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— Fact Sheet 2009-3105
2= USGS

science for a changing world

U.S. Geological Survey Groundwater Modeling Software:
Making Sense of a Complex Natural Resource

~ “Groundwater models afford hydrologists a framework
on which to organize their knowledge and
- understanding of groundwater systems,
~ and they provide insights water-resources
managers need to plan effectively . ..
USGS software will continue to
provide the tools they need.”




Mirror Lake NH Example: A Simple Model

Granite and schist, Mirror-Lake, NH
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Cross-Hole Test in Fractured Schist
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Cross-Hole Test in Fractured Schist

o Conceptual Model:
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Analysis With Simple Numerical Model

FSE6/ FSE9 FSE5 FSE4 FSE1

o Simple numerical model:

RN
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Glacial
Deposits|| ||
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Less permeable
rock

o Confirms conceptual model

o Captures primary heterogeneities

o Is basis for transport model

o Not unique

o Has uncertainties
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O 3D view of
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Using Hydraulic Information
to Characterize Capture Zones

Evaluating Capture Zones in Fractured-Rock
Aquifers

EPA TSP Ground Water Forum Workshop
Orlando November 16, 2010

U.S. Department of the Interior
U.S. Geological Survey



Water Levels

Packer Testing in Open Boreholes
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Packer test of Production Well
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Water Levels

North Penn Area 6, Lansdale Pa (R3)

This information is
preliminary or
provisional and is
subject to revision.
It is being provided
to meet the need
for timely best
science. The . .
information has Remediation Well
not received final
approval by the
U.S. Geological
Survey (USGS) and
is provided on the
condition that
neither the USGS
nor the U.S.
Government shall
be held liable for
any damages
resulting from the
authorized or
unauthorized use
of the information.

—

—

- |OIIIII 300 FEET
< USGS see Goode & Senior, 2000
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Characterizationmodeling,
Monitoring, and Remediation of

FRACTURED ROCK
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GW Technical Considerations during the
Five-Year Review Process (EPA, 2015)

o “ .. analysis of the monitoring program may
identify apparent monitoring gaps and indicate the
need for a geospatial analysis of the monitoring
well network.

O Some long-term monitoring optimization software
packages include geospatial analysis modules for
this purpose (EPA, 2005); however, such analyses
do not take groundwater gradients into account
and generally cannot identify when plumes are
unbounded ..

Modeling
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GW Technical Considerations during the
Five-Year Review Process (EPA, 2015)

|
Review Needs Questions
Evaluate whether contaminant * Is the groundwater remedy effective (and cost eftec-
concentration data may indicate a tive)
need for remediation system evalua- [* For a pump-and-treat remedy, has a capture zone
tion (EPA, 2000) or LTMO (EPA, analysis been conducted recentlyr
2005). * Do the data suggest that there may be a contaminant

source that has not been controlledr

* If contaminant levels have “tailed” and the plume i1s
stable, could momnitored natural attenuation (MNA)
play a larger role in the groundwater remedyr

* What are the life-cycle energy costs?

* Could sampling frequencies be reduced without a

signuficant loss i ability to track contaminant trends?
Long-Term Monitoring Optimization * Are there any redundant momnitoring wells?

Modeling 19




Capture Zone Guidance (EPA, 2008)

- Explicitly limited to porous
- st F
| BE0= e g

“The scope ... is limited to 3
evaluating capture in porogs ‘

“karst or fractvured“rock
settings” N

~ But (next sentence):

e

E

“The methods and techniques
presented here may be used |
for such settings, but other 7
more intensive technlques //
'may also be reqwred e f

0 EPA 600/R-08/003 | January 2008 | www.epa.gov/ord
vEPA
United States

Environmental Protection
Agency

(prepared by GeoTrans, Inc.)

A Systematic Approach
for Evaluation of Capture Zones

at Pump and Treat Systems
FINAL PROJECT REPORT

opm nt
rch Laboratory | Ground Water and Ecosystems Restoration Division




From: http://www.clu-in.org/conf/tio/capturezones_111308/prez/internet-seminar-draft-slide-091808ppt.ppt 000

Six Basic Steps for coe
Capture Zone Analysis

e Step 1: Review site data, site conceptual model, and remedy objectives
e Step 2: Define site-specific Target Capture Zone(s)
e Step 3: Interpret water levels

> (Potentio)metric surface maps (horizontal) and water level difference maps
vertical

» Water level pairs (gradient control points
e Step 4: Perform calculations
» Estimated flow rate calculation
» Capture zone width calculation (can include drawdown calculation
>
conjunction with particle tracking and/or transport modeling
e Step 5: Evaluate concentration trends

e Step 6: Interpret actual capture based on steps 1-5, compare to Target
Capture Zone(s), and assess uncertainties and data gaps

“Converging lines of evidence” increases confidence in the conclusions

21



Application to Fractured Rock _
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Capture Zones in Fractured Rock Aquifers:

Evaluating Water-Levels

Geology still matters. .. water levels interpreted in concert with
site conceptual model . . .three-dimensional interpretations ...

Monitoring devices filter aquifer responses. . . open
holes as conduits between high-K fractures . . . large casing volume
relative to fracture porosity . ..

Transient responses. .. fractured rock aquifers have low
storativity, respond rapidly to hydraulic and geochemical changes . ..

Fluxes . . . contouring water levels vs. modeling of water levels.. . .



Water Levels — Filling the Space

Contours

Software available
Usually 2D only
Steady state

Interpolation using
functions

Vectors & fluxes assume
isotropic homogeneous 2D
“academic aquifer”

Easy

Hydrogeologist judgment
by hand, or virtual points

Drawdown and Capture are Not the Same

Drn\\'doxyn Contours
\

Outline of the Cone of Depression
4 / (zero drawdown contour)
ll “ o 1

Water Level _ | /

Contours \’\\
| [ f

Cross-Section View: Difference Between Drawdown and Capture

Pumping
Well

apture zone

| e
- J—
et S
e = 1 ~
) 1
— | —p
1
,: / | Resulting Water Table
| —— L 2
Downgradient Extent | Due to Pumping

of Capture Zone

Drawdown 1s the change of water level due to pumping. It is calculated by subtracting water level under pumping
conditions from the water level without pumping.

Cone of Depression 1s the region where drawdown due to pumping is observed.
Capture Zone is the region that contributes the ground water extracted by the extraction well(s). It is a function of

the drawdown due to pumping and the background (1.e., without remedy pumping) hydraulic gradient. The
capture zone will only coincide with the cone of depression if there 1s zero background hydraulic gradient.

Figure 6. Drawdown and capture are not the same.




Figure 4. The stressed potentiometric surface at an altitude of + 150 feet (approximately land surface),
May 18, 2000, Naval Air Warfare Center, West Trenton, N.J.
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- Highly Heterogeneous,
' Dipping Sedimentary Strata
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Site-Scale Geologic Framework _
Soil and

Weathered Rocks

Fit to Aquifer Test Data

15BR Test: Observation Wells in
Dipping Bed Fis-233

Water %
Level
Rise

0.01
(meters)

45BR Test: Observation Wells in
Dipping Bed Fis-233

0.001

100 1000
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Highly Weathered Rocks

-— Less Weathered

4
A A
o 56BR Test:
A Observation Wells in
Dipping Bed Lam-301

Rocks
Low Permeability Beds &

High Permeability Beds
Bed ‘233’ (Bioaugmented)

1000 10000 100000

(Tiedeman and others 2(
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3D Contours of Steady-State
Water Levels (1-m interval)

This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The
information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS
nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

—— 1 f



Recharge

Flow Paths to
Pumping and
Monitoring Wells

(Saprolite Layer Not Shown)

Deep Rocks

Flow paths to pumping well

20BR in high-K dipping bed

Flow paths l
to pumping|

dipping
bed

== = m— == ere— == —ee--y

Travel Times of
Paths are Color

Highly WeLathe\lid Rr:)cksd Coded:
- ess Rc?glzsere Time (yrs
<1
Low Permeability Beds 1to 2
High Permeability Beds ——— 2t05
Bed ‘233’ (Bioaugmented) 5to0 10
>10

24BRin high-K dipping bed

Flow paths to|monitor well |

)

This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The

YR

information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS
nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.



Water Levels — Filling the Space

Contours Groundwater-Flow Model
o Software available o Software available
o Usually 2D only o 2or3D
o Steady state O Steady or Transient
0 O

Solve groundwater flow
equation

Vectors & fluxes based on
properties, recharge, sinks /
sources, mass conservation

o Effort depends on complexity

Interpolation using
functions

O Vectors & fluxes assume
isotropic homogeneous 2D
“academic aquifer”

o Easy of model, simple model is
o Hydrogeologist judgment easy
by hand, or virtual points o Explicit Hydrogeologist
judgment

=== This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The s
a information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS
@ nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.



% USGS EPA Region 3, Superfund

science for a changing world

North Penn 7
Groundwater Model Update

Lisa A. Senior Philadelphia
Daniel J. Goode 7 March 2014

U.S. Department of the Interior

3. Geological Survey (Senior and Goode 2013, 2017)
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Groundwater discharge location

- Towamencin Creek
- Neshaminy Creek
- Wissahickon Creek
- Stony Creek

Well
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Measured no flow in stream, May 31, 2005
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1990 Flow
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L

1 Kilometers

Explanation

Well identifier
202 (MG- prefix
omitted)

Contaminsnt source location

— Sfream

Well pumping rate in 2005,
in cubic meters per day

’ greater than 1,000

‘ 301 - 1,000

® 101-300

® 31-100

*  0-30
Road

Model cell that recharges
® well 202 (from optimal-parameter
simulation)
Fraction of Monte Carlo simulation

for which model cell recharges
well 202

005-025
0.26-05

051-075

4 Senior & Goode (2013)




Modeling Wrap Up

O A Systematic Process to Extract and Organize
Information from Data — Models are Tools

o Modeling Complexity (Cost) Depends on Site
(SCM) Complexity, and Decision-Making Needs
(including Risk)

o Flow Paths in Fractured Rock are Complex!

o Water-Level Data Interpreted via SCM

o Physics-Based, Account for Heterogeneity, Regional
Flow, Nearby Wells, Transients, etc.

o Explicit, Transparent, Evolving

Modeling
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Practical Modeling Discussion (as time allows)

O Reviewing models

o “Guidelines for Evaluating Ground-Water Flow
Models” (Reilly and Harbaugh, 2004)

o Are the important features of the SCM included?

o Particular software less important (MODFLOW vs.
SUTRA vs. FracMan)

o Focus on assumptions, structure and parameters
used, and how model is tested versus data
(calibration)

o Boundary conditions! Common sense! Use your
Hydro’s!

o Limitations
O Costs

Modeling 42
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Stop here.

Following slides included in
handouts

Modeling
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