Anaerobic Biochemical Reactor (BCR) Treatment of Mining-Influenced Water (MIW): Evaluation of Reduction in Concentrations of Metals and Aquatic Toxicity

Presented in Webinar Series:

FRTR Presents...Heavy Metals-Mining Site Characterization and Treatment Session 2

Dr. Barbara Butler, USEPA
July 26, 2016
The views expressed in this presentation are those of the author’s and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.
Presentation Outline

- BCR Treatment
- Research Questions
- Study Sites
- Methods
- Metals Removal
- Aquatic Toxicity (Acute)
- Concluding Remarks
BCR Treatment

• Passive / semi-passive treatments
 ▪ May be completely anaerobic, aerobic, or combination of both
 ▪ Natural processes
 ▪ Minimal or no energy requirement
 ◦ Solar power has been used

• Anaerobic biochemical reactor
 ▪ Previously (and sometimes still) called sulfate-reducing bioreactor
 ◦ A primary mechanism is microbial sulfate reduction to sulfide that precipitates metal sulfides
 ▪ Sometimes called anaerobic wetland
 ◦ But, no vegetation
BCR Treatment

- Chemical, biological, and physical processes
 - Reduction, precipitation, adsorption, retention
- Hay, straw, wood chips, sawdust, compost, limestone, manure, ethanol, waste milk...
- Aerobic polishing
 - Increase oxygen
 - Decrease biochemical oxygen demand (BOD)
 - Settle solids
 - Some release of sulfide precipitates, which will oxidize and re-precipitate as metal oxyhydroxides
 - Degas sulfide and ammonia
BCR Treatment

• Overall goal of remediation is to minimize environmental and human health impacts

• Evaluation of BCR treatment generally through metal removal efficiency
 ▪ Percentage of dissolved metals removed by the system
 o 100% * [(influent concentration – effluent concentration) / influent concentration]
Research Questions Asked

• Are the effluents from the different pilot BCRs toxic (i.e., are there adverse effects to either test species that is statistically different from control water)?

• Is the toxicity reduced, relative to the influent?

• If effluents are toxic, is a toxicant identifiable?
Study Sites

• Luttrell Repository, Helena, MT
• Peerless Jenny King, Helena, MT
• Park City Biocell, Park City, UT
• Standard Mine, Crested Butte, CO
Luttrell Repository, MT

- Upper Ten-Mile Creek Superfund site
- 7,644 ft AMSL
- 2002
- 1.5 gpm treated
- Al, As, Cd, Co, Cu, Fe, Mn, Zn
Peerless Jenny King, MT

- Upper Ten-Mile Creek Superfund site
- 7,600 ft AMSL
- 2003
- 20-25 gpm treated
- Cd, Fe, Zn
Peerless Jenny King, MT

- Upper Ten-Mile Creek Superfund site
- 7,600 ft AMSL
- 2003
- 20-25 gpm treated
- Cd, Fe, Zn
Park City Biocell, UT

- Prospector drain in Silver Creek Watershed
- 2002
- 6,900 ft AMSL
- 29 gpm treated
- Cd, Zn
Park City Biocell, UT

- Prospector drain in Silver Creek Watershed
- 2002
- 6,900 ft AMSL
- 29 gpm treated
- Cd, Zn
Crested Butte

2007

11,000 ft AMSL

1.2 gpm treated

Cd, Cu, Fe, Pb, Mn, Zn

Standard Mine, CO
Standard Mine, CO

- Crested Butte
- Aerobic polishing cells added in 2008
Methods
Methods

• Triplicate influent and effluent samples from Luttrell, PJK, and Park City
• Duplicate influent and effluent samples from the Standard Mine BCR and from the APC
Methods

- Filtered metals (0.45 µm) – inductively coupled plasma – optical emission spectroscopy (ICP-OES)
- Sulfate – ion chromatography
- Total sulfide – ion selective electrode
- Total ammonia – gas sensing electrode
Methods

• Whole effluent toxicity tests [WET]
 ▪ Series of dilutions of the influent and effluent water samples
• Acute 48-hr LC50
 ▪ Percentage of water mixed with moderately hard dilution water
• Ceriodaphnia dubia [water flea]
• Pimephales promelas [fathead minnow]
 ▪ Control survival > 90%
Results - Metals
Influent Metals Concentrations

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Luttrell</th>
<th>PJK</th>
<th>Park City</th>
<th>Standard Mine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al (mg/l)</td>
<td>28 ± 0.3</td>
<td>BMDL</td>
<td>BMDL</td>
<td>BMDL</td>
</tr>
<tr>
<td>As (mg/l)</td>
<td>2.5 ± 0.03</td>
<td>BMDL</td>
<td>BMDL</td>
<td>BMDL</td>
</tr>
<tr>
<td>Cd (mg/l)</td>
<td>1.6 ± 0.11</td>
<td>BMDL</td>
<td>0.1 ± 0.01</td>
<td>0.18 ± 0.003</td>
</tr>
<tr>
<td>Cu (mg/l)</td>
<td>27 ± 0.1</td>
<td>BMDL</td>
<td>BMDL</td>
<td>0.24 ± 0.006</td>
</tr>
<tr>
<td>Fe (mg/l)</td>
<td>27 ± 0.3</td>
<td>0.27 ± 0.015</td>
<td>BMDL</td>
<td>0.12 ± 0.008</td>
</tr>
<tr>
<td>Ni (mg/l)</td>
<td>0.31 ± 0.003</td>
<td>BMDL</td>
<td>BMDL</td>
<td>BMDL</td>
</tr>
<tr>
<td>Pb (mg/l)</td>
<td>BMDL</td>
<td>BMDL</td>
<td>BMDL</td>
<td>0.21 ± 0.025</td>
</tr>
<tr>
<td>Zn (mg/l)</td>
<td>270 ± 25</td>
<td>1.2 ± 0.03</td>
<td>8.4 ± 0.15</td>
<td>27 ± 0.6</td>
</tr>
<tr>
<td>SO₄ (mg/l)</td>
<td>4.6 ± 1.1 (g/l)</td>
<td>49 ± 15.8</td>
<td>642 ± 39</td>
<td>254 ± 9</td>
</tr>
</tbody>
</table>
Influent & Effluent pH and DO

<table>
<thead>
<tr>
<th>Parameter (average)</th>
<th>Luttrell</th>
<th>PJK</th>
<th>Park City</th>
<th>SM-BCR</th>
<th>SM-APC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>3.6 ± 0.23</td>
<td>6.7 ± 0.08</td>
<td>6.2 ± 0.13</td>
<td>6.1 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>DO (mg/l)</td>
<td>4 ± 0.8</td>
<td>3 ± 0.1</td>
<td>5 ± 0.1</td>
<td>6 ± 0</td>
<td></td>
</tr>
<tr>
<td>Effluent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>6.4 ± 0.02</td>
<td>7.8 ± 0.04</td>
<td>7.1 ± 0.03</td>
<td>6.7 ± 0.06</td>
<td>8.6 ± 0.07</td>
</tr>
<tr>
<td>DO (mg/l)</td>
<td>0.3 ± 0.24</td>
<td>3 ± 0.3</td>
<td>2 ± 0.1</td>
<td>0.6 ± 0.45</td>
<td>1 ± 0</td>
</tr>
</tbody>
</table>
Percentage of Metals Removed

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Luttrell</th>
<th>PJK</th>
<th>Park City</th>
<th>SM-BCR</th>
<th>SM-APC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>99 ± 1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>As</td>
<td>98 ± 2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Cd</td>
<td>99 ± 10</td>
<td>n/a</td>
<td>96 ± 12</td>
<td>100 ± 2</td>
<td>100 ± 2</td>
</tr>
<tr>
<td>Cu</td>
<td>100 ± 0.3</td>
<td>n/a</td>
<td>n/a</td>
<td>94 ± 9</td>
<td>94 ± 9</td>
</tr>
<tr>
<td>Fe</td>
<td>99 ± 2</td>
<td>90 ± 12</td>
<td>n/a</td>
<td>-266 ± -518</td>
<td>100 ± 10</td>
</tr>
<tr>
<td>Ni</td>
<td>94 ± 5</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Pb</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>94 ± 16</td>
<td>91 ± 17</td>
</tr>
<tr>
<td>Zn</td>
<td>100 ± 13</td>
<td>94 ± 11</td>
<td>100 ± 3</td>
<td>100 ± 3</td>
<td>100 ± 3</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>72 ± 29</td>
<td>-78 ± -137</td>
<td>-1 ± -8</td>
<td>39 ± 4</td>
<td>72 ± 5</td>
</tr>
</tbody>
</table>
Results - Acute Aquatic Toxicity
Effluent samples more toxic to fathead minnow

Influent samples more toxic to water flea

Highest dilution volume tested (25%) had 35% mortality

LC50 below lowest volume tested

< 0.1%

Gray – water flea
Black – fathead minnow

Sample ID
Influent samples more toxic to water flea

Not different from control

Gray – water flea
Black – fathead minnow

Sample ID

LC$_{50}$ (% v/v)

Peerless Jenny King
Influent samples more toxic to water flea

Not different from control

Highest dilution volume tested (20%)
35-45% mortality

Gray – water flea
Black – fathead minnow

Sample ID
Gray – water flea
Black – fathead minnow

35% mortality

Influent samples more toxic to water flea

BCR effluent samples more toxic to fathead minnow than to the water flea

Not different from control

Sample ID

INF-A INF-B BCR-EFF-A BCR-EFF-B APC-EFF-A APC-EFF-B
Acute Aquatic Toxicity

• What caused acute toxicity in Luttrell and Standard Mine BCR effluent samples?
• Low dissolved oxygen?
 ▪ SM-BCR field average 0.6 mg/l DO; Luttrell field average 0.3 mg/l DO
 ▪ Test units must have > 4 mg/l
 o Generally > 6 mg/l
• Metals, sulfide, ammonia?
Acute Aquatic Toxicity

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Ceriodaphnia dubia</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cd (ug/l)</td>
<td>Cu (ug/l)</td>
<td>Zn (ug/l)</td>
<td>H₂S (mg/l)</td>
<td>NH₃ (ug/l)</td>
<td></td>
</tr>
<tr>
<td>LR-EFF-A</td>
<td>NA</td>
<td>NA</td>
<td>61</td>
<td>26</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>LR-EFF-B</td>
<td>NA</td>
<td>NA</td>
<td>27</td>
<td>9.3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LR-EFF-C</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3.2</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>SM-BCR-A</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.29</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>SM-BCR-B</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.74</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Comparison Value</td>
<td></td>
<td>31.4</td>
<td>6</td>
<td>425</td>
<td>0.002</td>
<td>500 - 5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Pimephales promelas</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cd (ug/l)</td>
<td>Cu (ug/l)</td>
<td>Zn (ug/l)</td>
<td>H₂S (mg/l)</td>
<td>NH₃ (ug/l)</td>
<td></td>
</tr>
<tr>
<td>LR-EFF-A</td>
<td>NA</td>
<td>NA</td>
<td>0.13</td>
<td>0.58</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>LR-EFF-B</td>
<td>NA</td>
<td>NA</td>
<td>0.53</td>
<td>1.83</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>LR-EFF-C</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.28</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>SM-BCR-A</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.298</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>SM-BCR-B</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.087</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Comparison Value</td>
<td></td>
<td>29.2</td>
<td>69.6</td>
<td>725</td>
<td>0.002</td>
<td>200 - 3400</td>
</tr>
</tbody>
</table>

NA = none detected in undiluted sample
Dissolved H₂S and NH₃ calculated from total values, temp, and pH
Effect of Aeration

Test species: fathead minnow

Sample ID

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Percent Survival (100% sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR-A</td>
<td>~2%</td>
</tr>
<tr>
<td>LR-B</td>
<td>~2%</td>
</tr>
<tr>
<td>LR-C</td>
<td>~66%</td>
</tr>
<tr>
<td>LR-A aerated</td>
<td>~66%</td>
</tr>
<tr>
<td>LR-B aerated</td>
<td>~66%</td>
</tr>
<tr>
<td>LR-C aerated</td>
<td><20%</td>
</tr>
<tr>
<td>SM-A</td>
<td><20%</td>
</tr>
<tr>
<td>SM-B</td>
<td><20%</td>
</tr>
<tr>
<td>SM-A aerated</td>
<td>100%</td>
</tr>
<tr>
<td>SM-B aerated</td>
<td>100%</td>
</tr>
</tbody>
</table>
Dissolved Gaseous Species
Luttrell Repository

Reference Toxicity Levels
2 ug/l H₂S
.2 to 5 mg/l NH₃

- H₂S (aq)
- NH₃ (aq) (10 °C)
- NH₃ (aq) (20 °C)
Dissolved Gaseous Species
Standard Mine

Reference Toxicity Levels
2 μg/l H₂S
0.2 to 5 mg/l NH₃

Sulfide (mg/l)
Ammonia (mg/l)

pH

H₂S (aq)
NH₃ (aq) (10 °C)
NH₃ (aq) (20 °C)
Concluding Remarks

• Results suggest toxicity from dissolved hydrogen sulfide gas
 ▪ Effluents more toxic to fathead minnow than to the *C. dubia*
 ▪ Fathead minnow known to be more sensitive to dissolved gases than *C. dubia*
 ▪ Dissolved H_2S concentrations above species mean acute values
 ▪ Toxicity from 100% sample removed with aeration at Standard Mine and reduced at Luttrell

• Other BCRs may have different toxicants, depending on:
 ▪ Contaminants present and efficiency of removal
 ▪ Concentrations of dissolved gases and pH of the effluent
Concluding Remarks

- BCR treatment is effective at removing significant proportions of metals from MIW, but aquatic toxicity may still be present.

- Sufficient in-field aeration following BCR treatment is an important step to remove potential toxicants resulting from the processes occurring within the BCR cells.

- Combining chemical and biological monitoring can lead to better treatment system designs.
 - To meet the goal of minimizing environmental and human health impacts.
Acknowledgements

• Co-authors:
 ▪ David Reisman – U.S. EPA ORD (retired)
 ▪ Jim Lazorchak – U.S. EPA ORD, NERL
 ▪ Mark Smith – McConnell Group [deceased, prior contractor to U.S. EPA ORD]

• Others:
 ▪ Pegasus and McConnell Group – contractors to EPA
 ▪ Regional RPM’s
 ▪ City of Park City, UT