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Audience Demographics Poll Questions

1. Have you achieved a no further action/site closure using an in-situ
injection technology?

a. Yes, as the primary remedy
b. Yes, as a secondary or polish remedy

2. How do you measure success of an in-situ remediation project?
No further action attainment/site closure

Mass reduction

Removing pathways to sensitive receptors

Improving site conditions for beneficial re-use
. Other
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...and how to
make them
succeed.

Why in-s
% remedies
aiI...
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In-situ Project Stages and Panel Discussion

Assessment & Pre-

Design Investigations

Treatability, Bench, &

* Best management practices
Pilot Studies

— - *Common pitfalls
R ’ = - b
E | ‘r/'; * Setting expectations
4 < “ v //

Design & Amendment
Selection

* Costs

Implementation

 Sustainability

5 0 — +~ O N — 3 — ~+ © O

Monitoring

March 29, 31 and April 1, 2021

truction Issues at Hazardou



Assessment & Pre-Design Investigations
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Case Study — 3D Visualization and HRSC a tool for Optimization
of In-Situ Remediation

MIHPT Data Analysis —
Active Remediation Site VE R I NA

Vertical Exaggeration is 5.0x

Entire Site - Shallow & Deep Aquifers Injection Wells
MIP-XSD (uV) Above 3,000,000 uV . i Abandoned
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Poll Questions

3. Have you completed a direct—sensin§ (High Resolution Site Characterization) prior to
implementing an injection program?

a. No
b. Yes - if so, which tools were used
i MIP
i.  MiHPT
ji.  HPT
iv.  Waterloo Profiler
v. CPT
vi.  LIF/UVOST/OIP
vii.  TarGOST
viii. Geophysics
iX. Other
4. Have you completed a direct-sensing program as part of a post remedy evaluation?
a. Yes
b. No

D CHW S N e
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I N
he Problem: How do we optimize Site

Remediation and achieve Site Closure?

» Client wanted to evaluate current MiHPT ST
conditions — post remediation Investigation [‘
» Recommended HRSC using MiHPT > o, il
and development of 3D CSM : Sttt i
> Use MiHPT to identify untreated B \ |
mass ks ol &
» Use MiHPT to evaluate mass vs e

geology

» Use MiHPT to evaluate past
injection effectiveness

March 29, 31 and April 1, 2021

> Develop 3D CSM to evaluate MIHPT Log S5 =
chemical trends/mass and to Analysis — Cross z |
visualize monitoring well data vs Segton i l
HRSC data » et et = = |
> Closure Strategy — Focused source 15 4|‘; :
treatment, institutional controls and : IJ F
MNA DKN’l%

o Ie ) March 29, 31 and April 1, 2021
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I
MiHPT |
Investigation :

» Pushed 70 MiHPT Borings

» Evaluated conditions in vicinity of i ,
injection wells

» Evaluated upgradient and cross-
gradient areas .l

» High vertical data density — 20
readings per foot for each detector!

» Geologic, hydrogeologic and
chemical data

» Easily evaluated in Geoprobe’s j‘E
DiViewer and exported for analysis
in 3D applications

.....
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. .
3-Dimensional Conceptual Site Models & Data

Analysis

» Analyze spatial relationships as well
as temporal relationships of
analytical groundwater monitoring
data

=
VERINA

Vericol Exaggenason is §.0x

Shalow and Daep Aquifers - Mer 2012

» For this site we calculated mass for
5 injection areas, 16 analytes (4
groups of analytes), two geologic
units, & 8 sampling events (2012-
2019).

» That’s 1,280 calculations!
(We can do this today in
minutes using python)
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Vertical Exaggeration is 5.0x

Shallow and Deep Aquifers - Mar 2012
Freon Isomers (Total) above 1,000 ug/L  pap_

20 Max lsolines

Freon Isomers (Total)

Freon lsomers (Total)

100,000 ugiL
30,000 ugiL
10,000 ugiL
3,000 ugll
1,000 ugiL
300 ugfl
100 ugil
30 ugil

10 ugil
3ugll

T ugil

03 ugl

0.1 ugll

Layer

Shallow Aguifer

6.0

Ceep Clay Aquifer
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Mass and Volume Calculations - Area A

Vertical Exaggeration is 2.5x

Area A - February 2019

Shallow Aquifer - Freon 113 Above 20,000 ug/l

Tatal Valurne (Including Soil): 971 cu. yards

Freon - Average: 251456 ugll; Mass: 0.97 |bs;, Max: 39500 ug/l

Carbon Tetrachloride - Average: 0.0 ugL; Mass: 0.00 lbs; Max: 1970 ug/L
Tetrachloroethene - Average: 0.0 ugdl; Mass: 0.00 |bs; Max: 2590 ug/l
Trichloroethene - Average: 0.0 ugfL; Mass: 0.00 Ibs; Max 1690 ug/L
Chloroform - Average: 0.0 ug/L; Mass: 0.00 Ibs; Max: 15200 ug/L

Clay Aquifer - Freon 113 Above 20,000 ug/

Total Yolume {Including Sail): 20 cu. yards

Freon - Average: 24881 .4 ugdl; Mass: 0.21 lbs; Max: 7860 ug/l

Carbon Tetrachloride - Average:  123.3 ug/L; Mass: 0.00 Ibs; Max: 403 ug/l
Tetrachloroethene - Average:  1387.3 ug/L; Mass: 0.01 Ibs; Max: 969 ug/L
Trichlaroethene - Average: 3952 ug/l; Mass: 0.00 Ibs; Max: 999 ug/l
Chloroform - Average:  4121.4 ug/L, Mass: 0.03 Ibs; Max: 2540 ugil

Freon 113

100,000 ug/ll
30,000 ug/l
10,000 ugiL
3,000 ugil
1,000 ugiL
300 ugll

100 ugll

30ugll

10 ugiL
3ugll
1 ugll

—
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Area A- February 2019

Shallow Aguifer - Freon 113 Above 1.0 ug/l

Tatal Waolume (Including Soill: 5594 cu. yards

Freon - Awverage: 3710.0 ug/L; Mass: 8.75 Ibs; Max: 39800 ug/l

Carbon Tetrachloride - Average: 0.1 ugfl; Mass: 0.00 Ibs; Max: 1970 ugfl
Tetrachloroethene - Average: 0.1 ug/l; Mass: 0.00 Ibs; Mayx: 2590 ugfl
Trichloroethene - Average: 0.1 ug/l; Mass: 0.00 Ibs; Max: 1690 ug/L
Chloroform - Average: 0.1 ug/L; Mass: 0.00 Ibs; Max: 15200 ug/L

Clay Aquifer - Freon 113 Above 1.0 ug/l

Total Yolume (Including Soil): 17492 cu. yards

Freon - Average: B86.4 ug/l; Mass: 5.06 |bs; Max: 7860 ug/L

Carbon Tetrachloride - Average: 1.8 ugdL; Mass: 0.01 Ibs; Max: 403 ugil
Tetrachloroethene - Average: 557 ugll; Mass: 0.41 Ibs; Max: 969 ug/L
Trichloroethens - Average: 599 ugfl; Mass: 0.44 |hs; Max: 899 g/l
Chloroform - Average:  159.0 ug/l; Mass: 1,17 lbs;, Max: 2540 ugll

2D Max Isolines
Freon 113

Carbon Tetrachloride

Trichloroethene

I Tetrachlaroethene
I Chloraform

Layer

Shallowr Aquifer

Deep Clay Aguifer
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Treatability, Bench, & Pilot Studies
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Treatability, Bench, & Pilot Studies

£) REGENESIS

Technology-Based Solutions for the Environment

1996 EPA Environmental Response Training

Glenn Nicholas losue in Level A Suit (right)
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Poll Questions

6. What are your primary concerns when choosing/implementing an
in-situ remediation (excluding cost)?

a. Technology selection

b. Feasibility of implementation (contact)
c. Managing expectations

d. Confidence in the conceptual site model

7. Have you had a site where rebound has occurred following
implementation of an in-site technology?
a. Yes
b. No

SAME/lJ March 29, 31 and April 1, 2021
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Common Pitfalls and BMPs

Preliminary Site
Investigations |Characterization Remediation . . o
(Phase I/11) and RDC  Remedial Design Characterization
t Ineffective Remedy, (RDC), or Design Verification Test
Rework and longer timeframe Cost Savings (DVT)
- —
- Time Savings .
— with RDC - Geology
174
S * Mass Flux

Effective Remedy,

Shorter Timeframe * High Resolution Characterization,
cost ramifications
without RDC

* Role of modeling in developing
d CSM and remedy

TIME

Conceptual lifecycle costs with and without RDC / DVT
Source: Modified from ITRC 2015



Fundamentals of Contaminant Distribution

Mass Storage

* Relationship of fine and coarse grained units play large role in plume shape

Contaminant distribution is controlled by soil type positional relationships

* Vertical and lateral relationships between
low and high Kh zones are critical

 Remediation is site-specific

Higher permeability zones

> based on site’s specific “freeways”
aquifer characteristics

» often unique to the site



. N
Design Verification Process — Why?

Site Assessments have different objectives than Design Verification, such as
 Nature and Extent, Plume Boundaries
* Liability and Risk, Sensitive Receptors
DVT improves remedial outcome by
increasing site resolution

* Focusing on identifying position of
contaminant mass and high flux zones

 Emphasis on identification of
principal impacted units

* Provides greater reagent-contaminant
contact for improved performance

MEE/7/ @DCHW March 29, 31 and April 1, 2021




Design Verification Tools

* Continuous Soil Core Logging

continuous soil coring into saturated zone used to
look at bigger remedial picture and start to
map and target horizontal flow pathways

* Soil Contaminant Analysis

* Settling Tubes Clay
* Clear Water Injection o
* Passive Flux Meters o

Coarse Sand

SAME— [ @6 e
- s sl and Construction Issues at Hazardous Waste Sit



erification Test:

ter Injection

Documents ac
* Vertical Tarj
Assists in appli
* Direct Push
* Top-do
* Injection we
* Screene

Data collected
from estimate
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I -
Design Verification Test:

Unknown Velocity?

Passive Flux y

S.p to connect sock to

* Filled with Peri

* Accumulate
based on fl

ked with activated

e Carbon pre-lo .:_‘r:' piced periodically to

known sorpti” [

e Loses trace’
and flux co

March 29, 31 and April 1, 2021
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. B
Passive Flux Velocity & Seepage Velocity

Site 1-Gravel & Sand

Site 2-Poorly Sorted Gravel
Site 3-Sandstone Bedrock
Site 4-Sandy/Gravelly Clay
Site 5-Silty Clay

Site 6-Sand Fine-Med

Site /-Sand Hne-Med

Site 8 Sand

Site 9-Silty Sand-Medium

Site 10- Saprolite Bedrock

‘H"l‘ur[

Site 11- Silts

=

500 1000 1500 2000 2500
Groundwater Velocity (ft/yr)

B PFM Velocity (ft/yr) W Seepage Velocity (ft/yr)
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I N
Design Verification Analysis

Project Population Contaminant Type
* 43 Sites * 35% Petroleum
* 61% CVOCs
Project Design Approach * 4% Comingled

* 33% source areas

* 67% mid- to distal- plume General Soil Type
* 50% Fine grained (Clays and Silts)

* 50% Coarse grained (Sand and Gravel)

~ ) March 29, 31 and April 1, 2021
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Analysis of Technical Blind Spots

What’s the outcome? UN-IDENTIFIED HYDROGEOLOGICAL CONDITIONS 46%

~80% of tests to date found
unanticipated results
(technical blind spots)

LOWER INJECTION RATES/ROI 25%

UN-IDENTIFIED CONTAMINANT TRANSPORT ZONE

62% of preliminary designs
were modified / refined

THICKER CONTAMINANT ZONE 18%

Most desigh changes were
cost-neutral

HIGHER CONTAMINANT CONCENTRATIONS 18%

i

0% 10% 20% 30% 40% 50%

SAME/lJ March 29, 31 and April 1, 2021
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DESIGN VERIFICATION Injection Cancelled
Desigh Changes o

Significant
Changes

8%
No Changes

38%
Moderate

Changes
8%

DVT Analysis of 43 Sites

Few Changes
35%

— R @DCHW -1 March 29, 31 and April 1, 2021
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Lessons Learned: Design Verification Test

* Depositional Processes significantly control contaminant distribution
* Depositional processes are predictable and non-random
* Design Verification data provides additional remedial insight

* Design Verification Test improves
* Predictability
* Implementation time and efficiency
 Early identification of “Technical Blind Spots” and problems
* Enhances final design and application program outcomes

£) REGENESIS'

oooooooooo -Based Solutions for the Environment
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Implementation
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Hydraulic Fracturing to Deliver Amendments in Low-
Permeability Formations and Weathered Bedrock
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e NGYE()D CHS T T IS




Poll Question

8. What types of injection delivery methods have you used on your
remediation projects (select all that apply)?

Traditional injection wells

Horizontal injection wells

Direct-push injection

Hydraulic fracturing

Pneumatic fracturing

Soil mixing

Slurry wall

SAME O S@DIRTILT Morehz9,51omd 12000
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ITRC Injection Optimization Guidance Document

e - Optimizing Injection Strategies and In situ Remediation
"Rc Performance

* AHOLVINO3Y +

COUNCIL

earch this website

Navigating this Website
¥ 1 Introduction

2 Remedial Design

Characterization
3 Amendment, Dose, and

peleryDeslen Optimizing Injection Strategies
4 In;r;len;entat'on and and In situ Remediation Performance
¥ Feedback (Monitoring) (O|S'|SRP‘1)

Optimization

¥ 5 Regulatory Perspectives

= 6 Community and Tribal

Stakeholder Considerations

https://ois-isrp-1.itrcweb.org/
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ITRC Guidance Document — Delivery Techniques

Solid Injection

Delivery Technique

[D4]
i Direct S S Permeable
Hydrogeologic Push Injection Electrokinetics Henin .
.. = Through Wells This is injection Hydraulic Deli P ti .
Ch.all'acterl.stlcs Inj(f)(gll)on & Boreholes through wells. _thrr::gﬁ WZ I||:£:8rly De“vl:;l?ﬁrcli ah E(lggllaesr)s M atC h d e I IVE ry
m [D1] [b2] DE| Boreholes Open Boreholes [D7] .
Classification [D5] [D6] m et h Od W|t h
System
Gravels ¢ (Sonic) g60|0gy
Cobbles * (Sonic) . NA NA NA o
!Sancly Soils (Sm, Sc, ‘ . . NA O} O .
Sp, Sw)
Silty Soils (MI, Mh) . = . . . .
* INTERSTATE . Clayey Soils (CI, Ch, . O o . o .
- m
5 g &)
z z
3 o Weathered Bedrock . . m o .
v -92 Competent/Fractured NA ) NA = O
* AHOLVINDIY * Bedrock
K <10%to 10 (Low . ® N . o .
erm Soils
EDIC S
e TN B — K 2103 (High P = ® @
ENVIRONMENTAL RESEARCH : 107 (High Perm * * *
INSTITUTE OF THE STATES ——— Soils)
ECOS
Depth > Direct Push NA . O} O ® O}
Ta ble 3_4 Capabilities \ )
httpS '//OiS iS rp 1 |t rcwe b o) rg/ “Widely used = o", “Site-specific = @", and “Not applicable = NA"

d Construction Issues at Hazardous Waste



Hydraulic Fracturing of Solid Amendment

» e . x e e T Ve
S p R -"%‘,fi\hﬁs = g.n

Yol )50 March 29, 31 and April 1, 2021
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ITRC Guidance Document - Amendments

Treatment Type Description/Summary

Typical
Injection/Emplacement
Technologies Methods

Target COCs

Match amendments

Common Bictic Amendments (A.1)
Anaerobic {A1.3) | Contaminants are degraded via a reductive process by certain | Chlorinated * Direct push injection . .
biological types of microbes under anaerobic conditions. Fermentable solvents * Permanent injection W I t h Co n t a m I n a nt S
reduction organic substrates are injected or placed into the subsurface to | Many pesticides wells
enhance the production of hydrogen, which is in turn used by and munitions * PRBs
the microbes in the reductive reactions. « Certain inorganic A N D
compounds
¢ Petroleum .
delivery method
(typically by
introduction of
electron accepters
such as nitrate
and/or sulfate)
Abiotic Amendments (A2)
Chemical Oxidants delivered to the subsurface degrade or transform e BTEX * Trenching/soil mixing
% INTERSTATE * oxidants (A2,1) | contaminants via oxidation and reduction reactions in the ¢ MTBE * Direct push injection
g r_n' vadose and saturated zones. Oxidants can be used for source |e TPH * Permanent injection
U g area remediation in conjunction with other compatible remedial |e Chlorinated wells
z Zz alternatives to address downgradient areas with dissolved- solvents  Soil mixing
=] |Q phase or lower concentrations. Reaction rates depend on « SVOCS * Permeability
8 5 temperature, pH, reactant concentrations, activators or e Energetics enhancement (i.e.,
stabilizers, reaction byproducts, natural crganic materials,and | 1,4-dioxane environmental
+ AHOLVIND3Y * oxidant scavengers. Activators, stabilizers, and chelating agents fracturing)
may be used to enhance the subsurface oxidation reactions. « Recirculation
* Slow-release oxidant
ﬁ cylinder (Evans 2018)
= n l c m 'm * Ozone sparging
Chemical In general, reducing agents degrade or chemically transform e Metals and * Trenching/soil mixing
ENVIRONMENTAL RESEARCH reducing contaminants into potentially less toxic and less mobile forms. metalloids * Direct push injection
INSYITUTR QF THESTATES compounds for | The reductive processes depend on the contaminant, the type | Chlorinated * Permanent injection
l- C (9] S degradation of reduction, and natural processes in the subsurface. solvents wells for very fine
enhancement « Energetics zero-valent iron (ZVI)
(a2.2) products and calcium
Ta b I e 3 - 2 polysulfide
¢ Hydraulic and
. . . . pneumatic
https://ois-isrp-1.itrcweb.org/
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Solid Amendment Options

March 29, 31 and April 1, 2021
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../../Photos & Videos/KMnO4-Kkp Slurry Videos.mp4
../../Photos & Videos/KMnO4-Kkp Slurry Videos.mp4

Mass Loading and Cost

* Costs for treatment using hydraulic fracturing

e S50-150/CY for ZVI treatment of chlorinated solvents
(costs for range of treatment from diffuse plume to DNAPL source zone)

* Hydraulic fracturing is capable of delivering much higher mass
loading than traditional injection methods.

e ZVI mass loading of >3% (by dry weight soil) is readily achievable

2 2&()DCHWS

and Construction Issues at Hazardous Waste
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Horizontal
Remediation Wells,
Challenges and
Benefits

MARK STRONG, JACOBS ENGINEERING

@@DCHW
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Remediation

Industry
Experience
with HDD

* First environmental wells installed in late 80s
(DOE - Savannah River), continued
development in 90s, several technical
challenges.

* Mid to late 2000s, improved installation
methods and more successful installations.
e Current and Historical Applications:

* Air Sparging (AS) and Soil Vapor Extraction
(AS/SVE)

* Groundwater/NAPL pumping

* PRBs, slope stabilization, landfill drains,
etc

 Liquid injection
* Horizontal Heaters/ERH

e Developing Sustainable Remediation Options:

* Passive/limited infrastructure treatment
cells such as Arcadis HRX or coaxial
treatment wells

March 29, 31 and April 1, 2021




Why Directional
Drilling

Plume Access

Contact Efficiency

: 'l"”llll

Decreased Site Impact

Cost (for large plumes, less
infrastructure, 1&C, conveyance
lines, etc — simpler O&M)

E— 20

jn and Construction



Horizontal
Conveyance Pipe

Groundwater Air Sparge

Pilot Test Wells
Conceptual Plume Core AS
Horizontal Wells

— 20

—78

Extraction Well

> 10 pg/L /
20—|— Ha , p
/

E /

[T T——F = U A R e e s ’
é A (G SRS I g:- =
2 | ODS Aquifer - —210°
g (Sand / silty sand)
QO =
E=]
@ 75— _ _Wa
?% eTeble Groundwater g
; - 1 Flow’
g ODs Aquifer < T
= (Sand / sjj Silt and Claw rame o T T —m————
g y Sand) ilt and Clay (Aquitard) ]
z

Groundwater

* Blind end drilling in sands

* @Gyro steering tools that do not require surface access

Re CE nt Deve | O p me ntS * Cased well installation techniques facilitate use of lower cost well materials

* Improved accuracy of navigation at depths exceeding 100 ft bgs

March 29, 31 and April 1, 2021




Case Study -
Groundwater Plume
Containment, Industrial
Client, South Texas

Horizontal Pumping Well (Sch 80 PVC)
- 1100 ft, 380 ft of screen
Groundwater conveyance line (HDPE) —
430 ft

March 29, 31 and April 1, 2021
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* Model output 380 ft screen at 30-40 ft bgs, 12 gpm
e Particle tracks and water level contours

* Field data indicated capture zone stabilization in ~3
weeks

'
RES)DCHWS N T T IR
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Pre-Cast Vault

March 29, 31 and April 1, 2021
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Panel Session B
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Optimization
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Geology-Focused Approach to Optimize
In-Situ Groundwater Remediation

P R 0 G R E SS STRATEGIES
7 Geologic foundation. Process-based execution. p

OPTIMIZED REMEDY DESIGN

PROGRESSIVE

Utilize enhanced modeling and predictive analysis
to optimize technology selection and design.

FOCUSED
REMEDIATION

Implement targeted,
cost-effective remedies.

STRATEGIC
CHARACTERIZATION
AND ANALYSIS

Apply focused characterization K

and advanced analytical ‘
techniques to support remedy
selection and design.

&

PREDICTABLE RESULTS

Achieve objectives with improved
certainty, lower cost and
expedited delivery.

GEOLOGIC MODEL

Establish a foundation for
remediation success.

r..%».n

N,
e PROCESS-BASED
CONCEPTUAL SITE MODEL

Quantify and incorporate processes
that drive remediation.

d Construction Issues at Hazardous Waste



Poll Questions

8. Have you completed an Environmental Sequence Stratigraphy (ESS)
or depositional based evaluation of geologic conditions as part of
an in-situ design?

a. Yes

b. No

March 29, 31 and April 1, 2021



Geologic Model

Establishes a foundation for remediation success

Use “better science” to map contaminant transport, transition
and storage zones

“Untangle” heterogeneity and establish accurate geologic framework
with clearly defined Hydrostratigraphic Units (HSUS)

Develop a framework and structure that brings focus and efficiency
to site investigation and remediation

« Conceptual Structure AND Data Structure (Digital CSM)

Groundwater lives in and is controlled by the Geology
Dr. J.H. Birman GSi/water, 1996




Geologic Model

Direct relationship to subsurface processes

» Hydraulic processes (primarily advection, » Biological degradation
but also dilution and dispersion) « Geologic Model and aquifer hydraulics can inform
» Geologic Model provides the permeability geochemical conditions that affect prevalence (or
architecture to evaluate hydrogeologic properties. viability) of requisite organisms, functional genes,

electron donors/acceptors, nutrients etc.
» Matrix diffusion processes

« Permeability architecture (transport/storage zones) > Abiotic degradation
and distribution of organic carbon defined in the « Geologic Model and aquifer hydraulics can inform
Geologic Model. geochemical conditions that affect prevalence (or

viability) of requisite reactants, redox conditions,
» Adsorption/desorption processes, etc.

* Organic carbon distribution is defined by the _ _
Geologic Model and hydrogeologic setting and > Environmental forensics
conditions. « Geologic Model defines the contaminant migration

pathway, essential to all forensic analyses.

DI\ March 29, 31 and April 1, 2021




I B
The Environmental Sequence Stratigraphy (ESS) Process

Uncor

3* cianeter.

Depth (Ft -MSL)

Uncor

0 Research regional geology to eLeverage existing lithology data:
determine depositional environment, vertical grain size patterns indicative of

the foundation of the ESS evaluation. genetic relationships.
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Meandering
Alluvial Fan Lake Stream

\ Tidal Flat

Beach/Barrier Is!
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The Geologic Model

Determine depositional
environment, which is the
foundation of the ESS
evaluation

Leverage existing
lithology data: format to
emphasize vertical
grainsize patterns

Map and predict
the subsurface permeability
architecture and HSUs

away from the data points

Shallow Bedrock
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Focused Remediation

Mid-Plume
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