Chemical Attenuation in a Fractured Bedrock Aquifer Impacted by Landfill Leachate

Tamzen MacBeth, PhD, PE, BCEE

September 11, 2019

The Chlorinated Solvent Problem

- Chlorinated solvents plumes can impact large volumes in aerobic aquifers
- Impacts to receptors can be significant and can last for decades to centuries
- Long-term management strategies must account for nature and persistence

DNAPL Characteristics

- Density greater than water and so "sink" below groundwater table
- Low solubility, e.g. "oil in water"
- Recalcitrant in aerobic aquifers (including the aquifer in this case study)
- Sorb and diffuse in soil/sediment

Landfill Source Area

- 1942-1992- 1,500,000 tons of waste were disposed in Cell 1
- Cell 1 is approximately 69 acres and 3-4,000,000 cubic yards
- Thickness of waste up to 85 feet
- Cell 1 closed with a 30-inch barrier to effectively eliminate approximately 90 percent of precipitation falling on the cover

Chemical Plume

Landfill is the source of a large TCE plume that was over 2 miles long in the 90's and has retracted to approximately 1 mile.

Hydrogeology

- Water Table- 40-80 feet bgs
- Alluvium- 0-100 feet bgsdiscontinuous units of sand, gravel, silt, and clay with K of 2-10 feet/day.
- Starlight Formation- 100-200 feet bgs—weathered and fractured middle to Late Tertiary basin-filling sediments with K of 0.1-1 feet/day.

Remediation System

The groundwater remediation system installed in 2002 and expanded in 2009-2012:

- Extracts groundwater near the landfill entrance
 - Extraction wells (dark brown circles)
 - 30 gpm average (approx. seasonal variation: ~15 to 40 gpm)
 - Average TCE influent : ~90 ug/L

TCE Removal: 11 to 12 lbs/yr

- Treats the water using an air stripper
 - Removes all VOCs
- Reinjects treated groundwater
 - Injection well (blue triangle)

Chemical Trends Near Landfill

Building a Model for Attenuation Capacity

- Numerical modeling approach
- Evaluate the aquifer attenuation capacity between the source and supply well
- Evaluate additional reduction in mass discharge required to protect the supply well

Evaluating the Potential for Biodegradation

Anaerobic and Aerobic Degradation Pathways

Cell 1 Results: Chemical Degradation

Aerobic Respiration

Anaerobic Near Cell 1 Discharge Point

	Alica																				
	Well ID	Well ID MW-1105		MW-111D MW-1115			115	MW-11	L2D	MW-112M		MW-113D		MW-1135		MW-118D		MW-119D		MW-1:	195
	A	e MW-110S- 20181006		MW-111D- 20181004		MW-1115- 20181004		MW-112D- 20181005		MW-112M- 20181005		MW-113D- 20181004		MW-113S- 20181004		MW-118D- 20181003		MW-119D- 20181003		MW-1195- 20181003	
	Sample Name																				
	Sample Date	10/6/2	018	10/4/2	018	10/4/2	018	10/5/2	018	10/5/2	018	10/4/2	018	10/4/2	018	10/3/2	018	10/3/2	018	10/3/2	018
Analyte	Unit	Result	Q	Result	ď	Result	q														
Geochemistry																					
Alkalinity, Total (As CaCO ₃)	mg/L	420		1300		1700		260		340		350		720		560		310		300	
Total Organic Carbon	mg/L	3.8		140		180		1.2		0.74	J	3.7	J+	11		6.1		1.2		1.6	
Chloride (As Cl)	mg/L	230		1900		2000		82		78		190		400		400		110		110	
Cyanide	mg/L	0.002	U	0.0094	J	0.011	J	0.002	U	0.0048	J	0.0053	J								
Nitrogen, Nitrate-Nitrite	mg/L	0.019	U	0.019	υ	0.019	U	1.1		0.77		0.41		0.19		12		1.2		4.2	
Sulfate (As SO ₄)	mg/L	96		51		44		81		67		36		66		86		100		110	
Sulfide	mg/L																				
Ferrous Iron	mg/L	0.03		3.3		2.16		0		0.02		0.19		0.05		0		0.02		0.02	
Dissolved Gases																					
Methane	ug/L	85		3500		3500		0.64	Ξ	0.64	υ	930		3700		2.9	J	0.64	U	0.64	U
Ethane	ug/L	0.57	U	3.4	-	0.57	υ	0.57	5	0.57	υ	0.57	υ	0.57	U	0.57	U	0.57	U	0.57	U
Ethene	ug/L	0.4	U	0.4	U	0.4	U	0.4	С	0.4	υ	0.76	J	6.2		0.4	U	0.4	U	0.4	U
Propane	ug/L	0.56	U	0.56	U	0.56	U	0.56	υ	0.56	υ	0.56	U	2	J	0.56	U	0.56	U	0.56	U
Field Parameters																					
Specific Conductance	mS/cm	1.43		0.01		7.44		0.691		0.756		0.912		2.2		2.2		0.793		0.827	
pH	su	6.5		6.78		6.96		7.42		6.98		6.84		6.43		6.85		6.79		6.71	
Temperature	°C	13.05		15.38		14.82		12.49		13.69		13.81		13.78		13.54		16.51		13.36	
Turbidity	NTU	0		1		2.55		13.3		35.7		41.1		3.1		0		0		0	
Dissolved Oxygen	mg/L	0.25		0.88		2.04		6.16		5.82		0.67		0		1.16		3.86		2.72	⊢
Oxidation-Reduction Potential	mV	156		-65		-80		134		136		95		64		165		152		143	

MW-118D

MW-120S MW-120D INJ-1R

MW-119S

MW-119D

CSIA: Results / What Happens During Degradation?

CSIA: TCE Results

Data indicate biodegradation is actively occurring in the source area.

Degradation Products

Estimating Biodegradation Rates

Location 1 Along Flow Path	Location 2 Along Flow Path	Degradation Mechanism Assumption	Distance in Flow Path	Hydraulic Condition	Gradient	Horizontal Hydraulic Conductivity	Seepage Velocity	Travel Time	Maximum Half Life	Minimum Half Life	
			(feet)		(feet/feet)	(feet/day)	(feet/day)	(days)	(days)	(days)	
Tetrachloroethe	ne		·								
MW-109S	MW-1015	Anaerobic Reductive Dechlorination	798	Alluvium	0.0794	10	4.2	189	555	26	
MW-109S	MW-104D	Anaerobic Reductive Dechlorination	951	Alluvium	0.0687	10	3.6	261	580	28	
MW-109S	MW-112M	Anaerobic Reductive Dechlorination	1136	Alluvium	0.0771	10	4.1	278	369	18	
MW-105D	MW-120D	Anaerobic Reductive Dechlorination	429	Alluvium	0.0876	6	2.9	146	560	27	
MW-105D	MW-118D	Anaerobic Reductive Dechlorination	580	Starlight	0.0806	6	2.7	214	1175	56	
MW-105D	MW-119D	Anaerobic Reductive Dechlorination	531	Alluvium	0.0617	6	2.1	257	2008	96	
MW-1135	MW-120S	Anaerobic Reductive Dechlorination	174/400	Starlight and Alluvium	0.539/0.0626	0.07/8	0.21/2.8	968	2850	136	
MW-113S	MW-118D	Anaerobic Reductive Dechlorination	174/400	Starlight and Alluvium	0.539/0.0626	0.07/8	0.21/2.8	968	5603	267	
MW-1195	MW-103S	Anaerobic Reductive Dechlorination	840/596	Starlight and Alluvium	0.132/0.00886	40/170	29/8.4	99	714	34	
Trichloroethene											
MW-109S	MW-101S	Aerobic Cometabolism	798	Alluvium	0.0794	10	4.2	189	2595	157	
MW-109S	MW-112M	Aerobic Cometabolism	1136	Alluvium	0.0716	10	3.8	299	1755	106	
MW-105D	MW-120D	Aerobic Cometabolism	429	Alluvium	0.0876	6	2.9	146	1202	73	
MW-105D	MW-118D	Aerobic Cometabolism	580	Starlight	0.0806	6	2.7	214	1392	84	
MW-105D	MW-119D	Aerobic Cometabolism	531	Alluvium	0.0617	6	2.1	257	2490	272	
cis-1,2-dichloroe	thene										
MW-105D	MW-118D	Aerobic Cometabolism	580	Starlight	0.0806	6	2.7	214	470	19	
MW-113S	MW-120S	Aerobic Cometabolism	174/400	Starlight and Alluvium	0.539/0.0626	0.07/8	0.21/2.8	968	974	40	
MW-113S	MW-118D	Anaerobic Reductive Dechlorination	174/400	Starlight and Alluvium	0.539/0.0626	0.07/8	0.21/2.8	968	941	38	
Notes:											
‰ = per mil											
¹ Maximum and	minimum Isotor	pic enrichment factor reported in Hunkeler et al.	(2008). Maximu	m isotopic enrichment factor i	for aerobic cometab	olism for cis-1.2-di	chloroethene (-9	.8 ‰) reporte	d by Tiehm et	al. (2008).	

2019-2020 Site Characterization

Building a **ROBUST** DNAPL Conceptual Site Model

- Multiple source from Cell 1
 - Leaching from Cell 1 waste
 - DNAPL migration into deeper fractures
- Contamination deeper than current monitoring or remediation system
- Chemical distribution, fate and transport in bedrock unknown
- Properties of bedrock highly uncertain

Understand How Chemicals Migrate from Cell 1

- Remediation System and Hydraulic CSM
- Distribution and migration of chemicals through bedrock
- A detailed characterization program will be implemented in step-wise fashion to evaluate site conditions which includes:
 - Surface geophysical investigation
 - Exploratory borehole program
 - Boreholes/wells completion
 - Mass discharge assessment
 - Aquifer testing

Surface Geophysics

- Geophysical methods
 - Seismic refraction tomography (SRT) depth to groundwater
 - Seismic surface wave depth to bedrock
 - <u>Electrical resistance tomography (ERT)</u>
 <u>-</u>Estimate the alluvium thickness

Phase 1: Exploratory Borings

- Drill boreholes 200 to 300 feet deep
- Obtain rock core for lithologic logging
- High-resolution contaminant/waste profiling
- Borehole geophysical and soil logging
- Data analysis

Borehole Investigation: High Resolution Chemical Distribution

- <u>Chemicals sorb to a continuous</u> <u>activated carbon felt strip</u>
- The FACT is usually left in place for up to two weeks
- The FACT provides a <u>continuous</u> replica of chemicals in pores <u>and</u> fractures
- Usually as combined with the NAPL FLUTe, the NAPL <u>and</u> the dissolved phase are both mapped throughout the entire borehole at the same time

Carbon felt attached Inside NAPL cover

Dye stripped NAPL cover on a liner

Borehole Investigation: Map of Bedrock Fractures

- Liner deployed
- Constant head maintained between inside liner
- Decent rate is measured as the head below the liner is measured

FLUTe NAPL/FACT and Transmissivity High resolution profile of fracture zones and chemicals

Downhole Geophysics

- Fluid temperature and conductivity
 - These logs are run in the portion borehole below the water level in the borehole. Changes in temperature and conductivity may, along with other data, identify where water is entering the borehole.
- Optical televiewer (OTV)
 - This log produces a digital image of the borehole wall in visible light and is run both above and below the water level in the borehole.
 - This log will be run second because it works best in optically clear water.
- Acoustic televiewer (ATV)
 - This log produces an image of the borehole wall using acoustic energy and is run below the water level in the borehole. It can be run in water with high turbidity or in drilling mud.
 - Date from this log will be used to create a 360-degree acoustic caliper log, which shows the smoothness of the borehole wall, and to calculate borehole deviation from vertical.
- Mechanical caliper
 - This log shows smoothness of the borehole wall and is used to help identify fractures. It will be run if the data from ATV is not sufficient to prepare an acoustic caliper log.
- Natural gamma
 - This log provides data on lithology, is used to correlate logs between boreholes, and may be run in combination with another tool.
- Electrical logs: normal resistivity, spontaneous Potential (SP), and single point resistance (SPR)
- The electrical logging suite log provides data on lithology. Normal resistivity will be run if at least 50 to 80 feet of open borehole is available which, due to the nature of the hardware, is the minimum required to produce a useful log.

Monitoring: Locations

Selection of monitoring locations is based on:

- Fracture network
 - Where are the most transmissive features and what is there orientation?
- Groundwater gradient and flow direction
 - Where is groundwater, and hence contaminants, flowing?
- Geochemistry
 - Focus monitoring on fracture zones with site related chemicals

Update Hydrogeology

Mass Discharge Strategy

- Following borehole and aquifer test evaluations select a transect of wells to represent each of the primary stratigraphic units (alluvium and fractured Starlight)
- Transect Evaluation

MW-119S

MW-120S

Site Characterization

- Develop updated CSM, including more complete bedrock characterization for 3D and numerical modeling updates
- Phase 1 evaluation will be used to determine if additional data are needed - potential for a Phase 2 in 2020
- Make recommendations for optimizing and/or replacing existing groundwater treatment system

Questions?

Acknowledgments

- Mark Hills Mary Lou Fox
- Karla Leslie Emma Ehret
- John Dougherty Brett Grayson
- Matt Gamache Kiel Burmester
- Thomas Cook

Tamzen Macbeth, PhD., P.E. macbethtw@cdmsmith.com