

Evaluating and Treating DNAPL in Fractured Rock

Charles Schaefer, Ph.D.

DNAPL Architecture, Dissolution, and Treatment

The DNAPL challenge

- Most of the contaminant mass may be in the non-aqueous phase
- Dissolution rate may limit remedial effectiveness and mass discharge
- Locating and contacting DNAPL sources can be challenging

Complicating Factors in Bedrock

- Many of the technologies for locating and quantifying DNAPL sources are not appropriate, or have not been demonstrated, for bedrock
- DNAPL may be even more difficult to contact in fractured bedrock
- Costs

Investigating DNAPL within a Single Fracture Plane (SERDP Project ER-1554)

Construction of Discrete Fracture Systems

Influent manifold connected to HPLC pump. Typical flow of 0.1 mL/min.

Effluent collection

29 cm x 29cm x 5cm

Key Findings – DNAPL Architecture

Rock	Residual Saturation (cm ³ /cm ³)	Interfacial Area (cm²/cm³)
Colorado 1	0.24	21
Colorado 2	0.21	48
Arizona 1	0.39	56
Arizona 2	0.43	20

Area:PCE ratio ~3-times less than in sands

Mass transfer coefficient ~10-times less than in sands

DNAPL in Fractured Rock Is Difficult to Remove Compared to Unconsolidated Materials

ISCO for TCE DNAPL in a Rock Fracture (SERDP Project ER-1554)

Diminished Treatment due to Blockage of DNAPL-Water Interfaces

Illustrative Field Example – Key Insights

Site 37 Characteristics

- Large plume (390 acres)
- Deep (>200 ft)
- > Granite bedrock (quartz/feldspar)
- Low transmissivity
- Fracture flow
- PCE at >10% solubility
- > No direct evidence of DNAPL

Demonstration Location - Edwards AFB (ESTCP 201210)

~100 mL/min recirculation flow

Initial Source Investigation

- Borehole geophysics
- Rock core analysis
- Discrete interval groundwater sampling & drawdown testing
- Short term pump tests
- Push-pull tracer tests

Two Phases of Testing Using the Recirculation System

• Partitioning Tracer Test (PTT) to assess flow field and DNAPL architecture

Bioaugmentation

Partitioning Tracer Testing

PTT Limitations

- Must contact DNAPL
- Not appropriate for mobile DNAPL
- High TOC solids may limit sensitivity
- Matrix diffusion

$$F_{\rm frac}/F_{\rm matrix} = \frac{A_{\rm cs}V}{A_{\rm fs}\sqrt{\frac{D_{\rm eff}}{\pi t}}}$$

Based on conceptual model by Parker et al., 1994

Partitioning Tracer Test

Groundwater recirculation (~120 mL/min

Inject 50 gal tracer slug (no PCE)

- bromide

- alcohols

Collect extracted water & treat with GAC during tracer injection

Continue GW recirculation

Monitor tracers and VOCs at monitoring and extraction wells over a 6 week period

No impacts at extraction wells
Primary response at B11(S,D)

Tracer Results – Deep Zone

Bromide mass eluting through each zone proportional to transmissivity

Initial Peak (low T fracture)

- 1% of flow
- 0.7% DNAPL

Middle Peak

- 9% of flow
- No DNAPL

Late Peak

- 40% of flow
- 0.04% DNAPL

What Else Did We Learn from the PTT?

DNAPL distribution

DNAPL present in high transmissivity fractures, but also in low transmissivity zones

Average fracture porosity

0.004

DNAPL mass

2.4 kg in 15 ft radius around injection well interval

DNAPL persistence under ambient conditions (dissolution only)

DNAPL in moderate to high T zones – 65 years DNAPL in low T zone – 194 years

Dense Nonaqueous-Phase Liquid Architecture in Fractured Bedrock: Implications for Treatment and Plume Longevity Charles E. Schaefer,^{**,7} Erin B. White,[‡] Graig M. Lavorgna,[§] and Michael D. Annable[‡]

PCE Distribution

VS

Rock Matrix

10 **Distance Inward from Fracture** 8 6 🔶 76 ft bgs (cm) 4 📕 98 ft bgs 2 0 50 150 200 0 100 PCE Concentration (µg/kg)

<u>Fractures</u>

Based on PTT DNAPL estimate

149 g PCE in rock matrix

PCE concentration profile suggests back-diffusion not occurring 2,400 g PCE as DNAPL in fractures

Smith So treating to remove DNAPL might make sense

Bioaugmentation (August 29, 2014)

- Initial electron donor delivery
 - 59L lactate (2,000 mg/L) in injection interval
 - GW recirculation overnight
- 19 L SDC-9 culture + 38 L lactate chaser (500 mL/min)
- 5x10¹¹cells DHC
- 9 months of active treatment (gw recirc.)
- 10 months rebound (no recirc.)

Geochemical Changes During Treatment

CDN

Dehalococcoides sp. (DHC)

Electron Donor

VOC and Ethene Results - Shallow

- Ethene primary product at end of rebound, and only trace CVOCs
- Total molar concentrations decrease ~20x during rebound
- Data suggest minimal on-going impacts from PCE sources

VOC and Ethene Results - Deep

- Ethene primary product at end of rebound, and only trace CVOCs
- Total molar concentrations decrease
 ~3x during rebound
- Data suggest on-going reducing conditions are masking VOC rebound, and DNAPL source is still present

Chloride Generation

DNAPL mass removal based on chloride generation

Impact of DNAPL Architecture n Treatment

~100% DNAPL removal

Only 45% DNAPL removal

Large molar decrease post treatment

Limited molar decrease post treatment

DNAPL Architecture Matters! (a tool to manage treatment)

Summary – DNAPL Architecture, Dissolution, and Treatment

- DNAPL in fractures more problematic than in unconsolidated media
- ISCO may be ineffective for relatively high levels of residual DNAPL
- DNAPL can be identified and quantified in fractured rock
- DNAPL in low transmissivity fractures can sustain plumes (not just matrix back diffusion)
- DNAPL architecture and flow field can determine the efficacy of DNAPL source treatment
- Bioaugmentation can be effective for treating DNAPL sources and reducing mass discharge

