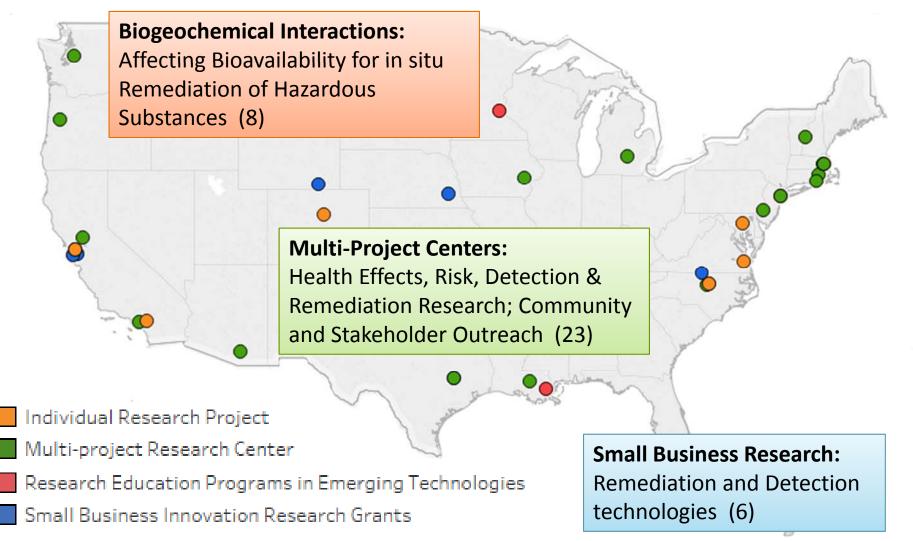


Superfund Research Program (SRP) Funded Research in Metal/Metalloid Remediation Technologies

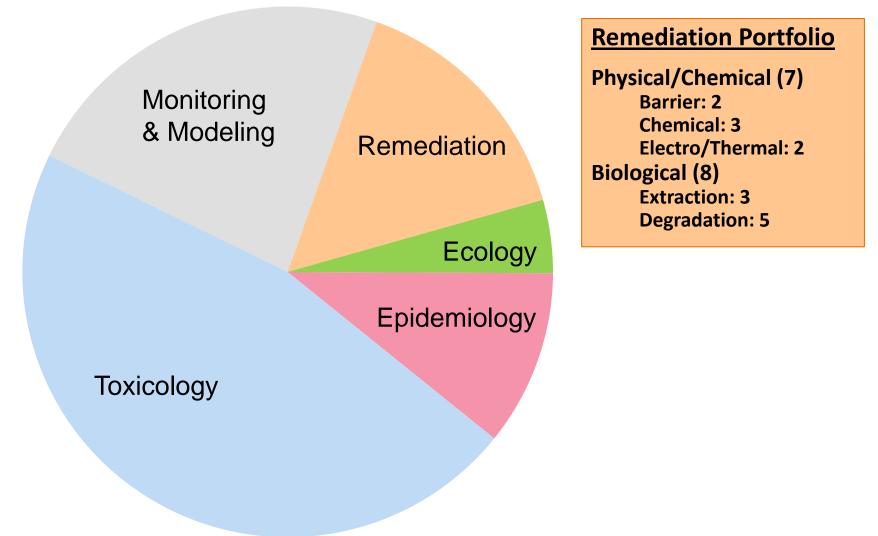
Heather Henry, PhD

Program Administrator, Superfund Research Program National Institute of Environmental Health Sciences

SRP is Part of the National Institutes of Health


NIEHS Superfund Research Program (SRP)

- **Mission**: Provide practical science to solutions to protect human health
- NIH peer-reviewed, competitively awarded grants to Universities and small businesses
- Unique team-science approach
 - Brings together diverse disciplines: health researchers, engineers, biologists, ecologists, earth scientists, and social scientists
 - Aims to understand and reduce exposure to potentially harmful contaminants and improve health
- Works closely with industry, government, tribal, and business partners to deliver practical solutions



SRP – Funded Research Across the U.S.A.

SRP Research Portfolio (2017)

Highlights: SRP Metals Remediation and Related Research & Activities

Sustainable Solutions – Phytostabilization of Mine Tailings

PI: Raina Maier University of Arizona

Phytostabilization Technology for Mining Wastes in Arid and Semiarid Environments: Plant-Microbe-Metal Indicators to Predict Sustainability

Researchers started a field trial at the Iron King Mine and Humboldt Smelter Superfund site in Arizona in 2010.

Sustainable Solutions – Phytostabilization of Mine Tailings

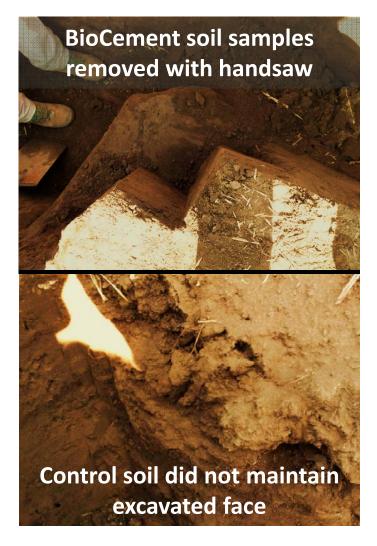
PI: Raina Maier, University of Arizona

Phytostabilization Technology for Mining Wastes in Arid & Semiarid Environments

- Targeted Metals: Arsenic, lead
- Innovation: Revegetation strategy "compost-assisted phytostabilization." Plants accumulate metals in root zone → prevent from entering food chain. Collected data will help assess phytostabilization as a remediation technology in semi-arid environments.
- Status: Field study at Iron King Superfund site in Dewey-Humboldt, AZ. Currently being translated to major mining companies to improve mine-tailing remediation practices.
- Relevant Publications:
 - Hammond et al., ES&T, 2018
 - Valentin-Vargas et al., SciTotEnv, 2018
 - Honeker et al., Micro Ecol, 2017
 - Santos et al., PeerJ, 2017
 - Gil-Loaiza et al., SciTotEnv, 2016

0% compost 10% compost 15% compost 20% compost U.S. Department of Health and Human Services

Sustainable Solutions – Stabilization of Metals in Soil


PI: Malcolm Burbank BioCement Technologies, Inc

Microbial Induced Calcite Precipitation by Indigenous Soil Bacteria to Reduce Mobility of Lead and other Metals in Soil*

BioCement stabilizes metals in soil

*Previously Funded

Sustainable Solutions – Stabilization of Metals in Soil

PI: Malcolm Burbank, BioCement Technologies, Inc

Microbial Induced Calcite Precipitation by Indigenous Soil Bacteria

- Targeted Metals: Lead, other metals (e.g., barium, cadmium, cobalt, manganese, strontium and zinc). Also stabilizes uranium.
- Innovation: Simultaneously alter engineering characteristics of soil/sand while reducing the mobility of metals. Stable over geologic time. Process is carbon neutral to carbon negative.
- Status: BioCement is commercially available. Currently testing the use of BioCement to treat munitions-impacted soil.

Phone: 509-607-2406 Email: <u>burbankm@cdmsmith.com</u>

PI: Heileen Hsu-Kim Duke University

Biogeochemical Framework to Evaluate Mercury Methylation Potential During in-situ Remediation of Contaminated Sediments

PI: Heileen Hsu-Kim, Duke University

Biogeochemical Framework to Evaluate Mercury Methylation Potential

- Targeted Metals: Mercury
- Innovation: Establishing biogeochemical indicators for methylmercury production to improve the effectiveness of in situ remediation.
- Status: Conducting lab sediment microcosm experiments simulating a range of conditions relevant to mercury-contaminated Superfund sites.
- Relevant Publications:
- Wyatt et al., Environ Sci Technol, 2016
- Kucharzyk et al., Environ Sci Process Impacts, 2015
- Ticknor, et al., Environ Eng Sci, 2015
- Pham et al., Environ Sci Technol, 2015 (DGT sampling)

PI: Upal Ghosh University of Maryland – Baltimore County and Cynthia Gilmour, Smithsonian)*

Development of in-situ Mercury Remediation Approaches Based on Methylmercury Bioavailability

U.S. Department of Health and Human Services

PI: Upal Ghosh, Cynthia Gilmour

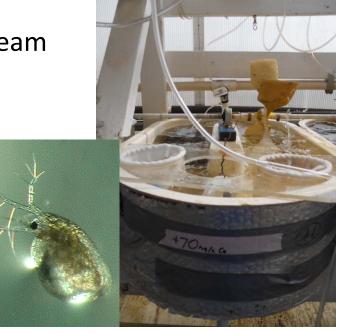
Development of in-situ Mercury Remediation Approaches Based on Methylmercury Bioavailability

- Targeted Metals: Mercury
- Innovation: Developing in situ remediation tools for Hg and MeHg impacted sediments; developing a biogeochemical model for MeHg production and degradation in contaminated sediments and soils
- Status: field trial of in situ sorbent remediation using activated carbon in Berry's Creek, NJ
- Relevant Publications
 - Christensen, et al. Appl Env Microb 2018
 - Gilmour et al. Sci Tot Env, 2017

Biogeochemistry: Bioavailability Assays at Clear Creek, CO

PI: Jim Ranville Colorado School of Mines

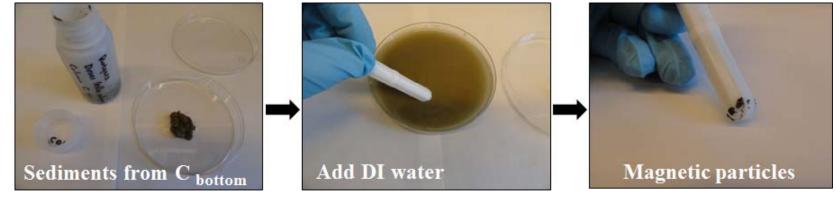
Investigating Biogeochemical Controls on Metal Mixture Toxicity Using Stable Isotopes and Gene Expressions

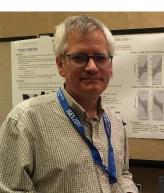


Biogeochemistry: Bioavailability Assays at Clear Creek, CO PI: Jim Ranville, Colorado School of Mines

Biogeochemical Controls on Metal Mixture Toxicity

- Targeted Metals: Metal mixtures (lead, copper, zinc, nickel, iron)
- Innovation: Organism & community-level studies, genomic bioassays, & bioavailability studies. Applying concepts to study remediation effectiveness; simulated recovery experiments.
- Status: Field testing in metals-contaminated stream at North Fork Clear Creek Superfund site in CO.
- Relevant Publications:
- Meyer et al., Bull Env Con Tox, 2017
- Traudt et al., Environ Toxicol Chem, 2017
- Cadmus et al., Environ Sci Technol, 2016
- Traudt et al., Environ Toxicol Chem, 2016




Enhanced Remediation at Contaminated Sites in the U.S.

PI: Benjamin Bostick, Steven Chillrud, Columbia University

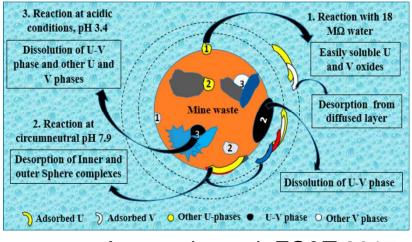
Enhanced Remediation at Contaminated Sites in the U.S. – Focusing on Arsenic for SRP, but also working with Mn

Enhanced Remediation at Contaminated Sites in the U.S.

PI: Benjamin Bostick, Steven Chillrud, Columbia University

Enhanced Remediation of Arsenic at Contaminated Sites in the U.S.

- Targeted Metals: Arsenic, Manganese.
- Innovation: Developing enhanced remediation technology that produces magnetite in situ → forms reactive barrier that sustains low As both in laboratory and in field trials.
- Status: Lab and field-based studies; pilot at US Geological Survey site on Cape Cod, Lot 86 Superfund site at North Carolina State University. First field-scale test of nitrate-Fe(III) injections for As remediation.
- Relevant Publications:
 - Sun et al., Chemosphere, 2016
 - Sun et al., Environ Sci Technol, 2016
 - Sun et al., J Hazard Mater, 2016



Protecting Water from Mine Waste

PI: Jose Manuel Cerrato University of New Mexico

Immobilization of Uranium, Arsenic, and Cooccurring Metals in Mine Wastes

Avasarala et al. ES&T 2017

Protecting Water from Mine Waste

PI: Jose Manuel Cerrato, University of New Mexico

Immobilization of Uranium, Arsenic, and Co-occurring Metals in Mine Wastes

- Targeted Metals: Uranium, arsenic, metal mixtures (Mo, Se, V)
- Innovation: Developing cost-effective remediation strategies that immobilize metals and prevent degradation of community water sources. Studying reaction mechanisms of metal mixtures and adsorption with iron oxides. Engineering phytoremediation/rhizosphere to alter microbiome-plant interactions controlling uptake of metals in surface water systems downstream of mine waste sites.
- Status: Recently funded, in-vitro and greenhouse experiments; working at Jackpile-Paguate Uranium Mine Laguna Pueblo, New Mexico.
- Relevant Publications:
 - Avasarala et al., ES&T, 2017

Outreach Activities: Informing Policy

- International Conference on Mercury as Global Pollutant (ICMGP): Science Informs Policy Questions (Celia Chen, Dartmouth SRP Center)
- Workshop focused on Hg production & fate in response to multiple environmental factors
- 4 synthesis papers expected to be published in early 2018
- Synthesis reports currently available on ICMGP website

(<u>http://mercury2017.com/</u> program/synthesis-effort/)

Outreach Activities: Meetings and Partnerships

Sustainable Mining Meetings

(Raina Maier, University of Arizona SRP Center)

- 2014 and 2016 meetings established the Pan-American Hub for Sustainable Mining
- "Compatible" with community, environment, and industry interests
- Partnership with mining companies

(Raina Maier, University of Arizona SRP Center)

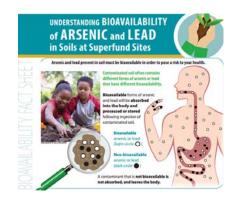
- Testing cost-saving techniques for stabilizing waste using phytostabilization
- Identifying biogeochemical values that define a sustainable reclaimed ecosystem, and developing metrics of minimum quality standards for capping material to sustain plant growth

Outreach Activities: Metal Bioavailability

Bioavailability Fact Sheet

(U North Carolina-Chapel Hill, U Arizona, U.S. EPA)

- Created factsheet to explain metal bioavailability to the public
- Arsenic and Well Testing Webinar

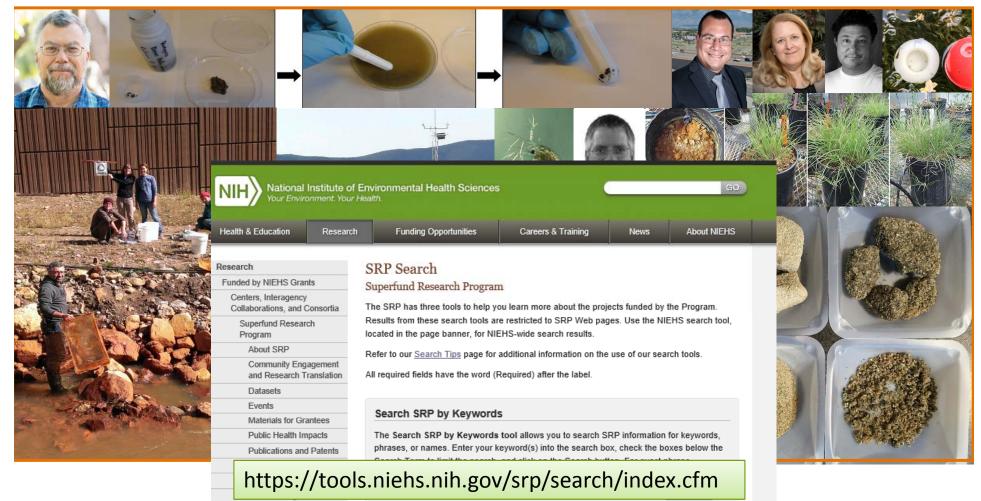

(UNC-CH, Columbia, Dartmouth, U Arizona)

- Well testing for As
- Communication / engagement

GardenRoots Project

(Monica Ramirez-Andreotta, U Arizona)

- Community-Engaged Research/Citizen Science project
- Collecting garden soil for As analysis, safe gardening seminars
- Factsheets and personalized results



National Institute of Environmental Health Sciences Your Environment. Your Health.

Additional/Former SRP Metals Remediation and Related Research

Opportunities

page for allowable special characters and additional search features.

Other Phytoremediation Work

- Endophyte Assisted Phytoremediation of Arsenic (PI: Michael Blaylock, Edenspace)
- Phytoextraction of Cadmium from Plant Trichomes Expressing a Stabilized Antibody (PI: Ryan Shepherd, Phyllotech)
- Nano-scale Mechanisms of Metal(loid) Rhizostabilization in Desert Mine Tailings (PI: Jon Chorover, University of Arizona)

Other Bioremediation Work

- Novel Rhamnolipid Surfactants for Recovery of Critical Elements and Remediation of Metal Contaminated Waste Streams
 (PI: Chett Boxley, GlycoSurf, LLC; Raina Maier, University of Arizona)*
- Microbial Communities that Bioremediate Chemical Mixtures (PI: Lisa Alvarez-Cohen, University of California, Berkeley)*
- Novel Mechanism of Uranium Reduction Via Microbial Nanowires (PI: Gemma Reguera, Michigan State University)
- In Vivo Characterization of Bacteria-mediated Extracellular Reduction of Chromium (PI: Peter Lu, Bowling Green State University)
- Chemical Mapping of Chromate Uptake, Localization, and Reduction in Remediating Bacteria (PI: Joseph Irudayaraj, Purdue University)
 *Currently Funded

•As, TCE, BTEX mixtures

Other Amendments / Capping

- In-situ Mercury Remediation based on Methylmercury Bioavailability (PI: Upal Ghosh and Cindy Gilmour, University of Maryland – Baltimore County)*
 *Also presenting in this webinar
- Sub-Micrometer Zero Valent Metal for in situ Remediation of Contaminated Aquifers (PI: John Freim, OnMaterials)
 Cr (VI), As, and heavy metals
- Sequestration & Immobilization of Metal/Metalloid Contaminants in Sediments (PI: Peggy O'Day, University of California – Merced)

Drinking Water

- Anode Modification to Target Pb Removal for Drinking Water Purification using Inverted Capacitive Deionization (PI: Lindsay Boehme, PowerTech Water, LLC)*
- Removal of Arsenic and Heavy Metals from Drinking Water (PI: John Stanley Lovell, ADA Technologies, Inc.)
- Iron-Based Adsorption Technology for Removing Arsenic from Water (PI: Margaret Lengerich, HMSolutions)
 → Spin off from Brown SRP Center work with Joseph Calo

Detection/Sensing Technologies

- Low-cost, Easy-to-use Test for Lead Concentration in Drinking Water
 (PI: Lihua Zhang, Intelligent Optical Systems, Inc)*
- Graphene-based Nanosensor Device for Rapid, Onsite Detection of Dissolved Lead in Tap Water
 (PI: Ganhua Lu, NanoAffix Science, LLC)*
- Lipid Enhanced Nano-Sensors (LENS) for Pb & Hg Detection in Water
 (PI: Steven Lenhert, Zansors, LLC)*
- Catalytic DNA Biosensor for Toxic Metal Ions (PI: Yi Lu, ANDalyze [formerly Dzymetech], Inc.)

*Currently Funded

Multi-Disciplinary Centers – metals/mining

- University of Arizona: Risk and Remediation of Metal-Mining Wastes* (Center Director: Raina Maier)
- University of New Mexico: UNM Metal Exposure Toxicity Assessment on Tribal Lands in the Southwest (METALS) Superfund Research Program * (Center Director: Johnnye Lewis)
- Dartmouth College: Sources and Protracted Effects of Early Life Exposure to Arsenic and Mercury* (Center Director: Bruce Stanton)
- Columbia University: Health Effects and Geochemistry of Arsenic * (Center Director: Ana Navas-Ascien)

*Currently Funded

Questions?

Heather Henry, PhD

henryh@niehs.nih.gov

919-609-6061

Program Administrator, Superfund Research Program National Institute of Environmental Health Sciences

