Naturally Occurring Dechlorination Reactions under Oxic and Anoxic Conditions in Natural Solids

<u>CDM Smith</u> Charles Schaefer, Ph.D. Paul Ho

University of Texas Charles Werth, Ph.D. Erin Berns

September 12, 2019

Abiotic Dechlorination via Ferrous Minerals

- Several studies have focused on abiotic dechlorination reactions facilitated by naturally occurring ferrous minerals
 - Pyrite, magnetite, green rusts

- Natural clays and rock matrices have received little attention
 - Ferrous minerals are present in many natural clays and rock

 Diffusion is a SLOW process, so even a slow dechlorination reaction within the clay or rock matrix can be an important attenuation mechanism

- Assess abiotic dechlorination mechanisms and pathways
- Determination of abiotic dechlorination rates in natural clay
 - Role of oxygen
- Potential importance at field sites
- Field-scale assessment of abiotic dechlorination

Abiotic Dechlorination via Ferrous Minerals

Abiotic Dechlorination via Ferrous Minerals

 $3Fe(II)_{min} + O_2 + 2H^+ \longrightarrow 3Fe(III)_{min} + OH^- + \bullet OH$

Aerobic Conditions – Hydroxyl Radical formation

CDM Smil from Kong et al., ES&T, 2015

Abiotic Dechlorination via Pyrite Minerals: Aerobic Pathway

Bench-Scale Testing to Determine Dechlorination Kinetics

- Gamma-irradiated clayey soils
- <u>Anaerobic</u> and <u>aerobic</u> test systems
- Triplicates
- Vary temperature

Natural Soils

Property	Soil 1	Soil 2	Soil 3***	Soil 4 ****	Soil 5
% Mineral Content (XRD)	illite (41); albite (30); quartz (25); siderite (1.6); anhydrite (1.5)	illite (33); quartz (27); ankerite (16); albite (16); kaolinite (3.5); calcite (3.0); siderite (1.0)	illite (29); quartz (23); ankerite (18); albite (17); kaolinite (6.9); calcite (5.4)	albite (42); <mark>illite</mark> (29); quartz (12); anhydrate (16);	Quartz (34); Albite (33); Orthoclase (22); biotite (9.3); apatite (1.5)
% Clay	37	23	23	2.1	13
% Silt	55	26	22	2.2	13
% Sand & Gravel	8	51	55	96	74
Magnetic Susceptibility (m ³ /kg)	3.9 x 10 ⁻⁷	3.5 x 10 ⁻⁷	2.1 x 10 ⁻⁷	6.1 x 10 ⁻⁷	3.4 x 10 ⁻⁶
Ferrous mineral content (mg/kg)	2570	160	337	45	3.3
CDM Smith					

Results – Anaerobic Conditions ($<26\mu M O_2$)

Soils 4 & 5: No transformation products detected (reduced gases, CO₂, OAs)

As expected, clayey soils with ferrous iron have reduced gas transformation products

Results – Anaerobic Conditions ($<26\mu M O_2$) Soil 1

0.0E+00

0

20

40

60

Days

100

120

80

- More reactive than the other soils
- Unexpected: OAs>>reduced gases
- Trace O₂ levels likely responsible •

CDM Sm

Results – Aerobic Conditions (>120 μ M O₂)

Soils 4 & 5: No transformation products detected (reduced gases, CO₂, OAs)

Reduced gases: none observed for any soil

OAs: observed in Soils 1 through 3

$\begin{array}{l} \mbox{Results} - \mbox{Aerobic Conditions (>120 \ \mu M \ O_2)} \\ \mbox{Soil 1} \end{array}$

CDM Smi

- ~8-times more OAs generated than under "anaerobic" conditions
- Formic acid formation dominates

Results – Aerobic Conditions (>120 μ M O₂)

=formic acid, =glycolic acid

Reductive and Oxidative First-Order Rate Constants

Anaerobic conditions only

Abiotic Oxidative Dechlorination Rate Constant a Function of Hydroxyl Radical Generation Rate

Available online at www.sciencedirect.com

SCIENCE DIRECT.

Analytica Chimica Acta 527 (2004) 73-80

Determination of hydroxyl radicals in advanced oxidation processes with dimethyl sulfoxide trapping and liquid chromatography

Chao Tai^a, Jin-Feng Peng^a, Jing-Fu Liu^a, Gui-Bin Jiang^{a,*}, Hong Zou^b

Reductive Rate Constants Related to Mineral Properties

Similar Trend Observed for TCE Abiotic Dechlorination in Rock Matrices

Schaefer et al., ES&T, 2013

Oxidative Aerobic Rate Constants Related to Mineral Properties

So How Important Are These Reactions?

Anaerobic Conditions

Half life as short as 60 years (shorter at lower TCE concentrations)

<0.003% of ferrous iron consumed

Aerobic Conditions

Half lives ranging from 0.25 to 0.83 years

11 to 40% ferrous mineral consumption based on hydroxyl radical generation

Field Assessment of Matrix Back-Diffusion & Abiotic Dechlorination

ESTCP Project ER-201330

D. Lippincott (APTIM), H. Klammler (UF), K. Hatfield (UF)

• While bench-scale testing is critical for demonstrating mechanisms, typically only a very small portion of the clay/rock media is interrogated (i.e., 2-inch cores)

	Journal of Contaminant Hydrology 209 (2018) 33-41	
****	Contents lists available at ScienceDirect	
	Journal of Contaminant Hydrology	HYDROLOGY
ELSEVIER	journal homepage: www.elsevier.com/locate/jconhyd	
Evidence of ro	ock matrix back-diffusion and abiotic dechlorination using a	

Charles E. Schaefer^{a,*}, David R. Lippincott^b, Harald Klammler^c, Kirk Hatfield^c

field testing approach

Site Location – Calf Pasture Point (RI)

Navy construction battalion center (1951-1994)

meta-sandstone/schist/gneiss

•TCE+DCE

CDM Smith

Evidence of Abiotic Dechlorination Using Compound Specific Isotopic Analysis (CSIA)

Enrichment observed (TCE+DCE), without generation of VC. Consistent with abiotic reaction.

CDM

Smit

Conclusions

- Abiotic dechlorination reaction can occur in natural aquifer solids due to the presence of ferrous minerals
- The presence of oxygen impacts reaction pathways and kinetics
- These reactions can be important when considering long-term contaminant fate and transport
- Field-assessment techniques using CSIA can provide additional insight and verification

Becoming an increasingly important approach for addressing our clients needs: mineral screening & treatability testing

Research Funding

Contact Information

Charles Schaefer, Ph.D. 732-590-4633 schaeferce@cdmsmith.com

