Case Studies of Advances in Bioremediation of Organics: Part 2

 Michelle M. Lorah, Ph.D. USGS Baltimore, MD Research Hydrologist mmlorah@usgs.gov

 FRTR Spring 2020 Webinar

4 Case Studies

- Combined anaerobic and aerobic bioaugmentation
	- groundwater-surface-water interface
	- bioaugmentation on activated carbon
- TCE in fractured rock— permeable units
	- microbial community analyses to track bioaugmentation effects, DCE/VC stall
	- TCE in fractured rock— rock matrix
		- borehole test to quantify diffusion and degradation
	- Anaerobic PFAS biodegradation with chlorinated solvent co-contaminants

1. Coupled Anaerobic – Aerobic Biodegradation Dual-Biofilm Reactive Barrier for Treatment of Chlorinated Benzenes at Anaerobic-Aerobic Interfaces (NIEHS R01ES024279 & EPA Region III)

- Anaerobic reductive dechlorination
	- Highly chlorinated CBs thermodynamically favorable
	- Toxic daughter products remain
	- Mineralization possible, but MCB stall common
- Aerobic oxidation– oxygen-mediated process
	- Less chlorinated CBs favorable thermodynamically (<= TeCB)
	- Complete mineralization

Anaerobic reductive dechlorination

Fields and Sierra-Alvarez. 2008. Biodegradation

- Chemical plant 1966-2002
- 1986 tank failure released >500,000 gal 14DCB and TCBs that flowed over wetland
- Superfund site 1987; EPA 2002
- Underlying DNAPL-contaminated aquifer
- Abuts Red Lion Creek, part of Delaware River watershed

Permeable Reactive Bio-barrier

• Intercept discharge and treat

Bench-scale column studies: Simulate anoxic-oxic interface

Conceptual model

- Isolate biodegradation activity – no GAC amendment
- Defined, constant media composition and flux
- Inoculate with microbial enrichments:
	- Anaerobic WBC-2
	- Aerobic enrichment from site water
- Model contaminant:
	- 1,2,4-trichlorobenzene

(Chow et al., 2020, J Contaminant Hydrology, https://doi.org/10.1016/j.jconhyd.2020.103639)

Stratification of Putative CB Degraders along oxic-anoxic interface Next generation 16s rRNA sequencing [Relative abundance × total 16S gene copy #]

Anaerobic Dechlorinator Dehalobacter (Clostridia) **Aerobic Oxidizers** Pandoraea (Betaproteobacteria) Unspecified Sphingomonadaceae (Alphaproteobacter Low enrichment (<1%) in Xanthobacter (Alphaproteobacteria) **MCB** 1.2 -DCB $1,3-DCB$ $1,4-DCB$

1,2,4-TCB

Chloride

Sulfate

-
- *Dehalobacter* enriched in biofilm as anaerobic dechlorinator
	- High enrichment (up to 50%) in sediment column
	- sand column
- Shift in degrading populations across interface
- Abundances corresponded to more favorable degradation outcomes
	- Sediment reductive dechlorination
	- Sand aerobic degradation

Sulfate-reducing conditions

 Ω

Alternative Redox Conditionsyear-long experiment

- SO_4^2 negatively impacted reductive dechlorination; reduced S⁻ downgradient negatively impacts aerobic degradation
- $NO₃$ negatively impacted reductive dechlorination; enhanced aerobic degradation, serving as sink for competing edonors

Nitrate-reducing conditions

Pilot Test Preparation: GAC Effect on Culture Growth

Significant increase in Dehalococcoidales on GAC.

Dehalococcoidaceae;g Dehalococcoides Dehalococcoidaceae;g Dehalogenimonas

Anaerobic Culture WBC-2 Aerobic Culture (Native, 15B)

Field Pilot Test

Pilot Test: Chloride

Chloride increased by **factor of 2 to 5** in reactive zone, showing CB degradation was a major removal mechanism.

Field-Incubated and Lab-Incubated GAC: Microbial Community

- Burkholderiales- aerobic degraders in 15B culture and in GAC in lab and field
- Desulfuromonadales- anaerobes in WBC-2 culture that increased in abundance on field incubated GAC
- Dehalococcoidia- consistently present in low percent abundance in field incubated GAC

All data are provisional.

Sediment Samples Taxonomy – Percent abundance by depth for select orders (control vs. reactive plots)

- Aerobes remained relatively abundant at depth in the reactive barriers compared to the controls.
- Methanogens and anaerobic dechlorinators increased in abundance with depth in control and reactive barrier plots.

Anaerobes and aerobes overlap at all depths.

All data are provisional.

In Situ Microcosms

Bio-Traps (Microbial Insights), with and without Biosep beads pre-loaded with ¹³Clabeled monochlorobenzene.

- Measure incorporation of 13 C in CO₂ and PLFA
- Analysis of anaerobic and aerobic functional genes by advanced qPCR to relate microbial presence to degradation ability

Concurrent microbial and isotopic data to verify biodegradation activity.

Is biodegradation in the reactive barriers enhanced compared to the control sediment areas, and does aerobic and anaerobic biodegradation co-occur?

In Situ Microcosms and Advanced qPCR: Aerobes $\begin{array}{ccc} \text{Aerobes} & \text{I m} \ & & \text{I m} \end{array}$

- Aerobic oxidation indicators higher in reactive barrier at site 135 compared to site 8 reactive barrier or controls.
- Agrees with next generation sequencing results.

Reactive

In Situ Microcosms and Advanced qPCR: Anaerobes

- DSM (*Desulfuromonas*) was the only reductive dechlorination indicator that was consistently higher in the reactive barrier plots than controls.
- Indicators of both aerobic oxidation activity and anaerobic reduction present in all ISMs.

DHBt *Dehalobacter* **spp.** DCM *Dehalobacter* DCM DHG *Dehalogenimonas* spp. DSB *Desulfitobacterium* spp. **DECO** *Dehalobium chlorocoercia* DSM *Desulfuromonas* spp.

In Situ Microcosms: 13C from Labeled MCB in Biomass

- **High 13C uptake in biomass** (PLFA) in the reactive barrier at site 135 indicates high aerobic oxidation of MCB.
- Agrees with the observed higher abundance of aerobic oxidizers and functional genes at site 135 compared to site 8.

In Situ Microcosms: 13 C from Labeled MCB in CO₂

- Incorporation of ¹³C in CO₂ was **high in both reactive barriers** and low in the controls, verifying complete enhanced biodegradation in the reactive barriers.
- Complete degradation to $CO₂$ is \sim equal in the two reactive barriers, despite the lower use of MCB as growth substrate at site 8. Indicates a combination of anaerobic $(^{13}C$ for energy) and aerobic biodegradation processes in the reactive barrier.

2. TCE in Fractured Rock- Permeable Units Microbial community dynamics with next-generation sequencing to monitor bioremediation

- Examined archived DNA from prior bioaugmentation pilot (SERDP ER-1555) with next generation sequencing
- Metagenomics to better understand bioremediation effects and "DCE stall"

Former Naval Air Warfare Center (NAWC) West Trenton, NJ

- Focus site for USGS research on fracturedrock contamination
- Several SERDP and ESTCP studies
- *One-time injection of EOS and KB-1 consortium*
- *2008-2015*

Predominant taxa with time along flowpath

- Microbial shifts were observed in downgradient wells 73BR -D2 and 71BR -C, but not in the pumping well, 15BR.
- An increased predominance of *Geobacter* spp. (partial dechlorinators) marked the microbial effects of bioaugmentation.

Shared OTUs

Bioaugmented populations out-competed by native bacteria

3. TCE in Rock Matrix-Borehole Test (NAWC)

Post-drilling conditions

- Permeable fractures feed TCE into wellbore water
- TCE diffuses into low-permeability matrix post-drilling
- Concentration history of TCE, DCE,

field method for diffusion & sorption coefficients & cVOC reaction rates in low-permeability strata

VC used as boundary condition
SERDP ER-2533 & USGS Toxic Substances Hydrology Program

Microbial samplers. made with clean Ottawa sand inside stainless steel mesh. placed in test interval between packers and left for duration of tracer test.

TCE Degradation in Microcosms-Borehole water and *in situ* incubated sand

- **TCE degradation rates same with and without WBC-2 addition**
- Addition of WBC-2 did result in 12DCE and VC degradation; indicates lack of necessary microbial species/densities for complete dechlorination.

Borehole Test- Measured and Simulated cVOC **Concentrations**

Borehole Matrix packer · Diffusion • Mass Balance Br, TCFE, TCE, cDCE, VC, ADP • Biodegradation **TCE TCFE** • Sorption ÷ TCFE, TCE, cDCE, VC **cDCE DCFE VC** • Abiotic Degradation ?? **TCE → Abiotic Degradation CE Products (ADP)** packer

Comparison of Lab and Field Test Rates

Impact of Biodegradation in Borehole

- Biodegradation of TCE to cDCE in borehole is significant under experiment (no flow) conditions
	- maintains low TCE concentration compared to matrix
	- biodegradation occurs at the interface, not in the matrix
	- cDCE to VC degradation rate increased in later part of test
- Sorption is significant
	- cVOC mass stored mostly within a few cm's of the borehole wall.

Fracture: (196)

Rock Matrix $(6,854)$

• Abiotic degradation not detected

Previous study showed 97 % of TCE mass is in rock matrix (Goode et al. 2014)

Family level in microcosms (sand sampler from borehole)

- *MA-28-198C in Desulfuromonadales order, close to Geobacter*
- *Increase in abundance delayed at high conc.*

- $WCHB1-32$ fa
- Cloacimonetes Incertae Sedis Unknown Order Unknown Family
- \blacksquare Rhodobacteraceae
- Rhodocyclaceae
- Desulfomicrobiaceae
- Syntrophobacteraceae
- Synergistaceae
- Candidatus Berkelbacteria fa
- Peptococcaceae
- Comamonadaceae
- Desulfobacteraceae
- Geobacteraceae
- Helicobacteraceae
- Kosmotogaceae
- Anaerolineaceae
- Veillonellaceae
- Methylophilaceae
- Desulfobulbaceae
- MA-28-198C
- Spirochaetaceae

4. Anaerobic PFAS Biodegradation

- \blacktriangleright Biodegradation studies using sediment in groundwater discharge areas- diversity of microbial species
- \blacktriangleright Initial focus on co-contaminant effects with cVOCs and added organohalide-respiring bacteria
- \blacktriangleright Sediment samples for initial test collected at Ft. Drum, NY (by US Army Corps of Engineers, Baltimore)

⁽modified from Lorah et al., 2005)

Overlap in species capable of reductive dechlorination and reductive defluorination?

Microbial Reductive Defluorination

 \blacktriangleright Generally believed not possible for the perfluorinated compounds, although is thermodynamically feasible.

- \blacktriangleright Highly chlorinated and brominated organics that initially were believed to be recalcitrant are now known to undergo reductive dehalogenation.
- ▶ An association between Chloroflexi abundance and PFAS contamination was shown in soil (Chen et al, 2019) and river sediments (Bao et al., 2018; PFOS in particular)
- \blacktriangleright Recent identification by Huang and Jaffé (2019) of defluorination by *Acidimicrobium* sp. strain A6, a natural microbe that also dechlorinates PCE, TCE.

PFAS Microcosms— PFOS Removal

- **PFOS removal in two** treatments with added cVOCs— site sediment with and without WBC-2
- \blacktriangleright PFOS removal greatest with added WBC-2 and cVOCs
- ▶ 25 and 45% removal (after account for loss in control)
- PFOA and 6:2 FtS added in the same microcosms did not show removal

PFAS Micrososm: cVOC degradation

- Fast cVOC degradation in WBC-2 bioaugmented microcosm and low daughter product accumulation.
- Slower cVOC degradation and greater daughter product detections in the non-bioaugmeted site sediment.

All data are provisional.

PFOS and cVOCs Removal Rates

organofluorine compounds, measured by Total Oxidizable Precursor (TOP) Assay on day 1 and day 45 microcosm samples.

- \blacktriangleright Link indicated between cVOC degraders and PFOS degraders.
- \blacktriangleright Microbes involved in PFOS transformation in native sediment possibly associated with alkane degradation pathway? *Removal of total*

All data are provisional.

Acknowledgement

s

1. Coupled Anaerobic – Aerobic Biodegradation

- NIEHS Grant R01ES024279
- EPA Region III
- Ed Bouwer (Johns Hopkins Univ., deceased)
- **Steven Chow** (Johns Hopkins Univ)
- Neal Durant (Geosyntec, Columbia, MD)
- Amar Wadhawan (Arcadis, Hanover, MD)
- Denise Akob (USGS, Reston, VA)
- USGS Baltimore FAB team
	- 4. PFAS Biodegradation

2. TCE in Fractured Rock-Permeable

- SERDP ER-1555
- US Navy
- USGS Toxic Substances Hydrology Program
- **Jennifer Underwood**, Ronald Harvey (USGS, Boulder, CO)
- Denise Akob (USGS, Reston, VA)
- Thomas Imbrigiotta (USGS, NJ)
- USGS Baltimore FAB team
- US Army and US Army Corps of Engineers, Baltimore, Brian Shedd
- USGS Toxic Substances Hydrology Program
- Denise Akob (USGS, Reston, VA)
- Lee Blaney, Ke He (Univ of Maryland Baltimore County)
- Andrea Tokranov (USGS, MA)
- USGS Baltimore FAB team

3. TCE in Fractured Rock- Matrix

- SERDP Project no. ER-2533
- US Navy
- USGS Toxic Substances Hydrology Program
- USGS New Jersey WSC Hydrologic Research & Devel. Program
- **Richelle Allen-King**, (Univ. of Buffalo, SUNY) and students:
	- Rebecca Kiekhaefer, Jonathan Brotsch, Rory Dishman, Matthew Buzzeo, **Hannah Annunziata**
- Dan Goode (USGS, PA)
- **Paul Hsieh**, Claire Tiedeman (USGS, CA)
- Tom Imbrigiotta, Alex Fiore, Pierre Lacombe (USGS, NJ)
- Denise Akob, Allen Shapiro, Karl Haase (USGS, Reston)

in bold: contributed figures or slides