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The Importance of Natural Attenuation in the 
Groundwater Management at Sites of 

Contamination in Fractured Rock Aquifers
¥ Monitored Natural Attenuation (MNA) is currently evaluated as a groundwater 

remediation strategy, like other groundwater remediation strategies (e.g., 
Pump-and-Treat, Thermal Treatments, In Situ Chemical Oxidation, etc.) 

¥ If the Remedial Action Objective is to restore groundwater, remediation 
strategies are evaluated on achieving ARARS (Applicable or Relevant and 
Appropriate Requirements) in a “Reasonable Time Frame” 

¥ MNA has been successfully applied at a large number of sites of groundwater 
contamination over the past 15 years, including some sites in fractured rock

¥ There are many (federal, industrial, and state) sites, where achieving ARARs in 
a “Reasonable Time Frame” is unlikely in fractured rock



§ Difficulties in characterizing complex distribution of contaminants (e.g., source zone, flow paths, 
contaminant mass in flow-limited regions of the aquifer)

§ Long-residence times of contaminants in flow-limited regions of the aquifer
§ Challenges to remedial technologies in transforming/destroying contaminant mass in source 

zone and dissolved-phase plume in flow-limited regions of the aquifer

Naval Air Warfare Center, West Trenton, NJ

Weathered rock

Unweathered rock

Estimate of TCE Mass 
in Fractures and Rock Matrix
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Technical Challenges to Remediation in 
Fractured Rock in a Reasonable Time Frame



Program/Agency Number of 
Contaminated 

Facilities

Number of Sites Estimated Cost 
Complete ($B)

DoD 4,329 $12.8

CERCLA 1,364 $16 - $23

RCRA 2,844 $32.4

UST 87,983 $11

DOE 3,650 $17.3 - $20.9

Other Federal Sites >3,000 $15 - $22

State Sites >23,000 $5

TOTAL >126,000 $110 - $127

The Magnitude of the Problem

National Research Council, 2013
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National Research Council, 2013

The Magnitude of the Problem
q >126,000 sites have residual groundwater contamination that prevents 

“closure” . . . likely an underestimate. . .e.g., counting of “facilities” and 
“sites” differ between programs, does not include DoD facilities with 
Remedy in Place (RIP) or Response Complete (RC), etc.  

q Cost of remediation $110 - $127 Billion. . .likely an underestimate given 
technical limitations of achieving Unlimited Use/Unrestricted Exposure 
(UU/UE). . .  

q Estimated ~10% of sites (~12,000 sites) are “complex” . . . restoration 
unlikely for decades or centuries. . . ~10% of all sites will account for ~70% 
of total cleanup costs [Ehlers and Kavanaugh, 2013] . . .   



Analysis of 80 Delisted NPL Groundwater Sites
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MCL Characterization
MCLs Achieved: Active Remedy: 
No LTM

MCLs Achieved: Active 
Remedy: LTM

MCLs Not Achieved: LTM

MCLs Not Achieved: Deleted 
Based on Risk Assessment: No LTM

MCLs Not Achieved: Deleted 
Based on Risk Assessment: LTM

Remedial Objective 
Other Than Meeting 
MCLs

MCL Achievement Unknown

Not a Groundwater Site

MCLs Achieved: No Active 
Remedy: No LTM
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Are “Closed” Sites “Closed” ?



Schofield Barracks (U.S. Army), Oahu, Hawaii

17,000 acre facility
Land fill, sewage, industrial and vehicle waste, explosives
Water supply well impacted by TCE (100 ppb)

• Basaltic rock

• Thin, horizontal lava flows 
(hydraulic conductivity 100’s to 
1,000’s ft/day)

• Intrusive dikes compartmentalize 
groundwater

• Groundwater 500-600 ft below 
land surface

• U.S. Army applied for upfront TI Waiver as part of ROD, 1996
• Air strippers on drinking water wells, 1986
• Monitoring wells
• Delisted from NPL, 2000
• 5-year reviews

ARARs Waiver – Technical Impracticability
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Letterkenny Army Depot, Chambersburg, PA

• Testing, storage, overhaul of track vehicles
• Storage, transportation of industrial chemicals, petroleum
• Storage, modification of ammunition

• Groundwater contaminated with TCE, PCBs
• Soils contaminated with heavy metals, VOCs
• Facility divided into 7 Operable Units (OUs)

• In Situ Chemical Oxidation (ISCO) applied to VOC 
contamination in groundwater without success

• Facility overlies limestone and dolomite
• Structural faulting in the area
• Karstic features (sink holes, caverns, springs)

Letterkenny
Army Depot

• U.S. Army has been unable to obtain a TI 
waiver for selected OUs

ARARs Waiver – Technical Impracticability (?)
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77 TI waivers (up through November 2010) 

~3/4 of TI waivers attributed to hydrogeology 
or nature of contamination

Deeb et al., 2011

Hydrogeologic Setting

Type of Contaminant

ARARs Waiver – Technical Impracticability
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77 TI waivers (up through November 2010) 

Distribution of TI Waivers by EPA Regions

Approximately ½ of states have not had a TI waiver

Distribution of CERCLA sites is not evenly distributed over EPA regions

Hydrogeologic conditions differ from region to region

TI Waivers Granted Over Time
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ARARs Waiver – Technical Impracticability

Deeb et al., 2011
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The Importance of Natural Attenuation in the 
Groundwater Management at Sites of 

Contamination in Fractured Rock Aquifers
¥ Large number of sites are characterized as “complex”. . .ARARs unlikely to 

be achieved in decades to centuries. . . 

¥ Unlikely that stakeholders will accept wide spread application of ARARs 
Waivers (Technical Impracticability) at fractured rock sites

¥ Need to consider longer time frames of remediation and remedial 
strategies that may evolve over time, recognizing that some active 
remedies may reach a point of diminishing returns. . .Natural Attenuation 
will likely be a component in the management of a large number of 
fractured rock sites. . . 

¥ There is a need to document the existence of Natural Attenuation and 
understand the long-term prospects for continued Natural Attenuation
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¥ MNA – encompasses all natural attenuation processes (not just 
biological) – preference for those processes that degrade or destroy 
contaminants

¥ Conditions at each site are unique, but common framework is applied 
in documenting natural attenuation

Natural Attenuation in Fractured Rock

Monitored Natural Attenuation
EPA Protocol (1999)

¥ Lines of evidence (1999)
Ø Historical chemical data indicating 

decrease in contaminants of concern 
along flowpaths

Ø Hydrogeological and geochemical data 
to demonstrate (indirectly) types of 
natural attenuation processes and rates

Ø Field or microcosm studies
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Monitored Natural Attenuation
Recent Advances

¥ Development of microbiological tools. . Polymerase Chain Reaction (PCR) . . 
.explicitly identify presence of Dehaloccoides (Dhc) species in groundwater 
known to carry out reductive dechlorination

¥ Compound Specific Isotope Analysis (CSIA) . . .ratio of carbon isotopes. . 
.dechlorination preferentially metabolizes 12C in comparison 13C, changing the 
isotope ratio of TCE, cis-DCE, VC, and ethene as reductive dechlorination
continues. . .clearly identifies that decreases in concentrations of chlorinated 
ethenes are a product of dechlorination rather dilution. . . 

¥ Statistical model correlating presence of Dhc with geochemical parameters . . 
.oxidation-reduction potential (ORP), methane, and nitrate + nitrite

¥ Recent advances provide quantitative (lines of) evidence for reductive 
dechlorination Wilson 2010
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Monitored Natural Attenuation
Attributes that Lead to Success

¥ Detailed understanding of flowpaths from source to receptors – design of 
monitoring well network – a challenge in fractured rock

¥ Source zone control – to prevent further downgradient contamination –
remediation or containment

¥ Monitoring that demonstrates substantial reduction in contaminant 
concentration over a decade or more – reductions in concentrations by order 
of magnitude

¥ Monitoring includes geochemical and microbial parameters that document 
groundwater is an appropriate habitat for attenuation  

¥ Quantitative evaluation of spatial distribution of contaminants and their 
degradation products (usually through mathematical modeling tools)

Warning:  Success is not guaranteed ! There are numerous field examples of incomplete dechlorination (TCE stalling 
at cis-DCE and VC). There may a poor distribution or insufficient abundance of appropriate microbial communities 
needed for complete dichlorination (see, e.g., Stroo et al., 2010, Bradley and Chapelle, 2010)
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Monitored Natural Attenuation
Application to Fractured Rock

¥ Successful applications of MNA in dissolved phase plume in fractured rock 
document for selected areally extensive plumes . . .1000’s of feet. . . see, e.g., 
Twin Cities Army Ammunition Plant (MN) - sandstone, Bell Aerospace Textron 
Wheatfield Plant (NY) - dolomite

¥ Plumes over 1000’s of meters – monitoring wells 
interpreted as if along a single flow path

¥ Current struggle to interpret MNA in fractured
rock over dimensions where flowpaths are
convoluted (10’s -100’s of meters)

¥ “Flowpath-independent” interpretation of MNA
(see, e.g., Bradley et al., 2009)  - an attempt
to address this issue at discrete monitoring
locations 



Monitored Natural Attenuation in Fractured Rock
Observations
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q Natural attenuation (biotic and abiotic processes) will likely become an 
issue at some point in the life span of remedial activities at fractured rock 
sites. . .characterization of factors governing effectiveness of natural 
attenuation should be included (early) in site milestone activities. . . 

q Estimates of attenuation will to change over time. . .one cannot expect 
degradation rates to remain constant. . .for long time frames, one will 
need to document the processes and conditions that will maintain natural 
attenuation

q Over dimensions of 10’s – 100’s of meters, monitoring wells may not 
characterize representative flowpaths . . .under such conditions in 
fractured rock, it is difficult to infer if attenuation will reduce (spatially 
distributed) concentrations and contaminant mass 

Natural Attenuation in Fractured Rock
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