
OVERVIEW OF FRACTURED ROCK DRILLING METHODS IN EPA REGION 10

Geologic Issues in the Pacific Northwest that Impact Selection of Drilling Method

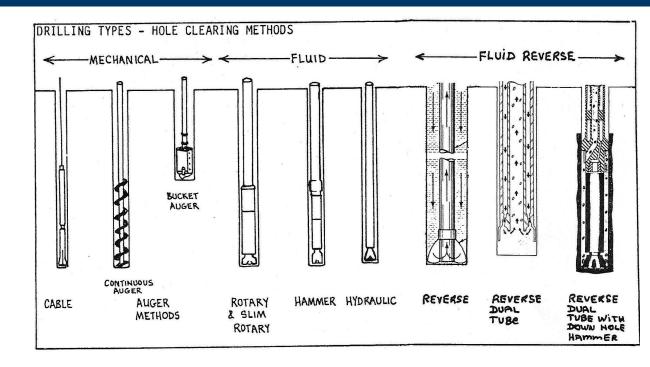
Ice Age Floods in the Pacific Northwest. YEASTERN

Common Drilling Techniques in Fractured Rock

Percussion

Cable tool drilling

Rotary


- Air rotary drilling
 - conventional circulation
 - reverse circulation
- Dual-wall rotary drilling
- Coring

Mud rotary drilling

Combination

(Rotary + Percussion)

- Downhole hammers
- Rotary-Sonic

hammer bit

tri-cone bit

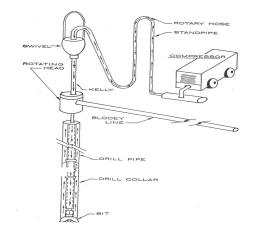
Percussion - Cable Tool Drilling

Advantages:

- Drills nearly "everything" (soft or hard)
- Can provide good formation samples
- Info on water-bearing zones available during drilling
- Can typically drill a wide range of borehole diameters
- Reliable equipment
- Can be relatively less expensive than other drilling methods

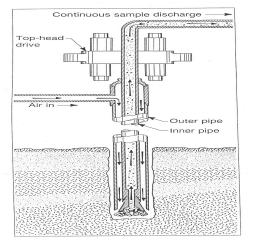
Disadvantages:

- Drilling in "hard rock" is very slow
- Need to drive steel casing in unconsolidated sediments to keep borehole open
- Installation of continuous grout seal can be difficult



Air Rotary Drilling

Conventional Circulation


Advantages:

- Good in hard rock
- Speed of advance
- Ease of well completion
- Less expensive

Disadvantages:

- Hole stability
- Loss of circulation (LOC)
- Sampling issues

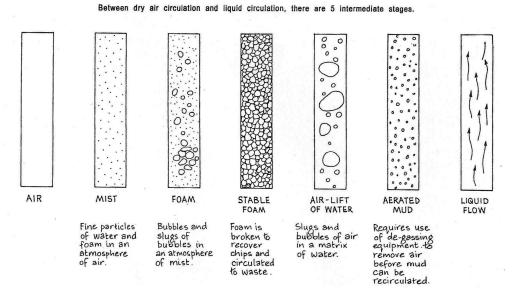
Reverse Circulation

Advantages:

- Good in hard and soft rock
- Good sample recovery
- Hole stability control

Disadvantages:

- Well completion issues
- Availability
- More expensive


Air Rotary Drilling (cont.)

Types of Drilling Fluids Commonly Employed:

- Air
- Water (+Air)
- "Foam"
- "Mud"

Functions of Drilling Fluids:

- Cool and lubricate bit
- Lift cuttings to surface
- Help stabilize borehole
- Control LOC

*** IMPORTANT FACTOR - TYPE OF BIT USED *** Tri-Cone vs. Hammer

Mist and aerated fluids

6

City of Warden Well No. 9

Drilled Air Rotary Using Conventional Circulation With An Air-Hammer Bit

- Drilled 505 feet below ground surface (bgs) into the Columbia River Basalt
- 20 inch-diameter borehole
- SWL: 53 feet bgs
- Air-lift yield: 6,000 gpm

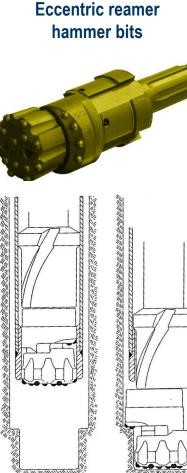
Wireline-Core Rotary Drilling


Advantages:

- Good in hard, fractured rock
- Continuous core
- Limited drilling fluids needed
- Limited cuttings discharged
- Relatively fast drilling

Disadvantages:

- Relatively small-diameter borehole
- Borehole stability control
- More expensive


Downhole Hammers Combination (Rotary + Percussion)

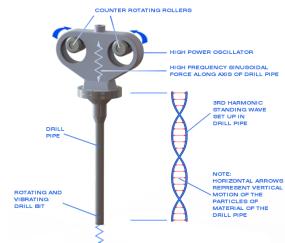
Advantages (Dual-Wall Systems):

- Casing advances with hammer bit
- High penetration rates in hard rock
- Good cuttings recovery/control
- Control borehole stability
- Minimize LOC
- Ease of well completion

Disadvantages:

- Maximum depth limitations
- Hammer bit can be "flooded out"
- Relatively expensive

Eccentric reamer dual-wall system "Odex/Tubex/Sim-cas"


Rotary-Sonic Drilling Method

Advantages:

- Good in hard and soft rock
- Continuous core
- Limited drilling fluids needed
- Very limited cuttings discharged
- Relatively fast drilling

Disadvantages:

- Limited availability in some areas
- More expensive

The frequency can be varied to suit operation conditions and is generally between 50 and 160 hertz (cycles per second).

Sonic drill rig looks like a conventional air rotary drill rig, but the big difference is in the drill head, which contains mechanisms necessary for standard rotary motion plus an oscillator which causes a high frequency force to be transmitted along the drill string. The drill bit is physically vibrating up and down in addition to being pushed down and rotated.

QUESTIONS

- 10