Basic Settings for Building a Better Model

Noman Ahsanuzzaman, Ph.D., P.E. Region 4, USEPA

CLU-IN webinar in December, 2019

Outline

- Important issues for setting up a groundwater model
- Basic checks for a flow and transport model
- Uncertainty analysis
- A modeling framework may be useful

Before Modeling

- CSM (conceptual site model)
- Plan view (DEM) of the model domain
- X-section (lithology)
- Physical and Hydrogeologic conditions (e.g., porous system or fractured rock)
- Modeling objectives
- Data availability/Data gaps?
- Is modeling necessary to get an answer for decision making?

Initial Preparation for Groundwater Modeling

- What datasets represent the best steady-state flow condition?
 - Separate datasets for calibration and validation
- Are there any datasets for transient flow calibration?
- Identify the Target wells
- Is the source mass/concentration decaying?
- What is a reasonable estimate for partitioning coefficient (i.e., retardation factor)
- Is biodegradation happening? Do you degradation products? Any approximation of the biodegradation rate?
- Is the selected modeling package robust enough to handle the geochemical processes?

Model Setup

- Large enough model domain.
- Lithology well represented in the model layers?
- Boundary Conditions well understood;
 - Find a set of target wells near the boundaries to validate the boundary values
 - Do not set up 'Constant Head Boundary' near an extraction well
- Calibration Targets: Do not average the elevation data, instead use a given sampling dataset (snapshot)

Flow Model Calibration

- More data is available for flow model calibration
- Transport model depends on the flow model
- Manual vs. Automated (PEST) calibration?
- PEST is inverse modeling tool for automated calibration of model parameters.
- PEST is popular among modelers/consultants
- Pilot Points in PEST should be limited in numbers and have a tight range for each parameter
- Initial values are sensitive in PEST calibration
- <u>Start with manual calibration and then improve with</u> <u>PEST</u> – *Rarely/Never followed in practice*!!

Calibrated hydraulic conductivity of surficial aquifer

Flow Model Calibration (contd.)

- Calibration criteria in industry is NRMSE <= 10%
- NRMSE (Normalized Root Mean Square of Error)
- NRMSE = RMSE/(Range of Observed Head) ×100%
- Goal should be NRMSE≈5% in the key areas/layers
 - Group target wells for calibration in the key areas
 - ☆ Try to achieve NRMSE≈5% in the key areas
 - Do not just check site-wide NRMSE <=10%</p>
- Also qualitatively match observed vs. calibrated potentiometric surface maps.

Calibrated hydraulic conductivity of surficial aquifer

Calibration/Validation

- Residual Distribution Map
 - Residual Error should be well distributed
 - Avoid bias to minimize error in hydraulic gradient
- Validation should be done with a dataset not used in calibration
- Calibration-Validation is an iterative process

• Validation is not popular among consultants!

Sensitivity/Uncertainty Analysis

- Parameter sensitivity is most commonly done in practice
- Again, not so popular among consultants!
- Common practice is to compare the RMSE values between simulated and the calibrated models.
 - Doesn't help in decision making, since it doesn't address sensitivity to the model objectives. For example ,
 - Capture zones in a pump & treat system
 - Time to reach the cleanup goal
- We expect to see model uncertainty as it relates to the modeling objectives and identify data gaps to address that uncertainty.

Solute Transport Model

Three common questionable practices

Retardation Factor (RF) is too high!

✤ Source is instantaneous/initial?

Biodegradation Rate (half-life) calibration?

✤RF could be estimated in the following ways,

- 1. Find the partitioning coefficient (K_d) from batch or column test
- 2. Measure fraction of organic carbon (f_{OC}) from the site soil and use literature to get K_{OC} for each COC. (*most commonly done*)
- 3. Calibrate in the solute transport model

➢ Batch test will usually generate high values of K_d (i.e., high RF),

- foc from the contaminated subsurface soil sample will be very high and thus result in high RF (very common mistake). Need to test on background samples.
- Initial estimation from column test of undisturbed soil sample followed by model calibration is likely the best option (time consuming and costly)

>Calibration of RF has high uncertainty, because of too many sensitive model parameters.

□ Particle tracking modeling shows groundwater flow direction (Need a good flow model).

Solute Transport/Instantaneous Source

- Initial concentration of the plume is assigned, but no continuous source!?
- Plume in the source area will deplete quickly unless the K_d is very high (Figure)
- Artificially high K_d is sometime used to model back diffusion. (questionable practice!)
- □ Historic matching of the source concentration must be done to define the source boundary in the model.

Solute Transport/Biodegradation Rate

- Do a well-by-well trend analysis and estimate the decay rate (k).
- Biodegradation rate (Υ) is NOT k. (Ideally, $\Upsilon < < k$)
- Look for daughter products to confirm biodegradation is happening!
- Biodegradation rate is usually not uniform throughout the site.

Half-Life = 13 yrs (from calibration); i.e., 1 order of magnitude concentration decrease in about 40 yrs.

12

Solution?

- Get involved early, not after the consultant has completed his calibration and used up all the funding (*often the case*).
- Make sure to discuss the modeling framework and workplan in the beginning?
- Specific modeling guideline is not available (to my knowledge).
- Modeling world is vast and it's hard to cover every aspect through a guideline
- Wanted to highlight some common issues rather than trying to cover the broad spectrum in the modeling world!
- A simple modeling framework/checklist might be needed!

Thank You Question and Comments