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Outline 

• Part 1: Performance-Based Optimization of P&T
 Background
 Performance-based optimization 
 Computational approaches
 Pre-screening tool framework

• Part 2: Pre-Screening Tool Demonstration
 Hanford 200 West P&T
 Scenario evaluation 

• Part 3: Use of Deep-Learning Approaches
 Well performance predictions
 Increasing model efficiency 



Part 1–  
Performance-Based 
Optimization of P&T 

3



4

Pump-and-treat (P&T) systems have been used for hydraulic 
containment and/or treatment of contaminated groundwater

A well network for groundwater extraction

Above-ground ex-situ treatment unit

Disposal system for the treated water

Pump-and-Treat (P&T) Systems

Initial designs typically address large-scale 
containment and bulk treatment, and may not be an 
optimal design for mass removal and long-term 
effectiveness

Early goals focus on volumetric pumping

Performance diminishes due to factors such as:

Heterogeneity

Large and dispersed plumes requiring multiple pore volume flushes

Presence of source zone and/or diffusion-limited mass transfer

Recalcitrant/competing contaminants

Pump-and-treat extraction well (adapted from PNNL-24741)
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Performance-Based P&T Optimization

Objective of periodic P&T optimization
Maintain/increase contaminant removal effectiveness and 
efficiency as much as possible  throughout remedy lifetime 
Well network and treatment capacity management and 
optimization

Performance-based optimization 
approach relies on: 

Continuous performance 
monitoring
Frequent updates to CSM 
based on the new data
Periodic evaluations of 
performance effectiveness 
and remedy lifetime 
Computational optimization evaluations
o Capacity & well network effectiveness

CSM = Conceptual Site Model
RAO = Remedial Action Objective
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ITRC Guidance
Interstate Technology Regulatory Council (ITRC)
New performance-based P&T optimization 
guidance published in 2023

https://pt-1.itrcweb.org/

Adopted 
from the 
guidance

P&T O&M

Performance-based 
optimization of capacity 

& well network

No optimization
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Computational Optimization and Pre-screening 

Formal optimization evaluations 
require:

Flow & transport (F&T) model of P&T 
system, coupled with optimization 
algorithms to run thousands of simulations
Resource intensive!

Pre-screening (i.e., scoping) 
framework

Supports scenario evaluation to feed into 
decision tools
Reduced computational burden

Reduced-complexity 
F&T model coupled 

to formal 
optimization 

algorithm 

Optimization Pre-screening Tool

Range of assumptions/scenarios

Goal setting (e.g., maximizing mass recovery, remedy lifetime reduction)

• Comparative assessment of scenarios
• Narrower set of potentially successful optimization approaches
• Uncertainty evaluation
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Pre-screening Tool Framework 

Reduced 
complexity fate 
and transport 
model

Stochastic 
approach for 
solving both 
single-
objective and 
multi-
objective 
problems

Formal 
optimization 
parameters

Effective optimization requires a well-crafted problem design, a rapid optimizer, and a fast-executing F&T model



Part 2 –  
Pre-Screening Tool 
Demonstration
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Hanford 200 West P&T 

Historical plutonium production for the 
Manhattan Project

Operating since 2012 in the Central 
Plateau (CP) of the Hanford Site
 Will be pumping for 25 years per 200-

ZP-1 operable unit Record of Decision
Addressing groundwater plumes:
 Carbon tetrachloride (CTET)
 Technetium
 Uranium
 Chromium
 Nitrate*

Current treatment capacity 
is 2500 gpm
 38 existing extraction wells
 30 existing injection wells

U.S. DOE Hanford 200 West Groundwater 
Pump-and-Treat Facility 
(https://www.usa.skanska.com/what-we-
deliver/projects/57299/）

* Nitrate treatment is currently suspended under an optimization study

https://www.usa.skanska.com/what-we-deliver/projects/57299/
https://www.usa.skanska.com/what-we-deliver/projects/57299/
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200 West P&T: Optimization Study

Large carbon tetrachloride 
plume in the 200-ZP-1 Operable 
Unit (OU)

Slower CTET degradation rate
More contaminant mass in the 
aquifer
Diminishing performance at 
some wells

200-ZP-1 OU Optimization Study 
Plan to evaluate

Increasing carbon tetrachloride 
removal and treatment
Evaluating the transition to monitored 
natural attenuation (MNA) for nitrate, 
consistent with RAOs
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Plateau to River (P2R) Version 8.3 Model Extent and Groundwater Flow 
Boundary Conditions (source: ECF-HANFORD-22-0114-REV.0)

Reduced Complexity Model Domain 
(eSTOMP model domain)

Reduced Complexity Model Setup
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Initial CTET plume (2015) Existing extraction and injection wells

Reduced Complexity Model Setup
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Pre-Screening Tool Optimization Setup

Define:
• Optimization goal (e.g., mass 

recovery, pumping timeframe 
minimization, etc.)

• Constraints
• Treatment capacity
• Well installation rules

Define:
• Rules for accelerating 

initial populations
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Optimization: Scenario Setup for 
Comparative Evaluation

Current Time 
2024

End of Pumping
2038

Scenarios

Baseline

Scenario-1

Scenario-2

No Optimization (static well network)
P&T Capacity (gpm)

3400

Well Network Optimization
P&T Capacity (gpm)

3400

Well Network Optimization
P&T Capacity (gpm)

3400 4500

End-state Performance Criteria: 
Baseline 95th percentile 
concentration level in 2038

Opt. Goal #1 Opt. Goal #2

Minimize 
active 
cleanup 
timeframe

Maximize 
total CTET 
mass 
recovery  

2026
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Optimization Constraints:  
Well Installation

Parameterization rules: 
Rule 1:  One-to-one well 
replacement with a maximum 
number of active wells (based 
on the total capacity of the 
treatment plant)
Rule 2: Each well only has 
one operation period 
Rule 3: Each well has a fixed 
pumping rate 
Rule 4: When a new well 
replaces an old well, the new 
well inherits the pumping 
rates of the old one

Example Realizations from the Evolutionary Algorithm 
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Historical 
Simulation Period

Wells 
turning 
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wells 
coming 
online
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Optimization Setup: Well Locations
Concentration-weighted sampling to create the initial population for the optimization 
simulation

High concentration locations are more 
likely to be chosen for installing new 
wells in initial realizations
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Results for Goal #1 
(Minimizing active pumping timeframe)

Scenario-1 with well network optimization 
only (i.e., constant P&T capacity at 3400 
gpm) achieves ~ 8% reductions in active 
remediation timeframe

Total of 7 new wells are added to the network 

Achieves the same 95th percentile 
concentration level as the baseline with 
2 fewer years of pumping

Scenario-2 with well network optimization 
and increasing P&T capacity is found to 
have relatively more reduction in remedy 
lifetime, ~24%

Total of 17 new wells added to the network
Achieves the same 95th percentile 
concentration level as the baseline with 
6 fewer years of pumping

Relation between # new wells added 

Scenario-1

Scenario-2
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Results for Goal #2
(Maximizing CTET Mass Recovery) 

Scenario-1 provides about ~ 4% 
reduction in pumping timeframe 

A total of 11 wells added to the network 
Achieves the same 95th percentile 
concentration level as the baseline with 
1 year less pumping

Scenario-2 provides about ~20% 
reduction in pumping timeframe 

A total of 13 wells added to the network 
Achieves the same 95th percentile 
concentration level as the baseline with 
5 fewer years of pumping

Relation between simulated total CTET mass 

Scenario-1

Scenario-2

2037

2033
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Scenario1: Optimal Solution at 3400 GPM
Installation schedule and new well locations
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Scenario2: Optimal Solution at 4500 GPM
Installation schedule and new well locations
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3D Animation of the Optimal Case 
Predicted plume dynamics Predicted mass recovery



Part 3 –  
Use of Deep-Learning 
Approaches in the 
Pre-Screening Tool 
Framework
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Alternative Approach: Well Location Selection

Multi-Channel Three-Dimensional Convolutional Neural Network (MC3D-CNN) framework

A deep-learning model was developed for predicting extraction well performance for a given 
location in the model domain

Model relies on existing well performance data (2012-2023) and the data on site geology
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Deep Learning Model:  A MC3D-CNN 
Framework for Well Performance Prediction 

3D performance ranking map. Green, orange, and red colors 
indicate high, medium, and low performance rankings.

The trained deep learning (DL) model was used to predict future well performance ranking on 
each 100×100×5 m pixel for entire model domain.

MC3D-CNN model accuracy during model training 

Application of the MC3D-CNN DL model 
Rebalance pumping rate of existing wells
Reduce number of candidate well locations for 
P&T optimization simulation
Integrate into flow and transport models to provide 
on-the-fly optimization of pumping rate
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Alternative Approach: 3-D Plume Model

An alternative deep-learning model, U-NET application, is currently being developed to replace 
parts of the F&T model role in the pre-screening tool framework as surrogate model

Taccari, Maria Luisa, Jonathan Nuttall, Xiaohui Chen, He Wang, Bennie Minnema, and Peter K. Jimack. “Attention 
U-Net as a Surrogate Model for Groundwater Prediction.” Advances in Water Resources 163 (May 1, 2022): 104169. 

Our approach: incorporating 
analytical solutions as 
predictors in U-Net models

ℎ = ℎ0 −
𝑄𝑄
2𝜋𝜋𝜋𝜋

ln
𝑟𝑟
𝑟𝑟0

Explicit physical 
constraints/regularization? 

Input #1:hydraulic conductivity

Input #2:well location

Target: Groundwater Level (GWL)

Prediction: GWL (method #1):

Prediction: GWL (method #2)
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U-Net Architecture for 2-D Plume Prediction

Modified U-Net Architecture for groundwater plume prediction 

Substitution of max pooling with strided 
convolutions in the encoder blocks to reduce 
spatial dimensions while learning spatial 
hierarchies.
Dynamically adjusts the leaky hyperbolic 
tangent activation function's clipping 
threshold based on the maximum 
concentration. 
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U-Net Architecture for 2-D Plume Prediction
GW           Plume t=0         Plume t=1       Plume t=2       Plume t=3       Plume t=4

Sample #1

Sample #2

Sample #3

Sample #4

Sample #5

Case #1: Input - Groundwater level; Output - Predicted plume state at t=4.
Case #2: Input - Groundwater level and plume data at t=n-1; Output - Plume state at t=n.

Samples of training data images
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2-D Mode Training and Testing Results

Model training results

Input :Thiem solution

Target: final plume

Prediction

Error 

Model predictions

Model training results of case #1 (RMSE 0.62)

Model training results of case #2 (0.41)

Training data size: 7000; validation data: 1500; testing data: 1500.
Both cases exhibit strong performance.
As expected, case #2 begins with a smaller initial training and validation 
error and ends with a lower final error.

Case #1 testing RMSE: 0.78;  Case #2 testing RMSE: 0.44 
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U-Net Architecture for 3-D Plume Prediction

Reduced number of convolutional layers
Enhanced memory efficiency by cutting parameters from ~32M down to ~1.7M

Switch to plume change predictions

U-Net Architecture for 3-D groundwater 
plume prediction 
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3-D Model Training and Testing Results
Model training results Model predictions

One-to-one comparison in multi-year forecasting

Model training results (0.19 µg/L)

After hyperparameter tuning, the best-trained DL 
model achieved 0.19 µg/L testing accuracy (the 
clean-up level is 3.4 µg/L). 
The prediction error increased to 1.8 µg/L after 12 
years of forecasting.
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Model Predictions: Example #1

Input #1:thiem solution

Input #2:plume at year N

Target: plume at year N+1

Prediction: plume at year N+1

Plume change over year N (row 3-row 2)

Prediction error (row 4-row2)
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Multi-year Mass Recovery Prediction 
from the U-Net Surrogate Model 

C
TE

T 
(k

g)

Time (yr)
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Conclusions

P&T optimization pre-screening tool
Readily allows evaluation of system behavior for multiple scenarios
Leads to proposed active management strategies to achieve the defined optimization goals

Formal optimization of a P&T well network was demonstrated
Well network size, well locations, and pumping operational strategy to meet optimization goals
Can include treatment capacity considerations
Results show potentially to reduce cleanup timeframe and increase mass recovery

Optimal outcomes vary with optimization objectives and constraints
Maximum mass recovery selected as the optimization goal may not provide the shortest cleanup 
timeframe

Deep-learning approaches can significantly improve computational application of the 
framework



Thank you
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Questions?

Funding for this work was provided by 
the U.S. Department of Energy Richland 
Operations Office under the Deep 
Vadose Zone – Applied Field Research 
Initiative. 

Pacific Northwest National Laboratory is 
operated by Battelle Memorial Institute 
for the Department of Energy under 
Contract DE-AC05-76RL01830.
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