Pragmatic Approaches to Remedial Investigation, Technology Selection, and Remediation Success

Tom Kady, USEPA Environmental Response Team Office of Superfund Remediation and Technology Innovation Technology Innovation and Field Services Division

SUPERFUND TASK FORCE RECOMMENDATIONS

Recommendations in response to Administrator Scott Pruitt's request on May 22, 2017. The recommendations address: expediting cleanup and remediation process; reducing financial burden on all parties involved in the entire cleanup process; encouraging private investment; promoting redevelopment and community revitalization; and, building and strengthening partnerships. <u>RECOMMENDATION 5</u>: Clarify Priorities for RL/FS Resources and Encourage Performing Interim/Early Actions During the RL/FS Process to Address Immediate Risks

Recent developments in real-time investigation technologies and data visualization techniques offer opportunities to build robust understanding of site conditions portrayed in CSMs focused on root causes and high-value, targeted, remedial actions. Advances in electronic data capture and distance collaboration platforms enable project stakeholders to work as a team on RI/FS and Remedial Design/Remedial Action (RD/RA) activities, ensuring all stakeholder concerns are considered as the work is performed. In this way, the team can focus on taking actions that drive sites toward completion.

<u>RECOMMENDATION 9</u>: Utilize State-Of-The-Art Technologies to Expedite Cleanup

Specific Actions:

- Expand the use of real-time investigation technologies and data visualization techniques.
- Determine other available state-of-the-art technologies on at least an annual basis.
- Compile annual report of new technologies and their applicability.

Real-Time, Collaborative, Decision-Making -- A Better Way?

Direct-Sensing/High-Resolution Technologies

- Spatial distribution of COCs where to remediate
- Matrix distribution of COCs how to remediate
- VOCs, Metals, PAHs/PHCs ----- Lithology, Permeability, Hydraulic Conductivity
- Dense vertical data sets Accuracy of CSM depends on horizontal density of borings

Data as a Deliverable

- Real-time data capture in the field
- Daily uploads to SCRIBE/EQUIS
- Immediate interpretation visualization, models, etc.

Collaborative Decision-Making and Actions

- Data visualizations uploaded to SharePoint, response.epa.org, or FTP sites
- Data available to all stakeholders for multiple uses (independent or group)
- Reach consensus on Conceptual Site Model, data gaps, and next actions

Pragmatic Approaches

Greater than 98% of contaminant mass often resides in less than 2% Doth't get ming apping to the second sec

<u>Remedial</u> Investigation – Five Basic Questions

- 1. Is there an "unacceptable risk" that warrants action?
 - Human health or the environment
 - Third party lawsuits
 - Corporate reputation or brand image
 - Increased project complexity, costs, and duration
 - Property value
- 2. If so, what is the root cause?
 - Follow the 98/2 rule!
 - Find the mother lode

Hint: If the contaminant is not "water soluble" the mother lode is not in the water!

<u>Remedial</u> Investigation – Five Basic Questions

- 3. What actions will control the root cause quickly and costeffectively?
 - Spatial distribution where to remediate
 - Matrix distribution how to remediate
 - Field pilot optimize performance and costs
- 4. Are there secondary problems (symptoms) that may require action?
- 5. Do we have high confidence the above actions will accomplish the following?
 - ✓ Stabilize the situation "Time no longer working against us"
 - ✓ Improve the situation "Time working for us"
 - ✓ Set the conditions for natural attenuation "Acceptable timeframe"

The Cost of Time

But what if this is already my situation?

What about HRSC at historical releases?

- Source (root cause) often not adequately characterized
- Investigations and remedies often focused on symptoms
- Remedies consequently ineffective and costly (low mass / high volume)
- Investigations continue well beyond the remediation zone

Ten Things to Know and Why

- 1. Source in the vadose zone
 - Groundwater threat
 - Vapor intrusion threat
- 2. Porosity/permeability of vadose zone
 - Vapor control options
 - Time until groundwater impact
 - Extraction options
 - Treatment options
- 3. Depth to water
 - Time until groundwater impact
 - Direction of groundwater flow
 - Potential groundwater receptors
 - LNAPL/DNAPL complexities

Ten Things to Know and Why

- 4. Water table fluctuation
 - Smear zone (LNAPL)
- 5. Permeability of smear zone
 - AS/SVE, Injection, Excavation options
- 6. Direction of groundwater flow
 - Off-site migration
 - Potential receptors
- 7. Plume thickness and depth
 - How/where to treat, contain or intercept

Ten Things to Know and Why

8. Permeability lenses in saturated zone

- Transport zones?
- Storage zones?
- 9. Mass distribution
 - High-mass footprint? (Root cause 98:2)
- 10. Matrix distribution
 - Remediation options (contact, residence time, conditions, driving force)

The power of direct sensing and high-resolution

Pragmatic Remediation Opportunities:

While every site may be a snowflake ...

Early migration controls and remediation of high mass footprint (Root Cause)

- Eliminates secondary problems (symptoms)
- Can save years and millions in assessment, remediation, and ancillary costs

Typical MiHPT Support Van

Lab-Grade Contaminant Detectors

- Photoionization (PID)
- Flame ionization (FID)
- Electron capture (ECD)

Order of magnitude lower

PCE Source Impacting Municipal Wellfield

Attack Root Cause

What remedial approach would you take?

Address Buffer Zone

What remedial approach would you take?

Monitor/Manage Attenuation Zone What approach would you take?

Step 3: Attenuation Zone

- Monitor to ensure attenuating plume (low cost)
- Manage risk with institutional or engineering controls (low cost)
- Attenuation zone remediation unlikely

Focus time and money on FS activities for the root cause and buffer zones

 Investigation and remedial strategy shown in these figures: 5 Days -- \$65k **The Power of Sharing Platforms**

Wyckoff-Eagle Harbor, Historic Creosote Site

Conventional Assessment Techniques Necessary?

- Quantify and verify direct-sensing information
- Fill specific data gaps
- Focus on root causes and effective solutions
 - Water problem in soil?
 - Soil problem in water?
- Optimally placed monitoring wells, soil borings, vapor points, etc.

Rules of Thumb

- Production rates
 - GeoProbe (MIHPT): 125-150 feet per day
 - CPT (LIF, XRF, MIP): 250-300 feet per day
- Typical boring depths
 - GeoProbe: 30-50 feet
 - Cone Penetrometer: 50-100 feet
- Daily costs: \$7500
- 3-D Visualization -- \$5000 to \$25,000
- 2-D Visualization Can do it yourself (download GeoProbe's DI viewer)

Limitations

- Direct Push Technologies
 - Must be able to push to/through contaminant layer
- Typical Detection Limits
 - VOCs -- >100 ppb
 - LIF free product
- MIP and LIF are not compound specific
- Subsurface utilities must be known!
- Need qualified subs (things break!)
- Need qualified oversight professionals

SUPERFUND TASK FORCE RECOMMENDATIONS

Recommendations in response to Administrator Scott Pruitt's request on May 22, 2017. The recommendations address: expediting cleanup and remediation process; reducing financial burden on all parties involved in the entire cleanup process; encouraging private investment; promoting redevelopment and community revitalization; and, building and strengthening partnerships. <u>RECOMMENDATION 5</u>: Clarify Priorities for RL/FS Resources and Encourage Performing Interim/Early Actions During the RL/FS Process to Address Immediate Risks

Recent developments in real-time investigation technologies and data visualization techniques offer opportunities to build robust understanding of site conditions portrayed in CSMs focused on root causes and high-value, targeted, remedial actions. Advances in electronic data capture and distance collaboration platforms enable project stakeholders to work as a team on RI/FS and Remedial Design/Remedial Action (RD/RA) activities, ensuring all stakeholder concerns are considered as the work is performed. In this way, the team can focus on taking actions that drive sites toward completion.

<u>RECOMMENDATION 9</u>: Utilize State-Of-The-Art Technologies to Expedite Cleanup

Specific Actions:

- Expand the use of real-time investigation technologies and data visualization techniques.
- Determine other available state-of-the-art technologies on at least an annual basis.
- Compile annual report of new technologies and their applicability.

Real-Time, Collaborative, Decision-Making -- A Better Way?

Direct-Sensing/High-Resolution Technologies

- Spatial distribution of COCs where to remediate
- Matrix distribution of COCs how to remediate
- VOCs, Metals, PAHs/PHCs ----- Lithology, Permeability, Hydraulic Conductivity
- Dense vertical data sets Accuracy of CSM depends on horizontal density of borings

Data as a Deliverable

- Real-time data capture in the field
- Daily uploads to SCRIBE/EQUIS
- Immediate interpretation visualization, models, etc.

Collaborative Decision-Making and Actions

- Data visualizations uploaded to SharePoint, response.epa.org, or FTP sites
- Data available to all stakeholders for multiple uses (independent or group)
- Reach consensus on Conceptual Site Model, data gaps, and next actions

Pragmatic Approaches

- Begin with the end in mind
- Develop conceptual site models via direct sensing techniques (less time / less \$)
- Attack root cause (mass, not molecules percentages, not ppb)
- Protect receptors in low mass zones
- Set up conditions for natural attenuation (buffer zone treatment)
- Move faster than the conventional regulatory process (capture and share data, make collaborative decisions)

Roger Bannister broke the four-minute mile on May 6, 1954. "It just didn't seem to be capable of being broken," he said. Credit Associated Press

The Proposition

Identify appropriate sites

Engage willing RPs/RPMs

Run the four-minute mile