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DNAPL Architecture, Dissolution, and Treatment
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The DNAPL challenge

Complicating Factors in Bedrock

• Most of the contaminant mass may be in the non-aqueous phase

• Dissolution rate may limit remedial effectiveness and mass discharge

• Locating and contacting DNAPL sources can be challenging

• Many of the technologies for locating and quantifying DNAPL sources are not
appropriate, or have not been demonstrated, for bedrock

• DNAPL may be even more difficult to contact in fractured bedrock

• Costs



Investigating DNAPL within a Single Fracture Plane
(SERDP Project ER-1554)
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Construction of Discrete Fracture Systems
Influent manifold connected
to HPLC pump. Typical flow

of 0.1 mL/min.

Effluent collection

29 cm x 29cm x 5cm



Key Findings – DNAPL Architecture
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Rock Residual
Saturation
(cm3/cm3)

Interfacial 
Area

(cm2/cm3)

Colorado 1 0.24 21
Colorado 2 0.21 48
Arizona 1 0.39 56
Arizona 2 0.43 20

Area:PCE ratio ~3-times 
less than in sands

Mass transfer coefficient 
~10-times less than in sands
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DNAPL in Fractured Rock Is Difficult to Remove
Compared to Unconsolidated Materials



ISCO for TCE DNAPL in a Rock Fracture
(SERDP Project ER-1554)
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~4% of residual 
DNAPL removed
using activated 

persulfate



Diminished Treatment due to Blockage of 
DNAPL-Water Interfaces
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Post Persulfate Oxidation
- Rate of PCE removal had decreased by approximately 7-fold

- Precipitates likely forming at DNAPL-water interfaces

Prior to Persulfate Oxidation
Retardation (sorption) of the 

interfacial tracer SDBS

No measurable retardation



Illustrative Field Example – Key Insights
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Demonstration Location - Edwards AFB
(ESTCP 201210)Site 37 Characteristics

Ø Large plume (390 acres)
Ø Deep (>200 ft)
Ø Granite bedrock (quartz/feldspar)
Ø Low transmissivity
Ø Fracture flow
Ø PCE at >10% solubility
Ø No direct evidence of DNAPL
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Site Characteristics

~100 mL/min recirculation flow



Initial Source Investigation
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• Borehole geophysics

• Rock core analysis

• Discrete interval 
groundwater sampling & 
drawdown testing

• Short term pump tests

• Push-pull tracer tests
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Two Phases of Testing Using the Recirculation System
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• Partitioning Tracer Test (PTT) to assess flow field and DNAPL architecture

• Bioaugmentation



Partitioning Tracer Testing
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Annable et al., JEE, 1998
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PTT Limitations
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• Must contact DNAPL

• Not appropriate for mobile DNAPL 

• High TOC solids may limit sensitivity

• Matrix diffusion

Based on conceptual model by Parker et al., 1994



Partitioning Tracer Test
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Groundwater recirculation (~120 mL/min

Inject 50 gal tracer slug (no PCE)
- bromide 
- alcohols

Collect extracted water & treat with 
GAC during tracer injection

Continue GW recirculation

Monitor tracers and VOCs at monitoring 
and extraction wells over a 6 week period

Tracer injection

- No impacts at extraction wells
- Primary response at B11(S,D)



Tracer Results – Deep Zone
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• 1% of flow
• 0.7% DNAPL

Initial Peak
(low T fracture)

• 9% of flow
• No DNAPL

Middle Peak

• 40% of flow
• 0.04% DNAPL

Late Peak
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What Else Did We Learn from the PTT?
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DNAPL distribution
DNAPL present in high transmissivity fractures, but also in low 
transmissivity zones

Average fracture porosity
0.004

DNAPL mass
2.4 kg in 15 ft radius around injection well interval

DNAPL persistence under ambient conditions (dissolution only)
DNAPL in moderate to high T zones – 65 years
DNAPL in low T zone – 194 years



PCE Distribution
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Rock Matrix vs                Fractures
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Based on PTT DNAPL estimate

2,400 g PCE as DNAPL 
in fracturesPCE concentration profile suggests

back-diffusion not occurring

So treating to remove DNAPL might make sense



Bioaugmentation
(August 29, 2014)
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• Initial electron donor delivery
- 59L lactate (2,000 mg/L) in injection interval
- GW recirculation overnight

• 19 L SDC-9 culture + 38 L lactate chaser 
(500 mL/min)

• 5x1011cells DHC

• 9 months of active treatment (gw recirc.)

• 10 months rebound (no recirc.)



Geochemical Changes During Treatment
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Dehalococcoides sp. (DHC)
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Electron Donor

2020

0

1000

2000

3000

0 200 400 600 800

Pr
op

io
ni

c 
Ac

id
  (

m
g/

L)

Days

0

1000

2000

3000

0 200 400 600 800

Pr
op

io
ni

c 
Ac

id
  (

m
g/

L)

Days

B11S B11D
GW re

cir
c

Bioau
gmen

t

End
GW re

cir
c

Bioau
gmen

t

End



• Ethene primary product at end of 
rebound, and only trace CVOCs

• Total molar concentrations decrease 
~20x during rebound

• Data suggest minimal on-going 
impacts from PCE sources

VOC and Ethene Results - Shallow
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VOC and Ethene Results - Deep
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Chloride Generation
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Impact of DNAPL Architecture n Treatment
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DNAPL Architecture Matters!
(a tool to manage treatment) 



Summary – DNAPL Architecture, Dissolution, and Treatment
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● DNAPL in fractures more problematic than in unconsolidated media

● ISCO may be ineffective for relatively high levels of residual DNAPL

● DNAPL can be identified and quantified in fractured rock

● DNAPL in low transmissivity fractures can sustain plumes (not just matrix back diffusion)

● DNAPL architecture and flow field can determine the efficacy of DNAPL source treatment

● Bioaugmentation can be effective for treating DNAPL sources and reducing mass discharge


