OVERVIEW OF IN-SITU BIOREMEDIATION OF ORGANICS: CHALLENGES AND TECHNOLOGY ADVANCEMENTS

U.S. Army Corps Engineering and Support Center, Omaha, NE Environmental and Munitions Center of Expertise Prepared by Mark Rothas (Email: Mark.S.Rothas@usace.army.mil) 29 May 2020

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

DISCLAIMER

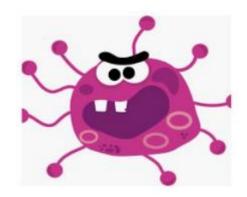
This seminar is intended to be informational and does not indicate endorsement of a particular product(s) or technology by the Department of Defense (DoD) or United States Army Corps of Engineers (USACE), nor should the presentation be construed as reflecting the official policy or position of any of those Agencies. Mention of specific product names, vendors or source of information, trademarks, or manufacturers is for informational purposes only, and does not constitute an endorsement or recommendation by the DoD or USACE. Although every attempt is made to provide reliable and accurate information, there is no warranty or representation as to the accuracy, adequacy, efficiency, or applicability of any product or technology discussed in the presentation, including the suitability of any product or technology for a particular purpose.

PRESENTATION OUTLINE

- More Recent Advances
 - Alternative/Hybrid Amendments
 - Bioaugmentation
- Common Challenges
 - "DCE/VC Stall"
 - Amendment Delivery (e.g., lower permeability) heterogeneous lithology)

CURRENT STATE OF BIOREMEDIATION

- Most common treatment technology for organics (especially chlorinated VOCs)
- Often selected as default "cookie cutter" technology for petroleum and chlorinated VOCs
- Design often based on default rules-of-thumb as low cost approach


CAUTION

ALTERNATIVE/HYBRID AMENDMENTS

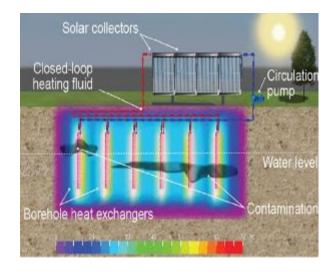
- Fast and Slow Release Carbon Mixtures
- Abiotic/Biotic Hybrid Amendments
 - Carbon/ZVI
 - Titanium Citrate/Vitamin B12/Carbon
 - Iron Sulfide Generators (Chemical Reduction)
 - Sodium Dithionate
- > Other
 - Bioaugmentation
 - Methane Inhibitors

DCE/VC STALL

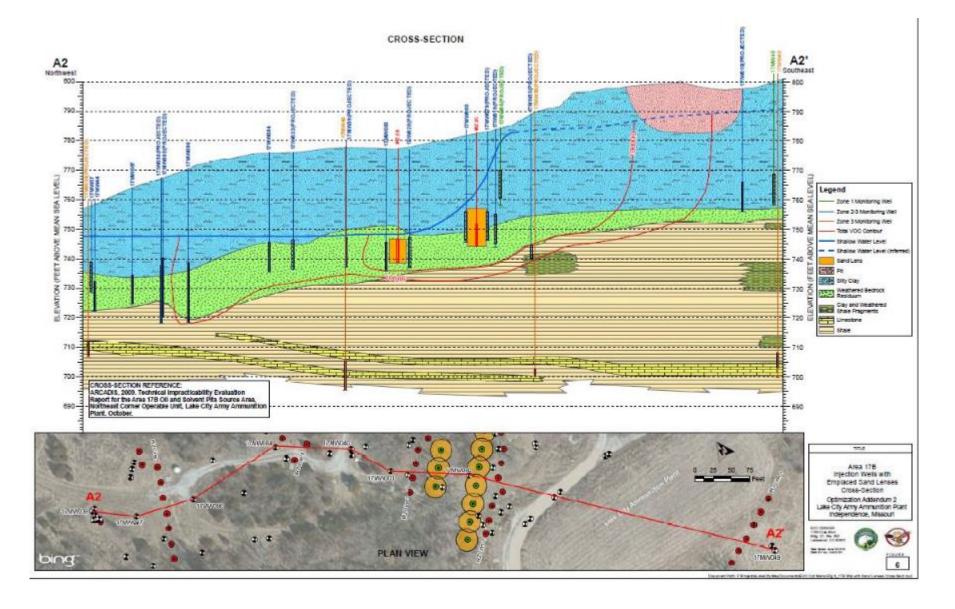
- Slow degradation rate more accurate description
- > Indicator parameters: total ethene molarity; total organic chlorine molarity and chlorine number roughly constant
- Possible optimization actions:
- Improve amendment delivery volume/distribution
- Closer injection spacings & increase injection volume
- Alternating injection locations to minimize stagnation zones
- pH adjustment (between 6.5 & 8)
- Bioaugmentation (including vitamin B12 & nutrients [ammonia])

Reference: Microbial Insights, Inc. webinar titled "DCE Stall: Causes and Cures" by Robert Borden, PE, PhD, EOS Remediation, LLC

AMENDMENT DELIVERY ENHANCEMENTS


- Groundwater recirculation
- Targeted injection depth(s)
- Fracturing/high pressure jetting
- Large diameter augers
- "Grout Bomber" (ESTCP Project ER201627)
- Heat enhancements (ESTCP) Projects ER200719 & 205028 [awarded June 2020])

Reference: ITRC Tech Reg titled "Optimizing Injection Strategies and In Situ Remediation Performance" available electronically at itrcweb.org



LAKE CITY AAP HYDROFRACTURING CASE STUDY

U.S.ARMY

LAKE CITY AAP HYDROFRACTURING CASE STUDY

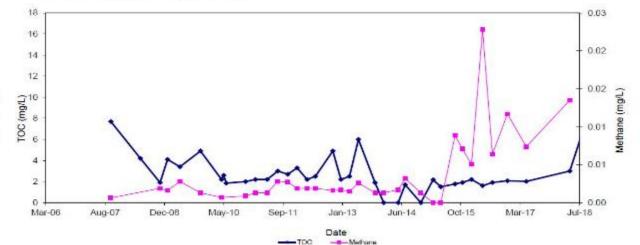
- ➤ ESTCP Project ER201430
- ➤ 2015 hydraulic fracturing: enhance delivery of ERD amendments
- ➤ 13 points with multiple stacked fractures
- Roughly 30-foot spacing
- Substantial increase in volumes delivered:

Line 2 (2015): Avg. 303 gal/point Frac lines: Avg. 600 gal/point

- Some breakout at surface, but good success in creating stacked fractures
- > NAPL in some blowback fluids

- (A) Customized sand lens injection equipment.
- (B) Guar-sand injection solution with rhodamine dye.
- (C) DPT installation of sand lens.

LAKE CITY AAP BASELINE CONDITIONS


MW79 20 ft downgradient of injection well

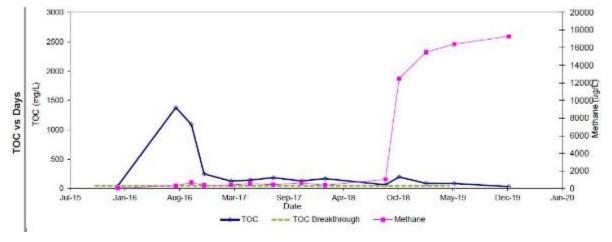
Date	PCE		TCE		cis-1,	cis-1,2 DCE		/C	TCE:DCE mo
	(ug/L)	(umol/L)	(ug/L)	(umol/L)	(up/L)	(umol/L)	(ug/L)	(umol/L)	ratio
51/15/07	3200	1913	4600	35.0	7100	73.2	0	- D	0.478
4715/08	7.070000	1100000		7 17 17 17		2 7 7 7 7 7	J. ***	1	700000
4/24/08							11		
5/30/08		20000000			20000000	900 000 000			1000000000
11/12/08	2200	13.3	96000	731	3700	36.2	110	0.176	150 T
1/14/09	1100	6.63	120000	913	7800	80.5	0	0	11.3
4/28/09	6200	37.4	180000	1370	18000	186	0	0	7.37
10/19/09	1100	6.63	110000	837	11000	113	0	0	7.41
4/15/10	1400	0.82	205000	1560	23700	244	. 0	D.	6.39
9/1/10									
10/14/10									
11/3/10	1050	6.33	84600	644	55700	5/5	0	- O	1.12
1/25/11	1820	11.0	120000	913	56600	607	0	0	1.50
5/4/11	6//	4.08	42500	323	48/00	502	. 0	D	0.643
8/1/11	880	5.31	82100	625	59400	813	- 0	0	1.002
10/24/11	797	4.61	60100	457	78600	011	0	D	0.564
1/11/12	108	0.963	8670	66.2	10900	112	0	0	0.582
4/4/12	1070	6.45	78600	598	66400	675	0	0	0.886
6/13/12	2520	15.2	176000	1340	52500	542	.0	n	2.47
11/7/12	1700	10.3	140000	1070	62000	640		0	1.65
1/15/13	2010	12.1	192000	1460	56300	601	0	0	2.43
3/2//13	2810	16.9	203000	1550	51500	531	0	U	2.92
6/18/13	1670	10.1	140000	10/0	58100	5680	. 0	- 0	1:79
10/25/13	2000	12.2	146000	1110	75000	780	- 0	0	1.42
1/14/14	2180	13.1	153000	1:160	84700	874	0	0	1.33
6/12/14	3170	19.1	196000	1490	67200	693	0	0	2.16
7/9/14	2000	12.1	97600	743.0	102000	1050.0	0	U	0.708
11/1/0/14	168	1.0	90600	680.0	113000	1170 0	219	4	0.580
3/2/15	2310	13.9	114000	868.0	116000	1200.0	814	- 6	0.723
5/8/15	1340	8.1	79700	607.0	119000	1230.0	465	1	0.493
9/8/15	3100	10.7	154000	1170.G	89600	924.0	. 0	.0	1.266
11/6/15	1320	0.0	85100	648.0	80700	832.0	358	6	0.779
1/20/16	1710	10.3	120000	913.0	81600	842.0	239	4	1.084
4/21/16	1730	10.4	20100	686.0	107000	1100 0	0	- 0	0.624
7715/16	2340	14.1	107000	814 D	96800	895.0	198	3	0.909
11/17/16	1690	10.2	136000	1040.0	99800	1030.0	0	0	1.010
4/13/17	1660	10.0	124000	944.0	89900	927.0	0	0	1.018
5/3/18	4180	26.2	173000	1320.0	98200	961.0	0	U	1.374

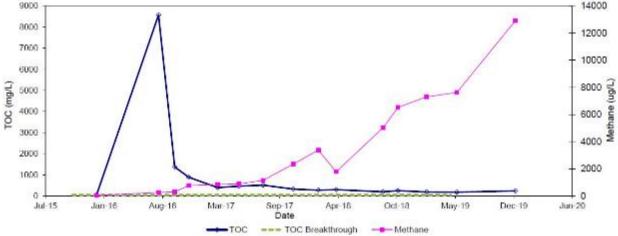
0.012 0.010 0.008 0.008 0.0004 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

MW81 20 ft downgradient of injection well

	PCE		TCE		CIS-1,2 DCE		Va		TCE:DCE mo	
Date	(Hg/L)	(umot/L)	(ug/L)	(umobil.)	(ug/L)	(umoniri.)	(HgH.)	(Jumet/L)	ratio	
9/24/07	5000	32.0	160000	1220	28000	402	0	0	3.03	
5/30/08										
11/12/08	29000	18.1	2490000	15865	150000	1586	- 0	- 0	1.01	
1/14/09	990	5.97	56000	426	20000	209	0	0	1.47	
4/2H/(B)	2100	12.7	82000	604	27000	279	- 11	()	2.24	
10/19/09	1300	7.04	20000	152	5500	56.7	-0	0	2.60	
4/15/10	1180	/ 12	2350	17.9	1430	14.8	- 0	()	121	
5/3/10	42XVV	2000.076	50.57077	S 34620A S	10000000	8	- 20	100	25 EVOCES IN	
5/24/10		9				100000000				
11/3/10	667	3.36	25200	192	20200	208	0	0	0.923	
1/25/11	1140	6.87	27400	209	20200	208	0	0	1.00	
5/4/11	571	3.44	13100	99.7	16500	170	Ö	o	0.586	
8/1/11	£023	4.64	160500	124	22000	227	()	():	0.546	
10/24/11	772	4.66	21500	164	28000	268	0	0	0.612	
1/11/12	1190	7 TH	42100	3520	48400	4505	[]	()	0.645	
4/4/12	1200	7.24	31900	243	60700	626	0	0	0.386	
6/13/12	1460	8.80	509800	400	54200	559	- 0	()	0 / 16	
11/7/12	1640	9.09	47100	350	49100	506	.0	0.	0.700	
1/15/13	1960	11.8	61600	469	70300	725	0	0	0.647	
3/20/13	2640	15.9	78500	597	60200	621	- 0	0	0.961	
6/11/13	2420	14.6	38700	295	30700	317	0	0	0.931	
10/29/13	2440	14.7	54400	414	43400	440	.0	0	0.924	
1/10/14	3210	19.4	77000	686	60000	619	0	0	0.947	
5/12/14	3140	18.9	655600	499	46300	478	U	O	1.04	
7/9/14	2780	16.8	49800	379	36000	371	0	0	1.02	
11/18/14	3240	19.5	72500	552	52300	539	0	0	1.02	
3/2/16	3090	18.6	68700	523	43100	445	0	0	1.18	
5/6/15	2100	13.1	43100	320	20900	290	0	0	1.10	
9/3/16	2240	13.6	39500	301	27200	281	81	1	1.07	
11/4/15	2180	13.1	40800	311	56800	588	U	U	0.53	
1/20/16	1850	11.2	47500	362	42400	437	0	0	0.83	
4/22/16	1750	10.6	2/100	206	18500	191	U	O	1.08	
7/14/16	1760	10.6	32300	246	25100	259	0	0	0.95	
11/18/16	2280	13.7	61200	390	39600	408	0	0	0.96	
4/25/17	2690	16.2	02000	624	56500	503	173	3	1.07	
4/27/18	1780	10.7	34700	264	24600	254	0	0	1.04	
5/22/19	1260	7.65	24300	185	22100	228	- 0	0	0.81	

LAKE CITY AAP FRACTURING TREND RESULTS

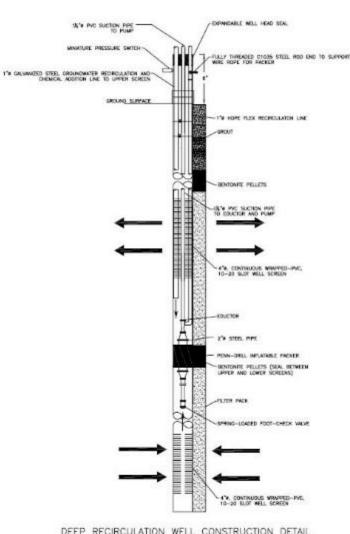



17MW129 20 ft downgradient of injection well

Date	PCE		TCE		cis-1,2 DCE		VC		TCE:DCE mol
	(ug/L)	(umoVL)	(ug/L)	(umol/L)	(ug/L)	(umoVL)	(ug/L)	(umol/L)	ratio
1/4/2016	366	2	20200	154.000	56500.00	583.0000	563	9	0.3
8/4/2016	0	0	931	7.09	82400	850	8590	137	0.008
9/30/2016	0	0	1370	10.40	66600	687	5710	91	0.015
11/15/2016	0	0	0	0.00	298000	3070	13100	210	0.000
2/22/2017	0.00	0.00	0.00	0.00	278000	2870	12200	195	0.000
5/3/2017	0.00	0.00	12700	96.70	242000	2500	17800	285	0.039
7/27/2017	0.00	0.00	12800.00	97.40	290000	2990	15300	245	0.033
11/7/2017	0.00	0.00	15600.00	119.00	219000	2260	11500	184	0.053
12/8/2017	200000		ROWN-NEWS				0.000		200819
2/1/2018	0.00	0.00	5160.00	39.30	206000	2120	26000	416	0.019
9/10/2018	308	2	23900	182	266000	2740.00	33700	539.00	0.066
10/30/2018	0	0	3100.0	23.600	60400	623.00	35100.0	562.000	0.038
2/6/2019	0.00	0.00	1810.00	13.80	5760.00	59.40	5880.00	94.10	0.232
5/20/2019	0	0	2260	17.20	4320.0	44.600	1640	26	0.386
12/6/2019	0	0	9.3	0.071	348	3.59	386.00	6.1800	0.020

17MW131 mid-point between injection wells

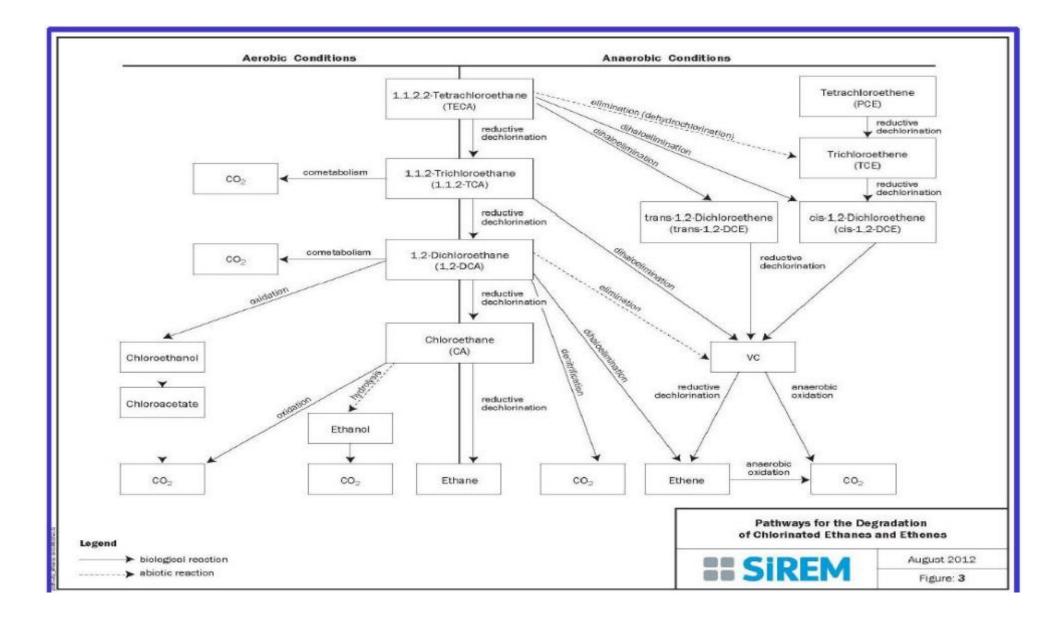
	PCE		TCE		cis-1,2 DCE		vc		TCE:DCE mol
Date	(ug/l.)	(umol/L)	(ug/L)	(umolit.)	(ug/L)	(umolt)	(ug/L)	(umol'L)	ratio
1/5/2016	394	2	21200	161.00	89400.0	922.000	446.000	7.1400	0.17
8/4/2016	0	0	363	2.760	40700	420.00	3000.00	48.0000	0.007
9/28/2016	0	0	1180	8.98	54100.0	558.000	2350	38	0
1/15/2016	0	0	332.0	2.530	120000	1240.00	3210.0	51.400	0.002
2/22/2017	0	0	0.0	0.000	141000	1450.00	8840	141.00	0.000
5/5/2017	0.00	0.00	0.00	0.00	177000.00	1830.00	11600.00	186.00	.0
7/27/2017	0.00	0.00	0.00	0.00	202000.00	2080.00	14000.00	224.00	0
11/7/2017	0	0	0.0	0.0000	164000.0	1690.000	13400.0	214.00	0.000
12/8/2017	510		000000	Lance of C	di mara come			Lanca Santa	62100000000
2/1/2018	0	0	0.00	0.0000	140000.0	1440.000	51800.0	829.000	0.0000
4/3/2018	0	0	0	0	115000	1190.00	42000	672.00	0
9/10/2018	0	0	96.00	0.6550	127000.0	1310,000	65000.0	1040.000	0.0005
10/31/2018	0.00	0.00	0.00	0.00	93100.00	960.00	46900.00	750.00	0
2/6/2019	0	0	0	0.00	118000.0	1220.000	71700	1150	0
5/20/2019	0	0	233.00	1.7700	115000.0	1190.000	44500.0	712.00	0.0015
12/6/2019	0	0	0.000	0.00000	50900.0	525.000	68300.0	1090.000	0



ABERDEEN PG ALTERNATIVE AMENDMENT CASE STUDY

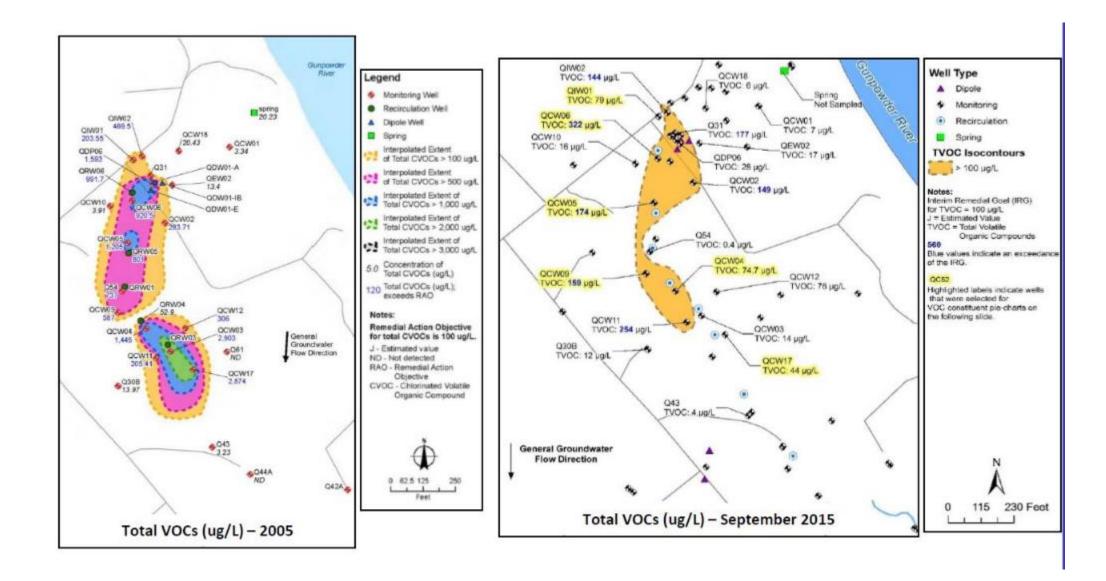
SUMMARY

- TeCA primary groundwater chemical of concern.
- Vitamin B12/titanium citrate/carbon source amendment used for abiotic/biotic degradation.
- Delivery by groundwater recirculation wells.
- TeCA & daughter products effectively degraded by both mechanisms.
- Dissolved phase degradation occurred quickly.
- Rebound in areas from silty-clay units addressed by cyclic operation until plateau levels reached.
- Microbial assay testing after shutdown showed marginal levels of DHCs, DHBs, and VCR – demonstrated biodegradation, but not sustained.

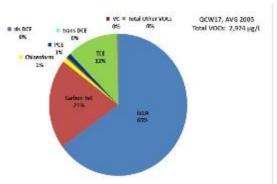


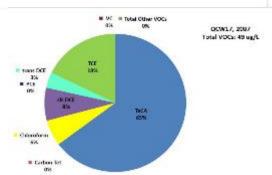
DEEP RECIRCULATION WELL CONSTRUCTION DETA N.T.S.

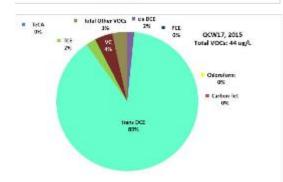
ABERDEEN PG TECA DEGRADATION PATHWAYS

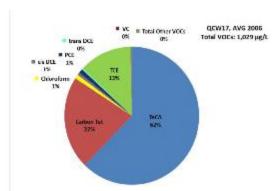


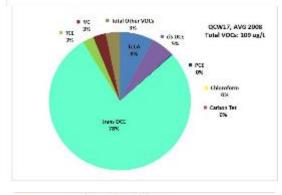
ABERDEEN PG TITANIUM CITRATE CASE STUDY

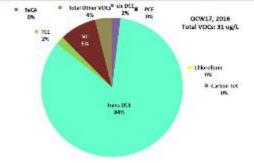


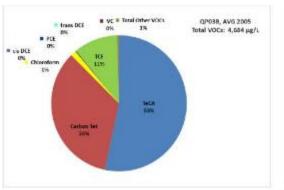


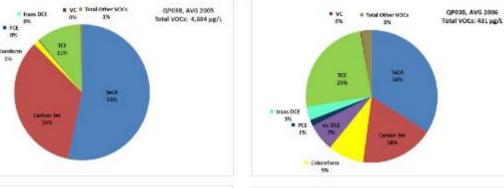

ABERDEEN PG DEGRADATION TRENDS

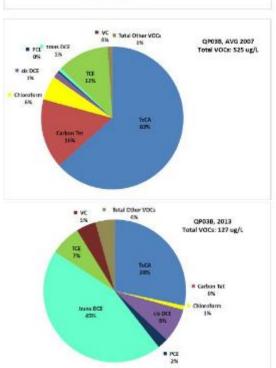


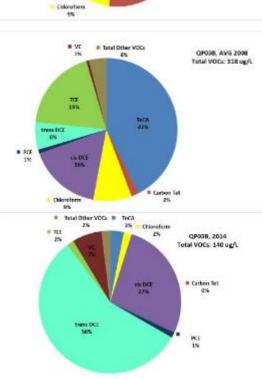

Monitoring Well QCW17 – Northern End of Plume











Monitoring Well QP03B – Middle of Plume

QUESTIONS?