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DNAPL Architecture, Dissolution, and Treatment

The DNAPL challenge

* Most of the contaminant mass may be in the non-aqueous phase
» Dissolution rate may limit remedial effectiveness and mass discharge

« Locating and contacting DNAPL sources can be challenging

Complicating Factors in Bedrock

» Many of the technologies for locating and quantifying DNAPL sources are not
appropriate, or have not been demonstrated, for bedrock

« DNAPL may be even more difficult to contact in fractured bedrock

e Costs
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Investigating DNAPL within a Single Fracture Plane

(SERDP Project ER-1554)

Influent manifold connected
to HPLC pump. Typical flow

Construction of Discrete Fracture Systems of 0.1 mL/min.

Effluent collection

29 cm x 29cm x 5cm
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Key Findings — DNAPL Architecture

Rock Residual Interfacial
Saturation Area
(cm?3/cm3) (cm?/cm?)
Colorado 1 0.24 21 Area:PCE ratio ~3-times
Colorado 2 0.21 48 less than in sands
Arizona 1 0.39 56
Arizona 2 0.43 20
i O
B . 3 |l Mass transfer coefficient
¢« C @ ° > ~10-times less than in sands
2% 00006 —r‘ D
CDM DNAPL in Fractured Rock Is Difficult to Remove

Smith Compared to Unconsolidated Materials




ISCO for TCE DNAPL in a Rock Fracture

(SERDP Project ER-1554)
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Diminished Treatment due to Blockage of

DNAPL-Water Interfaces
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lllustrative Field Example — Key Insights

Demonstration Location - Edwards AFB
= 20121‘)
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Site 37 Characteristics

Large plume (390 acres)
Deep (>200 ft)
Granite bedrock (quartz/feldspar)

Low transmissivity

Fracture flow

PCE at >10% solubility

No direct evidence of DNAPL

YV V V VYV VY VY V

PCE Plume (2011)

Cross Secton Line
(See Figure 4-9)
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FIGURE 4-5
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Building 8595

Recirculation System Wells

(Installed 2013)
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Injection Well
Extraction Well
Monitoring Well
Extraction Line
Injection Line
Packer Inflation Line

Low Voltage Underground
Segment

Low Voltage Above-ground
Segment

Location of Former Tank and
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~100 mL/min recirculation flow




Initial Source Investigation

« Borehole geophysics

* Rock core analysis

* Discrete interval
groundwater sampling & PCE (mg/L) W
drawdown testing - FlowT

5.6

« Short term pump tests

* Push-pull tracer tests
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Two Phases of Testing Using the Recirculation System

 Partitioning Tracer Test (PTT) to assess flow field and DNAPL architecture

« Bioaugmentation
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Partitioning Tracer Testing

Annable et al., JEE, 1998

- tlLowT
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PTT Limitations

Must contact DNAPL

* Not appropriate for mobile DNAPL

High TOC solids may limit sensitivity

Matrix diffusion

AV
Ffrac/ F matrix =

Deff
wt

Based on conceptual model by Parker et al., 1994

A fs
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Partitioning Tracer Test

Re
Eqt

Groundwater recirculation (~120 mL/min

Inject 50 gal tracer slug (no PCE)
- bromide
- alcohols

Collect extracted water & treat with
GAC during tracer injection

Continue GW recirculation

Monitor tracers and VOCs at monitoring
and extraction wells over a 6 week period

- No impacts at extraction wells
- Primary response at B11(S,D)
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Tracer Results — Deep Zone

Bromide mass eluting through each zone
proportional to transmissivity Initial Peak

(low T fracture)

* 1% of flow
 0.7% DNAPL

ﬂﬁ/@/ | | | Middle Peak

0.04

0.3

—&—24DMP

—«—24DMP

q s
0.2

-G Bromide

o o
N 2
©
/
o]
Tt T

Relative Concentration (C/C,)

Relative Concentration
(C/Cp)

L S — + 9% of flow
A T ey T + No DNAPL
0.0 ﬂ ___________________ . I R —*
’ 1'(I)'ime Elapsed (days/2)9/ % Late Peak
/ + 40% of flow
CDM Mass transfer controlled tailing « 0.04% DNAPL
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What Else Did We Learn from the PTT?

DNAPL distribution
DNAPL present in high transmissivity fractures, but also in low
transmissivity zones

Average fracture porosity g{!lﬂ[]l;lglnﬁmwﬁ

0.004 ence

Implications for Treatment and Plume Longevity

DNAPL mass Charles E. Schaefer,™ Erin B. White,” Graig M. l..uuxgn.\.' and Michael D. Annable

pubs.acs.oeglest

Dense Nonaqueous-Phase Liquid Architecture in Fractured Bedrock:

2.4 kg in 15 ft radius around injection well interval

DNAPL persistence under ambient conditions (dissolution only)
DNAPL in moderate to high T zones — 65 years
DNAPL in low T zone — 194 years
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PCE Distribution

Rock Matrix VS Fractures

o 10
K /
§_ ¢ é —— Based on PTT DNAPL estimate
Tk
S 4 —8-98 ft bgs
: /./ \f
5 'd é
S % w0 10 a0

PCE Concentration (ug/kg)

149 g PCE in rock matrix 2,400 g PCE as DNAPL

PCE concentration profile suggests in fractures
back-diffusion not occurring

CDM _ .
Smith So treating to remove DNAPL might make sense



Bioaugmentation
(August 29, 2014)

Initial electron donor delivery
- 59L lactate (2,000 mg/L) in injection interval
- GW recirculation overnight

19 L SDC-9 culture + 38 L lactate chaser
(500 mL/min)

5x10"cells DHC

9 months of active treatment (gw recirc.)

10 months rebound (no recirc.)
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Dehalococcoides sp. (DHC)

Dehalococcoides sp.
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VOC and Ethene Results - Shallow
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VOC and Ethene Results - Deep
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Ethene primary product at end of
rebound, and only trace CVOCs

Total molar concentrations decrease
~3x during rebound

Data suggest on-going reducing
conditions are masking VOC rebound,
and DNAPL source is still present



Chloride Generation
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Impact of DNAPL Architecture n Treatment
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~100% DNAPL removal Only 45% DNAPL removal
Large molar decrease post treatment Limited molar decrease post treatment

DNAPL Architecture Matters!

(a tool to manage treatment)
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Summary — DNAPL Architecture, Dissolution, and Treatment

e DNAPL in fractures more problematic than in unconsolidated media

e |SCO may be ineffective for relatively high levels of residual DNAPL

® DNAPL can be identified and quantified in fractured rock

e DNAPL in low transmissivity fractures can sustain plumes (not just matrix back diffusion)
e DNAPL architecture and flow field can determine the efficacy of DNAPL source treatment

® Bioaugmentation can be effective for treating DNAPL sources and reducing mass discharge
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