Comprehensive GW/SW Evaluations Drive CSM Evolution from Denial to Remedial Success Red Cove Case Study Devens, MA

> US EPA Region 10 GW-SW Workshop November 16, 2018 Seattle, Washington

William Brandon Technical Support Hydrogeologist EPA Region 1

ACKNOWLEDGEMENTS (MOST OF THEM)

US EPA REGION 1 AND BCT SITE TEAM ORD

- CAROL KEATING (RPM)
- GINNY LOMBARDO (RPM)
- JERRY KEEFE (OEME)
- DAN GRANZ (OEME)
- CAROL STEIN (CONTRACTOR)
- DAVE MCTIGUE (CONTRACTOR)
- RON OSTROWSKI (MASS DEV)
- BOB SIMEONE (ARMY)
- USACOE NED

- ROBERT FORD
- STEVE ACREE
- RANDALL ROSS
- PAT CLARK
- BOB LIEN
- AND OTHERS

DISCLAIMER

The findings and conclusions in this presentation have not been formally disseminated by the U.S. EPA and should not be construed to represent any agency determination or policy.

Case Study Devens, MA – Complex landfill site is a "containment in progress".....

Site Chronology - circa 2005

- 2005 Pump and Treat with Monitoring Initiated at N end of Landfill
- Ongoing technical Debate:
 - Will Pump and Treat address GW discharge at Red Cove ?!
 - CSM (arsenic F/T)
 - Effectiveness of Capture
 - Landfill inputs to "Red Cove"

Sediment Arsenic Concentrations in Grove and Plow Shop Ponds

Working Hypotheses

- Arsenic in pond sediment strongly correlated spatially with Red Cove
- Landfill generates reducing GW conditions
- Reduced Ground Water from SHL discharges to Red Cove (oxidizing environment)
- Arsenic in discharging ground water is deposited into Red Cove Sediments (oxidizing)
- Arsenic from a combination of waste material and naturallyoccurring arsenic present in soil and bedrock

Red Cove Investigation Technical Objectives

- Detailed Delineation of COCs in GW, SW, and Sediment
- Focus on Arsenic
- Test Hypotheses for Arsenic Transport and inter-media transport Mechanisms
- Develop Preliminary Conceptual Site Model (CSM) for GW-SW-Sediment Interactions
- Develop Initial Estimates of Contaminant flux from GW to SW and Sediment

Red Cove Focus Area – GW/SW Investigation Components, Media and Methods

INVESTIGATION COMPONENTS	MEDIA	METHODS
FLOW	GROUNDWATER (GW) SURFACE WATER (SW)	WATER LEVEL MEASUREMENTS IN WELLS SW LEVEL MEASUREMENT CONTOUR MAPPING
TEMPERATURE	GW/SW/POREWATER/ SEDIMENT	HAND-HELD TEMPERATURE PROBE GW TEMP FROM IN-LINE PROBE
CHEMISTRY	GW/SW/SED/POREWATER	LABORATORY ANALYSIS OF FIELD-COLLECTED GW/SW/SED AND POREWATER SAMPLES
ΤΟΧΙCITY	SW/SEDIMENT/BENTHOS	LAB TOXICITY TESTING FOR BENTHIC ORGANISM SURVIVAL AND GROWTH
ARSENIC FLUX	GROUNDWATER FLUX TO POREWATER/SED/SW	CALCULATIONS USING SITE-SPECIFIC DATA

THE FLOW QUESTION: DOES LANDFILL GW DISCHARGE TO RED COVE ??

- DOES THIS MATTER?
- MODEL VERSUS REALITY
- HOW WILL THIS CHANGE WITH PUMPING AT NORTH END OF THE LANDFILL
- WHAT DENSITY OF GW WATER LEVEL DATA IS NEEDED TO MAKE A DEFENSIBLE CONCLUSION?
- TIME SERIES WATER LEVEL DATA
- TEMPERATURE DATA AT GW/SW
 INTERFACE

SHEPLEY'S HILL LANDFILL MODELED PARTICLE TRACKS (ca. 2002) Pumping vs. non-pumping conditions

Measured Water Levels and GW Flow Patterns - November 2004

Consistent Flow Patterns

- Eastward flow
- All Hydrogeologic units
- All times
- Modeled particle tracks <u>NOT</u> validated
- Landfill GW
 Discharges to Red
 Cove

- Thermocouple mounted at tip of 5-ft stainless steel rod
- Insert into sediment up to 60 inches
- Relies on GW/SW temp contrast
- <u>LOW COST \$</u>

Sh<u>oreline Pond Bottom Temperature Surv</u>ey March 2004

Temperature Survey Results – March 2004 Strongly Support Ongoing GW Discharge to Red Cove

- GW Temperatures warmer than SW
- Ice melted in embayment
- Convergent GW Flow/Discharge)
- Highest GW flux in embayment
- Little open water North of Red Cove

Water Quality Data Collection

Groundwater Sampling

- Monitoring well sampling (Army, EPA)
- Shoreline vertical profiling of GW (EPA)
- Geoprobe Systems
- Pore Water Sampling:
 - Shoreline and beneath Red Cove (EPA)
 - Push point samplers (MHE products)
- Surface water samples

Vertical Profiling of GW Quality Using Geoprobe - EPA Region 1

Arsenic in Ground Water (ppb) November 2004

N1P2E N1P2

Pore Water Sampling Results

 Red Cove Pore Water Iron, (ppb) 1-3 ft

 Red Cove Pore Water Arsenic, (ppb)1-3 ft

36 - 100

101 - 200

201 - 380

381 - 470

471 - 700

Wells

Preliminary Estimate of Arsenic Flux From GW to SW and Sediments at Red Cove

Total Mass flux to cove ~ 17 Kg per year

Assumptions:

- GW Approaches Cove through cross sectional area of ~ 11,000 ft² (A)
- ◆ GW flux (Darcy's Law) (q) = 0.36 ft/d
- Total vol. flow rate to cove $(Q) = q \times A = 3800 \text{ ft}^3/\text{d}$
- ◆ Geometric Mean As Conc. In GW (ċ)= 430 ppb
- ♦ J = Q x ċ = 4.7x10⁴ mg/day = 17 Kg per year

Relative Sediment Arsenic Concentrations in Grove and Plow Shop Ponds

Sediment Data Collection

Surface Sediment Chemistry (0-1 ft) Using Eckman Dredge

- 15 in Grove Pond
- 19 in Plow Shop Pond (8 were in Red Cove)
- 1 in Flanagan Pond
- 1 in Sandy Pond)

Sediment Profiles by Coring (0-5 feet)

5 Profiles in Red Cove Area

Sediment Data Collection

Arsenic in Surface Sediment

		PSPC06 SPC13	PS C14 PSF
	DEPTH	ARSENIC	PSPC
SITE	inch	mg/Kg	
PSPC13	5	2,000	PSPC1
PSPC13	12	100	
PSPC13	23	29	
PSPC14	5	6,800	
PSPC14	12	820	
PSPC14	23	510	

Arsenic Concentration vs Sediment Depth

Pond Bottom Sediment Cores

Sediment Toxicity Stations

Sediment Toxicity Results

Legend

213

- Growth effect on C. tentans
- Growth effect on H. azteca
- Growth effect on H. azteca
- Lethal effect for H. azteca and C. tentans

Non-toxic

Toxicity Testing Results

- Sediment toxicity testing indicates toxicity associated with known source areas
- Railroad Roundhouse sediments acutely toxic to both species
- Growth effects associated with Tannery Cove and Red Cove/Shepley's Hill Landfill
- Toxicity Data incorporated into final Ecological Risk Assessment and provided to U.S. Army for further action

Updated Conceptual Model

- Groundwater
 - Low ORP, high dissolved Fe and As
 - Discharges to pond
- Pore water
 - Fe and As decrease approaching sediment / SW interface
- Sediment
 - Fe and As accumulate near interface
- Surface water
 - Fe and As very low
- Ecological impact
 - Sediment toxicity

CSM Consensus Remains Elusive...

- Despite overwhelming evidence...
 Site Owner Still Not Convinced ???!!!
 CSM consensus remains elusive...
- No Momentum to address Red Cove Impacts....
- When All Else Fails....

WHO YA GONNA CALL !!!! ENTER EPA ORD !

ORD Follow-on Investigation Goals

Document all aspects of As Fate and Transport in Red Cove

- HydraulicsChemistry
- Ecological

Comprehensive GW/Aquifer Assessment

- Nested piezometers installed at 5-ft vertical intervals
- Slug testing
- Continuous water level recorders/ transducers
- High resolution GW Monitoring relative to Red Cove and SHL Pump and Treat
- Pond Aquifer Interactions evaluated at detailed scale of investigation

Further Evaluation of Ecological Impacts

Office of Research and Development National Risk Management Research Laboratory Pond Piezometer

Additional Monitoring Relative to Red Cove and SHL Pump

and Treat

Groundwater Flow August 2008

GW continues to discharge to cove even while P&T operates continuously

Consensus Conclusion: Additional Containment Needed on East Side of Landfill

- ORD Data and Technical Arguments are ultimately persuasive
- Site Owner Agrees to pursue additional remedial measures focused on Red Cove
- Beach-head to successful Remediation Established !

NEXT STEPS: REVISED CSM HAS AN IMMEDIATE AND SIGNIFICANT IMPACT TO REMEDIATION ACTIONS

 Slurry Wall (GW Containment) installed 2012

 Ponds dewatered and sediment excavated in 2013

Description: View of Red Cove excavation/finger road looking north-northeast from southern bank. Photo Date: September 13, 2013

Slurry Wall installed for GW Containment

- Containment Success Critical to Red Cove Remediation Path Forward
- 850 ft. Slurry Wall to Bedrock in 2012
- Cut-off GW flow to Red Cove
- Sediment Excavation conducted in 2013
- Post-2013 LTM indicates continued improvement and Restoration of impaired ecosystem

Take-Home Messages

- GW/SW Evaluations can pay big dividends
- Simple, Inexpensive tools can "establish a beach-head" to a better CSM
- More elaborate/in-depth/long-term studies (ORD) may be useful in order to convince the un-enlightened
- Significant Changes in Project Direction and *Momentum* may follow
- Remedy modified twice during LTM because of GW/SW investigations – Now more protective

Selected ORD Publications on Red Cove

- LIEN, B. K. AND C. G. Enfield. AUTOMATED LONG-TERM REMOTE MONITORING OF SEDIMENT-WATER INTERFACIAL FLUX. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-10/110, 2011.
- FORD, R. G., K. G. SCHECKEL, S. ACREE, R. ROSS, B. LIEN, T. LUXTON, AND P. CLARK. Final Report; Arsenic Fate, Transport and Stability Study; Groundwater, Surface Water, Soil And Sediment Investigation, Fort Devens Superfund Site, Devens, Massachusetts. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/063, 2008.
- FORD, R. G., S. D. ACREE, B. K. LIEN, K. G. SCHECKEL, R. R. ROSS, T. LUXTON, AND P. J. CLARK. Devens 2008 Monitoring Update. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/064, 2009.
- Ford, R.G., et al., 2011. Delineating landfill leachate discharge to an arsenic contaminated waterway, Chemosphere 85, 1525-1537.
- Ford, R.G. and Lien, B., Tools for Estimating Groundwater Flux to Surface Water, 24th Annual NARPM Training Program, May 2, 2016.
- And More in Progress

FINAL WORD – Post Remedy Restoration of Red Cove

