer flocculant
 - Bottom solids gradually compress (thicken) due to gravity
 - Rake gently stirs to release water and push solids to center for pumping

Clarification and Thickening Occur in Same Tank

Idealized Settling "Zones" in Lab Cylinder

Idealized Settling "Zones" in Thickeners

Source: Sawyer/McCarty, 1978

Solids Recycle Ratio (SRR)

- SRR = solids made ÷ solids recycled
- How Much Sludge to Recycle?
 - Need enough for lime adsorption
 - Solids recycle ratio (SRR) commonly used
- "Typical" SRRs between 20:1 and 50:1
- Best determined from pilot test

HDS Pilot Test Setup

SRR Continued

Careful!

- SRR is a convenient "surrogate" for required surface area for lime adsorption
- Mathematically speaking, could recycle a handful of lead bowling balls and meet the SRR "number", but it won't work
- For the same SRR, recycling a denser sludge at a low flow rate is much better than a lighter sludge at a high flow rate

Part 3: Major Component Design

- Topics Covered:
 - Reactor A
 - Reactor B
 - Thickener

Reactor A (Sludge/Lime Mix Tank)

- Keys for Success:
 - Free discharge of lime and sludge into tank
 - Short retention time (1 to 5 minutes)
 - Baffles
 - Lots of freeboard
 - Lots of mixing
 - Open top with easy visual access
 - Hose with spray nozzle for frequent washdown
 - Very short and steep discharge to Reactor B

Thickener

Reactor B

- Keys for Success:
 - pH selection
 - 30 to 40 minutes retention time typical
 - Baffled
 - Aeration for ferrous iron and manganese
 - Ample mixing
 - Ample freeboard

Thickener

- Keys for Success:
 - Sizing (diameter) based on either clarification or thickening
 - Anionic polymer flocculant often used
 - Thickening diameter often is largest
 - Sidewall height typically 10 12 feet
 - Open trough feed to feedwell for washdown
 - Underflow tunnel for sludge pumps
 - Ample torque
 - Rake lift

Part 4: HDS Plant Photos

Iron Mountain Mine HDS Plant California

Resolution Copper HDS Plant Arizona

Argo Tunnel HDS Plant Colorado

Thank You

• Questions?

Jim Stefanoff, P.E., P.Eng. 999 W. Sprague Ave., Suite 500 Spokane, WA 99201 Phone: 509-981-5015 Jim.Stefanoff@jacobs.com

