

Anaerobic Biochemical Reactor (BCR) Treatment of Mining-Influenced Water (MIW): Evaluation of Reduction in Concentrations of Metals and Aquatic Toxicity

Presented in Webinar Series:

FRTR Presents...Heavy Metals-Mining Site Characterization and Treatment Session 2

> Dr. Barbara Butler, USEPA July 26, 2016

Office of Research and Development

The views expressed in this presentation are those of the author's and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Presentation Outline

- BCR Treatment
- Research Questions
- Study Sites
- Methods
- Metals Removal
- Aquatic Toxicity (Acute)
- Concluding Remarks

BCR Treatment

- Passive / semi-passive treatments
 - May be completely anaerobic, aerobic, or combination of both
 - Natural processes
 - Minimal or no energy requirement
 - Solar power has been used
- Anaerobic biochemical reactor
 - Previously (and sometimes still) called sulfate-reducing bioreactor
 - A primary mechanism is microbial sulfate reduction to sulfide that precipitates metal sulfides
 - Sometimes called anaerobic wetland
 - But, no vegetation

BCR Treatment

- Chemical, biological, and physical processes
 - Reduction, precipitation, adsorption, retention
- Hay, straw, wood chips, sawdust, compost, limestone, manure, ethanol, waste milk...
- Aerobic polishing
 - Increase oxygen
 - Decrease biochemical oxygen demand (BOD)
 - Settle solids
 - Some release of sulfide precipitates, which will oxidize and reprecipitate as metal oxyhydroxides
 - Degas sulfide and ammonia

BCR Treatment

- Overall goal of remediation is to minimize environmental and human health impacts
- Evaluation of BCR treatment generally through metal removal efficiency
 - Percentage of dissolved metals removed by the system
 - 100% * [(influent concentration effluent concentration) / influent concentration]

Research Questions Asked

- Are the effluents from the different pilot BCRs toxic (i.e., are there adverse effects to either test species that is statistically different from control water)?
- Is the toxicity reduced, relative to the influent?
- If effluents are toxic, is a toxicant identifiable?

Study Sites

- Luttrell Repository, Helena, MT
- Peerless Jenny King, Helena, MT
- Park City Biocell, Park City, UT
- Standard Mine, Crested Butte, CO

Luttrell Repository, MT

- Upper Ten-Mile Creek Superfund site
- 7,644 ft AMSL
- 2002
- 1.5 gpm treated
- Al, As, Cd, Co, Cu, Fe, Mn, Zn

Peerless Jenny King, MT

- Upper Ten-Mile Creek Superfund site
- 7,600 ft AMSL
- 2003
- 20-25 gpm treated
- Cd, Fe, Zn

Peerless Jenny King, MT

- Upper Ten-Mile Creek Superfund site
- 7,600 ft AMSL
- 2003
- 20-25 gpm treated
- Cd, Fe, Zn

Park City Biocell, UT

- Prospector drain in Silver Creek Watershed
- 2002
- 6,900 ft AMSL
- 29 gpm treated
- Cd, Zn

Park City Biocell, UT

- Prospector drain in Silver Creek Watershed
- 2002
- 6,900 ft AMSL
- 29 gpm treated
- Cd, Zn

Standard Mine, CO

- Crested Butte
- 2007
- 11,000 ft AMSL
- 1.2 gpm treated
- Cd, Cu, Fe, Pb, Mn, Zn

Standard Mine, CO

- Crested Butte
- Aerobic polishing cells added in 2008

- Triplicate influent and effluent samples from Luttrell, PJK, and Park City
- Duplicate influent and effluent samples from the Standard Mine BCR and from the APC

- Filtered metals (0.45 μm) inductively coupled plasma optical emission spectroscopy (ICP-OES)
- Sulfate ion chromatography
- Total sulfide ion selective electrode
- Total ammonia gas sensing electrode

- Whole effluent toxicity tests [WET]
 - Series of dilutions of the influent and effluent water samples
- Acute 48-hr LC50
 - Percentage of water mixed with moderately hard dilution water
- Ceriodaphnia dubia [water flea]
- *Pimephales promelas* [fathead minnow]
 - Control survival > 90%

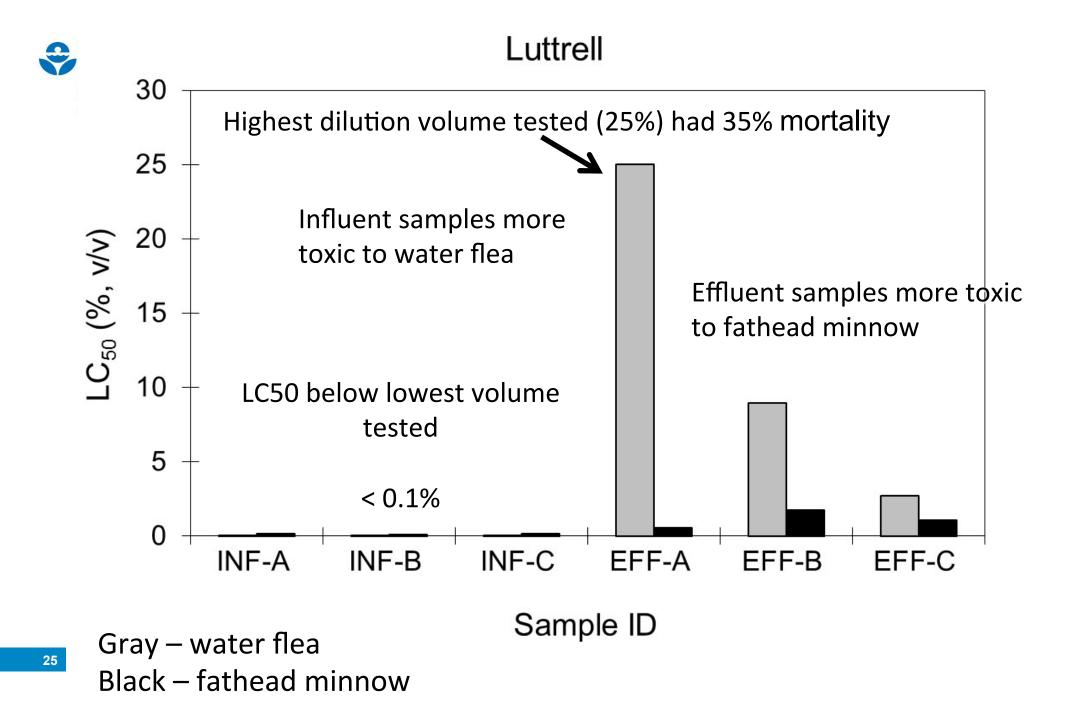
Results - Metals

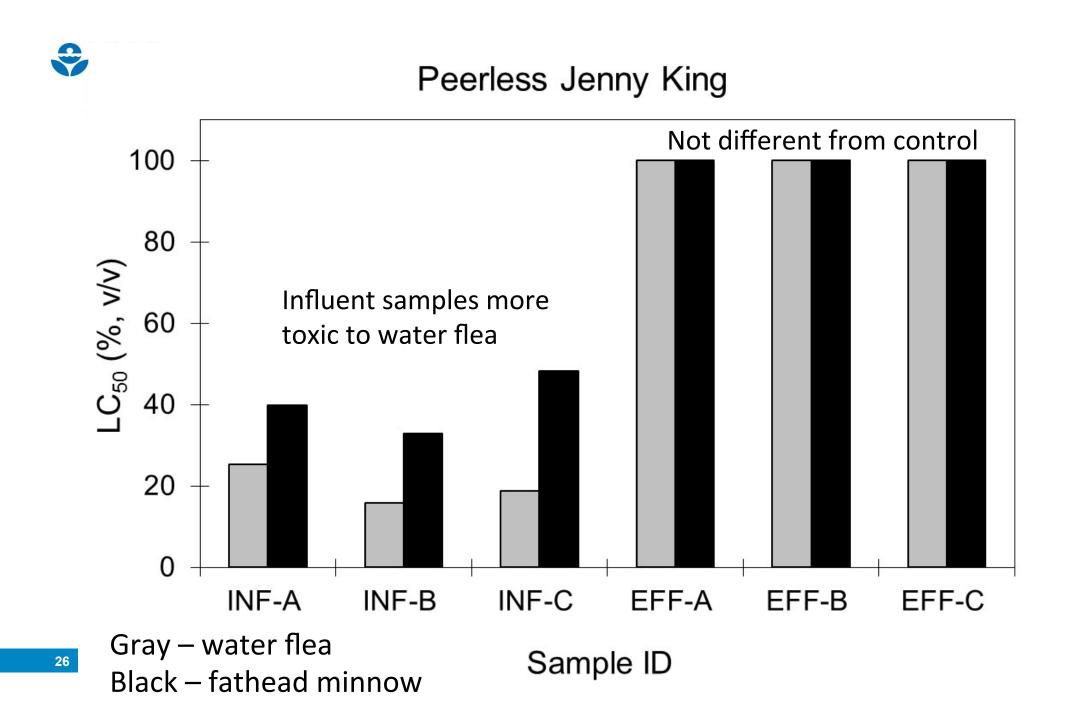
Influent Metals Concentrations

	Analyte	Site					
		Luttrell	РЈК	Park City	Standard Mine		
	Al (mg/l)	28 ± 0.3	BMDL	BMDL	BMDL		
	As (mg/l)	2.5 ± 0.03	BMDL	BMDL	BMDL		
	Cd (mg/l)	1.6 ± 0.11	BMDL	0.1 ± 0.01	0.18 ± 0.003		
	Cu (mg/l)	27 ± 0.1	BMDL	BMDL	0.24 ± 0.006		
	Fe (mg/l)	27 ± 0.3	0.27 ± 0.015	BMDL	0.12 ± 0.008		
	Ni (mg/l)	0.31 ± 0.003	BMDL	BMDL	BMDL		
	Pb (mg/l)	BMDL	BMDL	BMDL	0.21 ± 0.025		
	Zn (mg/l)	270 ± 25	1.2 ± 0.03	8.4 ± 0.15	27 ± 0.6		
21	SO ₄ (mg/l)	4.6 ± 1.1 (g/l)	49 ± 15.8	642 ± 39	254 ± 9		

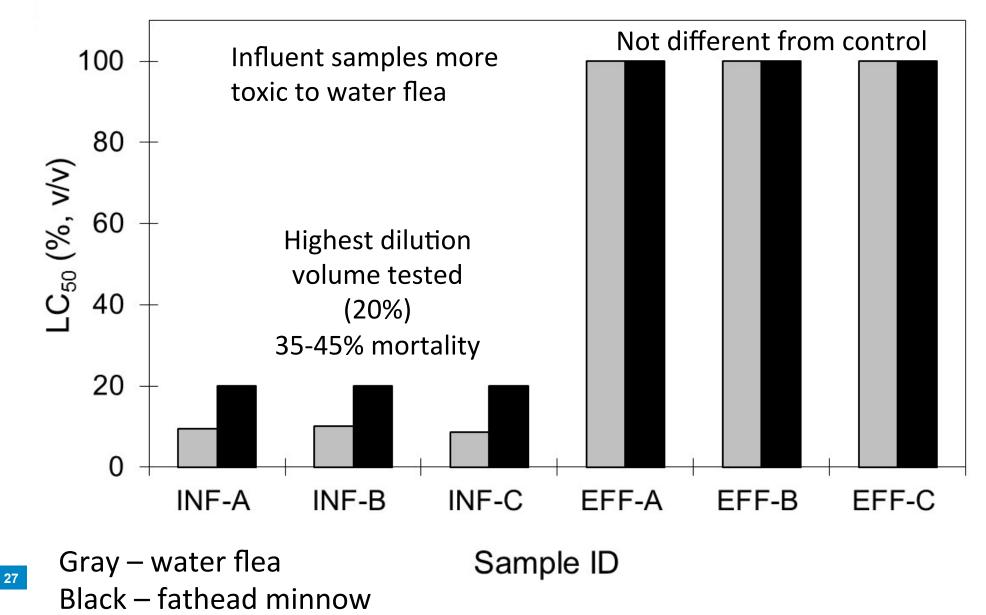
Influent & Effluent pH and DO

	Parameter (average)	Luttrell	РЈК	Park City	SM-BCR	SM-APC
Influent	рН	3.6 ± 0.23	6.7 ± 0.08	6.2 ± 0.13	6.1 ±	0.06
	DO (mg/l)	4 ± 0.8	3 ± 0.1	5 ± 0.1	6 =	± 0
Effluent	рН	6.4 ± 0.02	7.8 ± 0.04	7.1 ± 0.03	6.7 ± 0.06	8.6 ± 0.07
	DO (mg/l)	0.3 ± 0.24	3 ± 0.3	2 ± 0.1	0.6 ± 0.45	1 ± 0

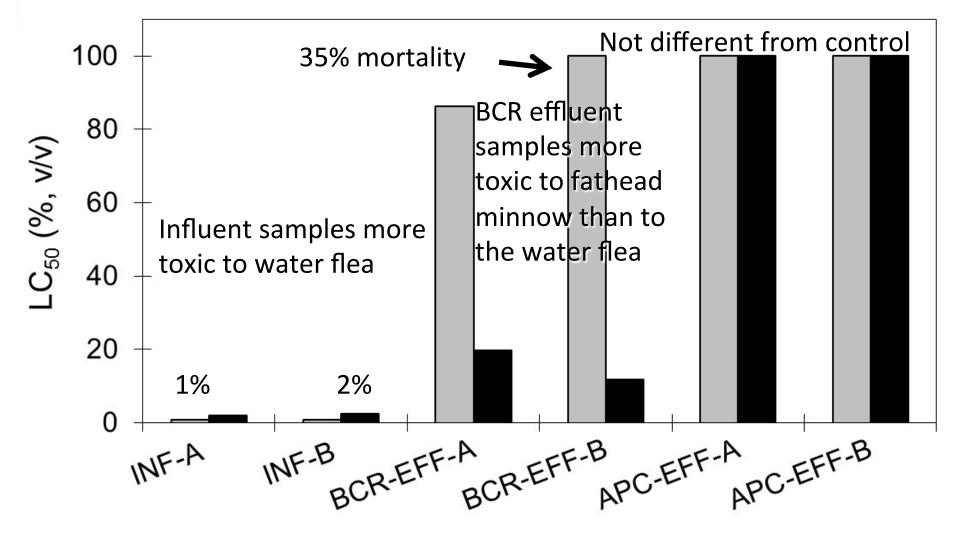



Percentage of Metals Removed

	Analyte	Site						
		Luttrell	РЈК	Park City	SM-BCR	SM-APC		
	Al	99 ± 1	n/a	n/a	n/a	n/a		
	As	98 ± 2	n/a	n/a	n/a	n/a		
	Cd	99 ± 10	n/a	96 ± 12	100 ± 2	100 ± 2		
	Cu	100 ± 0.3	n/a	n/a	94 ± 9	94 ± 9		
	Fe	99 ± 2	90 ± 12	n/a	-266 ± -518	100 ± 10		
	Ni	94 ± 5	n/a	n/a	n/a	n/a		
	Pb	n/a	n/a	n/a	94 ± 16	91 ± 17		
	Zn	100 ± 13	94 ± 11	100 ± 3	100 ± 3	100 ± 3		
23	SO ₄	72 ± 29	-78 ± -137	-1 ± -8	39 ± 4	72 ± 5		



Results - Acute Aquatic Toxicity



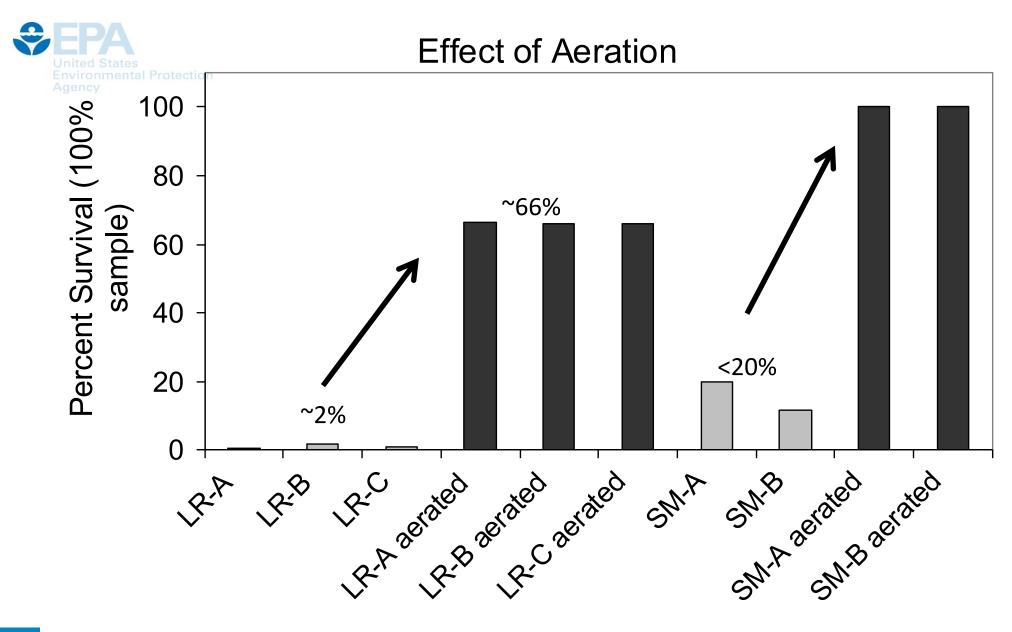
28

Gray – water flea Black – fathead minnow

Sample ID

Acute Aquatic Toxicity

- What caused acute toxicity in Luttrell and Standard Mine BCR effluent samples?
- Low dissolved oxygen?
 - SM-BCR field average 0.6 mg/l DO; Luttrell field average 0.3 mg/l DO
 - Test units must have > 4 mg/l
 - Generally > 6 mg/l
- Metals, sulfide, ammonia?

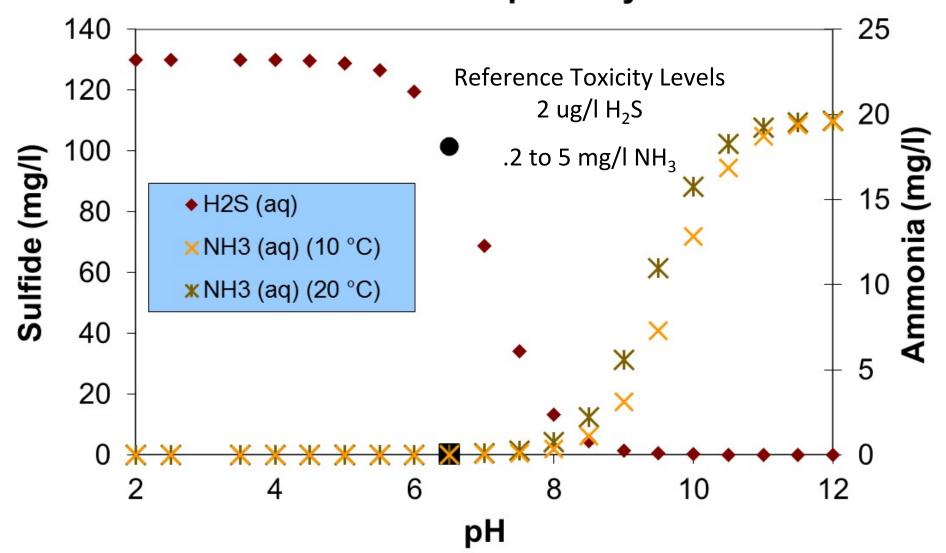

Acute Aquatic Toxicity

Samala ID	Ceriodaphnia dubia						
Sample ID	Cd (ug/l)	Cu (ug/l)	Zn (ug/l)	H_2S (mg/l)	NH_{3} (ug/l)		
LR-EFF-A	NA	NA	61	26	5		
LR-EFF-B	NA	NA	27	9.3	2		
LR-EFF-C	NA	NA	NA	3.2	0.5		
SM-BCR-A	NA	NA	NA	1.29	0.06		
SM-BCR-B	NA	NA	NA	0.74	0.1		
Comparison Value	31.4	6	425	0.002	500 - 5000		

	Pimephales promelas						
Sample ID	Cd (ug/l)	Cu (ug/l)	Zn (ug/l)	H_2S (mg/l)	NH_3 (ug/l)		
LR-EFF-A	NA	NA	0.13	0.58	0.1		
LR-EFF-B	NA	NA	0.53	1.83	0.4		
LR-EFF-C	NA	NA	NA	1.28	0.2		
SM-BCR-A	NA	NA	NA	0.298	0.01		
SM-BCR-B	NA	NA	NA	0.087	0.01		
Comparison Value	29.2	69.6	725	0.002	200 - 3400		

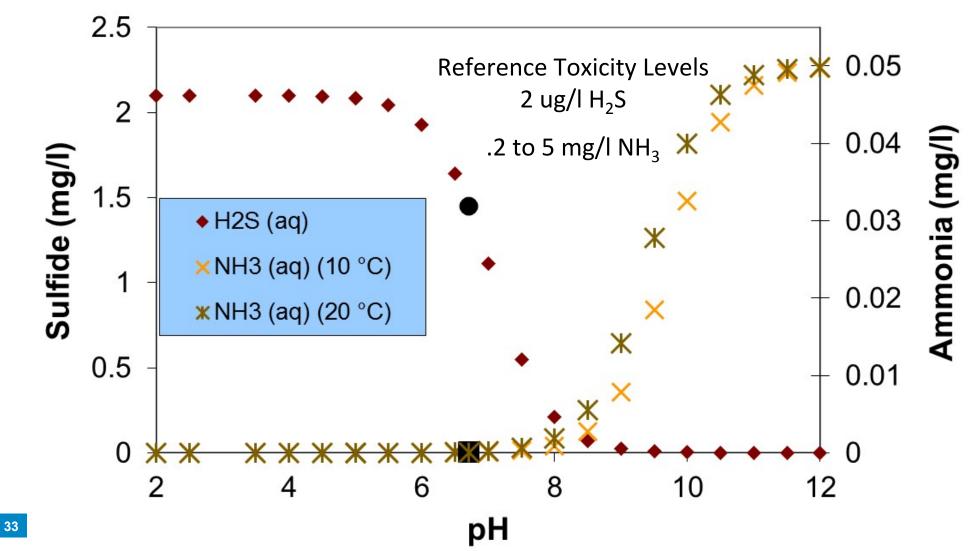
NA = none detected in undiluted sample

Dissolved H_2S and NH_3 calculated from total values, temp, and pH



Test species: fathead minnow

Sample ID



Dissolved Gaseous Species Luttrell Repository

•

Dissolved Gaseous Species Standard Mine

Concluding Remarks

- Results suggest toxicity from dissolved hydrogen sulfide gas
 - Effluents more toxic to fathead minnow than to the C. dubia
 - Fathead minnow known to be more sensitive to dissolved gases than C. dubia
 - Dissolved H₂S concentrations above species mean acute values
 - Toxicity from 100% sample removed with aeration at Standard Mine and reduced at Luttrell
- Other BCRs may have different toxicants, depending on:
 - Contaminants present and efficiency of removal
 - Concentrations of dissolved gases and pH of the effluent

Concluding Remarks

- BCR treatment is effective at removing significant proportions of metals from MIW, but aquatic toxicity may still be present
- Sufficient in-field aeration following BCR treatment is an important step to remove potential toxicants resulting from the processes occurring within the BCR cells
- Combining chemical and biological monitoring can lead to better treatment system designs
 - To meet the goal of minimizing environmental and human health impacts

Acknowledgements

- Co-authors:
 - David Reisman U.S. EPA ORD (retired)
 - Jim Lazorchak U.S. EPA ORD, NERL
 - Mark Smith McConnell Group [deceased, prior contractor to U.S. EPA ORD]
- Others:
 - Pegasus and McConnell Group contractors to EPA
 - Regional RPM's
 - City of Park City, UT

Thank you!

Butler, BA, Smith, ME, Reisman, DJ, Lazorchak, JM. 2011. Metal removal efficiency and ecotoxicological assessment of field-scale passive treatment biochemical reactors. Environmental Toxicology & Chemistry. 30(2):385-392.