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Course Outline

Lithostratigraphy vs. Sequence Stratigraphy

. Background

. What’s wrong with lithostratigraphy?

. Lithostratigraphy vs. Sequence Stratigraphy

Fundamentals of Sequence Stratigraphy/Correlation
. Fundamentals of Sequence Stratigraphy

. Walther’s Law

. Accommodation vs. Supply

. The sea level curve and systems tracts

. Parasequences

. Exercise — Correlation walk-through

5 Minute Q&A session
PRISM® + Case Studies

. What is PRISM®?
. Case Studies involving real environmental data sets!

Final Q&A
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Sequence Stratigraphy

Seismic
Well logs

Borehole Lithology Observe

OQutcrop
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Geometry
EODs

Aquifer

trends Predict!
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Course Objectives

At the end of the course, participants will be able to:

Recognize the pitfalls of lithostratigraphic correlation.
Recognize and distinguish clastic depositional systems using:
— Lithologic logs

— Geophysical/CPT logs

— Established depositional models

Use sequence stratigraphic concepts to predict facies (rock type) variations within

clastic depositional systems.

Understand the range of aquifer architectures and internal heterogeneities that

occur in sedimentary deposits.

Appreciate how sequence stratigraphic correlations can be beneficial to the
environmental industry.
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What is Stratigraphy?
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How Many Types of Stratigraphy Can We Name?

e Lithostratigraphy

e Allostratigraphy

e Sequence Stratigraphy
— Genetic
— Depositional

e Pedostratigraphy

e Event Stratigraphy

Biostratigraphy

Chronostratigraphy
Cyclostratigraphy
Magnetostratigraphy

Chemostratigraphy

Various attempts to develop a
coherent picture of the

subsurface
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The Challenge of Determining Subsurface Heterogeneity
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What do these rocks represent?
Are these sands continuous between the wells?
What happens if we go farther in any direction outside data

coverage?

Zero predictive ability = more meney and time to develop effective

remedial strategies.
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The Challenge of Determining Subsurface Heterogeneity
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» What do these rocks represent?

» How are you sure these sands are continuous between the wells?

* How do we know this drinking water well is not impacted?

o Zero predictive ability'="more money and time to develop effective
remedial strategies.

250 m
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Addressing the True Heterogeneity of Depositional Environments
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Addressing the True Heterogeneity of Depositional Environments
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What's Wrong with Lithostratigraphy?

Excuse me Sir,

Could I puta
Formation
boundary

here
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PROSPECT WOUKTAIN QUARTZITE

Cambrian Stratigraphy of the Wendover Area, Wheeler and Mallory, 1956
Utah and Nevada

State of the Art Stratigraphy in the 50s: a game of putting flags?
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What's Wrong with Lithostratigraphy?
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Schematic cross-section of Medina Formation along Niagara after Martini, 1971

Facies: sum total of physical and biogenic characteristics of rock

State of the Art Stratigraphy in the 70s: a game changer? A=COM



History of Sequence Stratigraphy:. Base Level

1917: Joseph Barrell stated the
most fundamental events in geologic
history--the time-space distribution
of deposition and non-deposition:
the alternating rise and fall of Base-
level.

Erosion

SR W 4. 4N R — - - = Base-Level
Accumulation
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Sequence Stratigraphy: Birth of a Revolution

Three Northwestern graduates join the stratigraphic research team of Exxon and begin to
use sequence stratigraphic concepts to interpret seismic data:

e Recognition and definition of unconformity-bounded units
e The time-transgressive nature of facies

Peter Vail: Bob Mitchum: John Sangree:
PhD Northwestern 1956 PhD Northwestern 1954 PhD Northwestern 1959
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Seismic Stratigraphic Horizons: Systems Tracts
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Seqguence Stratigraphy: A Paradigm Shift in Correlation

Sequence stratigraphy relies on
correlation of coeval rocks in a
depositional system. This gives
us a predictive ability to infer
sandbody pattern and facies
change.

WOODBINE

TIME - SECOND

Facies Boundary

Bed Boundaries

Unconformity

Vail et al., 1977.
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From Lithostratigraphy to Sequence Stratigraphy

The petroleum industry
soon saw the value of
sequence stratigraphy in
predicting reservoir
architecture and
heterogeneity
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The Main Pitfall of Lithostratigraphy

No genetic linkage of
depositional environments
(ignores time-lines)

Zero predictive ability

May correlate through
transmissive barrier;
therefore often fails to
determine flow-path

Landward We Gamma Basinward

2~ Datum (flooding shale)

Lithostratigraphic
correlation

Mouth-bar - Heterolithics - Shale
m sandstone

attern continues

Sequence
Stratigraphic
correlation

Ainsworth et al., 1999
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Sequence Stratigraphy: Catching Up in the Environmental Sector
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Sequence Stratigraphy: Catching Up in the Environmental Sector
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 Reconstruction of the same applying the sequence stratigraphic technique of
bedding correlation (Gani & Bhattacharya, 2005)
 Groundwater flow-path changes dramatically!
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Key Takeaway:

Sequence Stratigraphy is not equal to facies analysis!

* However, facies analysis is an important building block of sequence
stratigraphy.
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Lecture 2:

The Fundamentals'of Sequence Stratigraphy
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Fundamentals of Sequence Stratigraphy

Sea Surface = Sed::t:l:;\év:ter
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Local Datum . Sea-level Accommodation hAccumulatéd
\0"‘“0 Sediment
N
Fixed Datum
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C. G.8t. C. Kendall 2006 (After Eniery, 1995) the Earth

Accommodation'vs. Supply




Fundamentals of Sequence Stratigraphy

(and the importance of understanding the system on a regional scale)

SEDIMENTARY

Sediment
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Exxon Sea Level Change (m)

Fundamentals of Sequence Stratigraphy
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Fundamentals of Sequence Stratigraphy

Walther’s Law

Sedimentary environments that started side-by-side will end up over lapping one another over time due to progradation
and retrogradation.

Note: Walther’s Law applies only if there is no
unconformity (erosion/non-deposition) Deposits moving seaward (Coastal Progradation)

Limestone  Clay Silt Sand

Sea  — Land

Lagoon Near-shore Beéach

Lateral facies change stacked over time (t! +t2 + t3+ t%)

Coarsening up!
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Fundamentals of Sequence Stratigraphy

Walther’s Law

Sedimentary environments that started side-by-side will end up over lapping one another over time due to progradation
and retrogradation.

Note: Walther’s Law applies only if there is no
unconformity (erosion/non-deposition) Deposits moving Landward (Retrogradation)

Limestone  Clay Silt Sand

Sea —> Land

Lagoon Near-shore Beéach

Fining up!

Lateral facies change stacked over time (t! 12313 4 t%)
A=COM




Accommodation vs. Supply
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Accommodation vs. Supply

TDB_SIESD_2015_LAN.mov




Accommodation vs. Supply

Depositional facies architecture is an
Interplay of Accommodation and
sediment supply

A=COM



Development of Systems Tract

Land Sea

Strandplain Progradation
&
Incised Valley Fill
"La Pascua Formati
Guarico Sub-Basin - VYen e

Animation & An

Christopher G. St. C.
Augusit




Sea Level Curve...

Sequence

Time
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Cycle of Depositional Sequence

FSST LST

Relative Sealevel Fall Relative Sea level 5till 5tand
Valley Incision Estuarine incised valley fill from eroding interior
Interfluve Erosion

Lowstand fan deprived of sediment stops forming
Sediment bypassing incised valley, transported by
longshore drift, and downslope as coastal sediments
over-steepen

Onlapping of shelf margin slope

Bypass to Downslope Fan

Models from Kendall, 2008

[SEPM STRATA website) Models from Kendall, 2008

[SEPM STRATA website)

TST A=COM
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The ‘Slug’ Model

SB — unconformity

INCISED
SB - correl. conformity VALLEY

TS (transgressive surface)

CANYON

MFS (max. flooding surface)

[ Alluvial B Marine Silt, Mudstone
[ ] Coastal Plain [ ] Marine Shale _
[_] Estuarine/Fluvial [__] Deep-Water Sands basinward >

[ ] Shoreface/Deltaic Sands
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Thought Exercise
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Paraseqguence Sets in Logs, Core and Outcrop

Parasequence = building block of sequences.
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How to Correlate Parasequence Sets

Note any facies description
Identify facies vertical trends in logs

Consider landward to seaward facies
transition

Identify major stratigraphic boundaries
for target zone

Identify all flooding surfaces (shale
markers) between sandbodies and
correlate them (don’t correlate by ‘sand
tops’!).

Understand sandbody geometry in
context of the framework

SB

FS
FS

MES =

TS

GR 1 GR 2 GR 3
= -15
(M)
- 0
basinward

[y L} I . I

>

>

[JFluvial [ Deltaic [] Marine
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Lecture 3: PRISM® + Case Studies
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PRISM" — PRedictive Integrated Stratigraphic Modeling

1. Geology:
. Background research
*  Analyze site-specific data/local outcrops
e  Develop relevant facies models
. Sequence stratigraphic correlation
2. Hydrology:
e  Define geologic constraints to groundwater flow
e  Water level elevations
e Identify local surface water bodies
3. Chemistry:
. Well screen/trend analysis
. Define heterogeneity
. Back-diffusion
. Emerging contaminants

A fully-integrated €SM for a
holistic understanding.of the
subsurface

39 A=COM



PRISM" — PRedictive Integrated Stratigraphic Modeling

Successful applications include:

e Reduce Life-Cycle Costs:

O Leverage pre-existing data

O Streamline investigations

O Optimize LTM & remediation
Define and Manage Liability
Build Stakeholder Trust
Mass Flux
Emerging Contaminants

A fully-integrated €SM for a
holistic understanding.of the
subsurface

40
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Case Study 1

Puchack Well Field Superfund Site

Purpose: demonstrate how sequence stratigraphy

P R I S M® can be successfully applied at an complex remedial
site.

PRedictive Integrated Stratigraphic Modeling A=COM



The Site

Problem:

High contamination of hexavalent chromium above 10ug/L is encountered at various depths of
the Puchack Well Field Superfund Site in New Jersey. Poor understanding of the subsurface has
resulted in uncertainty related to injection strategy for site remediation.

Goals:

» Understand the subsurface heterogeneity of the Site in order to identify potential flow
units and confining units in a predictive way

» Evaluate the impactof present injections in mitigating contamination
» Help develop a predictive remedial strategy based on stratigraphic understanding.

A=COM



Location & Cross-section Transects

Applications/MIGW_Base Lwyers
Counties

D Midatlantic States Boundary
Applications/MIGW_Geology

Bedrock Geology Generalized
\ Tertiary sand, silt clay

Location

| ]Juraﬂl: basalt
.Jurusi: diabase

Triassic silestone, shale, dstone, I

9!

. Devonian conglomerate, sandstone, shale, limestone
. . Silurian conglomerate, sandstone, shale, limestone
-

Tt Al ety Cross-section transects

Cambrian limestone, sandstone

. Pracambrian gneiss, granite

Source; NJ-Geoweb . Precambrian marble
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Camden

Hydrogeological Units of Puchack Well Field Superfund Site (Camden, NJ)

* ~80Km (50mi)

Legend

Aquifer

Unconfined Aquifer

- Composite Confining Unit

- Confining Unit

After Sugarman et al., 2005
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Aquifer sediments at
the Site represent
the Upper
Cretaceous Magothy
Formation

Yk Approx. site Location
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Relative Sea-level Changes During the Upper Cretaceous

MA

Age

New Jersey
Coastal Plain
Formations

Hornerstown

Sea Level (m)

50
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e e

70
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80—
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90—

Turonian

100

Cenomanian

upper Potomac

| OId Bridge-SAFC__|

Albian

Modified after Olsson (1991) and Miller et al. (in prep)

The Upper Cretaceous (Turonian) time is
marked by an overall drop in Sea-level
with several high resolution rise and fall

3" order drop in sea level =
—_— forced regression (i.e. delta
progradation)

Probable 4t order drop in sea

—p |evel = fluvial erosion and
channel fill
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Depositional Cycles Applicable to the Site

Lowstand Systems Tract (LST)

Predominantly
channel erosion,
incised valley

Transgressive Systems Tract (TST)

Predominantly
estuarine and tidal
conditions

Modeals from Kendall, 2008
[SEFPM STRATA website)

Highstand Systems Tract HST

Predominantly defta
and channel
progradation

Models from Kendall, 2008
[SEFM STRATA websitz)
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ldentifying Depositional Facies: Fluvial Deposits

Coarse sand Grainsi Silt & Clay
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>
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Example of stacked channel bars
Identified in logs
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ldentifying Depositional Facies: Deltaic Deposits

Coarse sand
& Pebbles

Grainsize

Silt & Clay

.

0
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20

a0

40

&0

70

Example of stacked mouthbars
identified in logs (Parasequences)
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Dip Sections
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Strike Sections
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ADC

Fence Diagram: Sectior

a I i e
High Transmissivity| Low Transmissivity [ Storage

Legend

A=COM
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predominantly moving
through the channel bars of

contamination
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High Contamination Flow-Paths
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High concentration of

contamination

predominantly moving

through the channel bars of

LST/TST1

@® Concentrations above MCL
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Summary of Transmissivity & Connectivity

Facies Symbol Depositional Transmissivity | Connectivity
Environment
Fluvial Point Bar - Low{

Connectivity | Lateral Cor.
Distance

Very High >5000ft
High 1700ft-5000ft

Delta Mouthbar -‘h Moderate 1500-1700ft
Low 300-1500ft

Tidal Bar Low to
moder.

- Overbank Fines w\te

. Prodelta Mud
. Estuarine Mud

e Amalgamated channel bar
thickness:~5-20ft (individual channel
bars ~5-10 ft.)

Nery Al e Delta mouthbars are ~10ft. to >30ft
(amalgamated)

Very High

* Each systems tracts (HST & LST/TST
units) are 40-70ft. thick

N A=COM



Implications for Effective Remedial Design

e Hexavalent chromium above 10ug/L is predominantly present in

the channel sand bars above SB1.
e Channel sand bars tend to be isolated with lower [ateral continuity,
therefore previous injections may not have influenced these zones.

e Delta mouth bar deposits above the.channelized estuarine unit

are below the reporting limit (10ug/L), with rare exceptions.
e Previous remedial effarts in_these highly connected delta mouth bars
were likely more effective:

e NO contamination data is recorded in the shallowest channel

bar deposits above SB2.

e Focus remedial efforts in deeper units. A=COM



Case Study 2

Hill AFB — OU6

Purpose: demonstrate how sequence stratigraphy

® can be used to develop an effective remedial
strategy

PRedictive Integrated Stratigraphic Modeling A=COM
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The Site

Problem:

e < Off-base system is not treating northern
lobe of plume and is not meeting ROD
required RTF.

Goals:

- Evaluate the effectiveness, efficacy, and
adequacy of the existing remedy and
treatability studies.

e Use the above information to augment,
modify, and/or replace the existing
remedy.
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Paleo-extent of Lake Bonneville

http://www.aero-graphics.com/lake-bonneville-flood-animation/
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http://www.aero-graphics.com/lake-bonneville-flood-animation/
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Leveraging Google Earth Imagery
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Re-evaluation of Well Network in Light of New Understanding
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Data Gap Assessment in light of new understanding
N
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Evaluating the Craigdale Subdivision
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Evaluating the Craigdale Subdivision

] W E
Hill up towards Base.
4,600 —
Us-819
Craigdale Subdivisi
- ralgdale ou IVISION
] ‘ Extraction wells U6-221 and U6-223 screened
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Screens miss deeper contamination. water available to the P&T system.
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CVOCs than other, shallower wells. |

GW flow and CVOC migration from S to N, into page. Very
little saturated thickness vs. up on Base. Constrained
within delta lobe.

Well screens in Craigdale are screened across water
table and above the bottom of the aquifer, missing
deeper contamination.
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Proposed Approach

cti‘ness, Efficacy, Adequacy

Evaluation of Existi
Hydraulics Evaluati
Plume Stabi
MNA Assessment

M Site Investigation
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Case Study 3

Joint Base Anacostia — Bolling (JBAB)

Purpose: demonstrate 3-D visualization techniques

P R I S M® and benefits to stakeholders.

PRedictive Integrated Stratigraphic Modeling A=COM



JBAB - Site Locatlon & Data

2l Data use:

e HPT logs from
nCEN - : 67 wells in 4

' VTR G  cross-section
Gy’ ! & transacts

“i¥ « Boring logs from
Water Division

Chesapeake | >
Bay 5 oJE e 3-D CSM derived
' = o from EVS model
without

geological input

Purpose: to better understand and
predict the contamination plume’s
flow-path at the site
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The Site

Problem

e How much contaminant
mass is being discharged
into the river?

 Plume migrating towards
the north?

Goals

e Refine an existing EVS
model to design a targeted
investigative approach.

; 400 800 1,200
/ L % F } ]

lf' Faet — '
7 Joint Base Anacostia

) i} A=COM




EVS Model (K>50ft/Day) -No Stratigraphic Input)
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Regional Geological Background
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-10 S =
= g.
-0 = 'E
N . -
(' o |
a0 = =
Q.
Z
- -20 . =
] Holocene tidal bars
[
B s J Holocene estuarine ftidal wetlands deposits
E L1 AL
2 ] 5
M so -
cb \ Pleistocene Braided Bars '
= E Anacostia valley 11
L .70 i
o Haolocene Pleistocene 1
| 80 = ) Landfill EEEGravel
o -_g EBClay  pleistocens 2 . : > Braided River Deposits
o0 G 9 Csin & Tidal Bar 1
s E Cre
T 5 [—Jsand I
O ) Gravel

Stratigraphic Characterization and Ground Water Flow in the Poplar Point Area,
Anacostia River Basin, Washington, D.C.
Csato et al. 2013
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The Horst & Graben Model in Extensional Tectonics

Valley Valley

Fluvial Channel

*  Modified f [ .wisc.ed n
. odified from geoscience.wisc.edu =COM



Correlation Technique
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Interpretation:

Identify Continuous shale markers
Identify discontinuous channel markers
Determine sequences
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Depositional Facies of JBAB

Fan Delta Channel Bar Bay-head Delta Mouthbar Tidal Bar
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Stratigraphic Cross-sections at the Site

2.5 miles
== B2  m A
| | prst .;.
2.4 miles -
st s _
0.50 milés

< 0.45 miles >

Dl

Horst

*t :

Fan Delta Deposits (Coarse -fine sand with gravels) - Channel Bars (Coarse sand - silt)

Bay-head Delta Mouthbars (Medium-fine sand and silt) - Levee/Splay (Very fine sand and silt)

- Tidal Bars (Very fine sand, slit and clay)

I

- Overbank Fines (Slit and clay)
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Evaluating Well Screens

East

k Fan Delta Deposits (Coarse -fine sand with gravels) . Channel Bars (Coarse sanc

\ _] Bay-head Delta Mouthbars (Medium-fine sand and sil) . LeveelSplay (Very fine sr
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Updated EVS Model — With Stratigraphy

E3_1440 #124 Sadeque_Video.wmv
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Stratigraphic Control on Plume Migration

Plumes migrating westwards towards the
Potomac River

Northward movement of plume prevented by
mud-filled deep graben/valley

Tot_CYOC




CSMs are living, breathing things - Update them regularly

e Improve 3D visualization/HRSC Integration

 Reduce costs by optimizing the next phase. of investigative activities
e Refine Mass Flux Estimates

* Re-evaluate the existing well network

e Build Stakeholder trust

* Creating a management toolfor future releases/emerging contaminants

A=COM



Major Takeaways

Understanding the subsurface geology is crucial for developing more effective remedial strategies!
Beware the pitfalls of Lithostratigraphy!

Sequence Stratigraphy is a model-based predictive tool for mapping the true heterogeneity of aquifer rocks
— This is essential to understanding and predicting the flow path of plume migration

Sequence stratigraphy incorporates knowledge of depositional environments and facies to map the subsurface
— Interplay of Accommodation vs. Sediment Supply

Sequence Stratigraphy takes years of experience to master...
— Facies analysis is an important building block of sequence stratigraphy
— Sequence Stratigraphy is not equal tofacies analysis!

Good data collection = good results!
— Continuous geophysical logs (Gamma, resistivity, SP, etc.)
— CPT/HPT logs
— Detailed boring logs that utilize the Wentworth classification scheme!

“We already have a CSM, we already know what the subsurface looks like”
. . oy
Time for a paradigm shift! A=COM
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