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Optimizing Surface Soil Cleanup Designs 
 

Introduction 

This section will discuss design optimization in general and will present tables of designs that have 

been shown to be effective for certain cleanup scenarios.  

A “cleanup design” is considered to include a combination of a sampling scheme and an explicit 

quantitative decision rule that, together, determine what soil, if any, will be cleaned.   

To satisfy multiple stakeholders, including the EPA, the operator or responsible party, and the 

public, a design should meet a number of criteria: 

 Remediation decisions should be adequately protective, based on reasonable exposure 

scenarios, risk models, and risk computation. 

 The process should aim at minimizing the cleanup costs required to achieve the necessary 

level of protection. 

 The approach should be statistically and geostatistically sound, and scientifically 

defensible.  

 The approach should be simple.  The design should be something that can be selected and 

implemented without special expertise in statistics or geostatistics. 

 

Managing Uncertainty in Scientifically Defensible Decisions 

Scientifically defensible soil cleanup requires the quantitative prediction of outcomes. We want to 

design a cleanup process to meet a specified objective, and know that it will work as designed.   

Generally, uncertainty in the decision process means that the predicted outcome will take the form 

of a probability distribution, so it becomes necessary to take that into account when establishing 

cleanup objectives.  To design an effective cleanup, we need quantitative models of all of the 

sources of variability that create uncertainty in the decision making process.  Decision uncertainty 

can be managed by varying the number of samples and analytical measurements, by controlling 

sample preparation and analytical measurement errors, and by varying the decision rule to 

compensate for errors.   

Spatial Variability and Area Averages 

Just as air quality standards are expressed as time averages ( “eight-hour averages” or “24-hour 

averages”), soil cleanup standards or target levels must be expressed in terms of area (or volume) 

averages.  The time average in an air quality standard represents a volume or mass of air that is 

linked to an exposure of concern. Although an eight-hour average at an air monitoring station does 

not measure any individual‟s actual exposure, it provides a plausible estimate of exposures that are 

likely to occur.  The linkage between exposure, risk, and a standard is essential to the defensibility 

of a standard.   

Soil, like air, is best treated conceptually as a continuous medium. Although soil is made up of 

discrete particles, the characteristics of soil occur only in the aggregate. Soil is not a “population” 

of soil individuals that can be sampled statistically by selecting a random subset of individuals. A 

typical soil sample collected for site characterization or cleanup is likely to be a vertical cylindrical 

core a few centimeters in diameter. Assuming that the depth of the core is the same as the depth of 

the surface soil layer being investigated, we can consider the area represented by the core diameter 
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to be a shorthand notation for the volume of soil in the sample.  Similarly, any references to an 

“area average” in this section may be assumed to refer to the volume of soil in the surface soil 

layer within the specified area.   

Every chemical concentration is an average by definition.  All of the quality assurance procedures 

developed for sample handling, preparation, and analysis are designed to ensure that the analytical 

measurement of the final sample aliquot is very close to the true mean concentration of the original 

sample volume.  Here we introduce the geostatistical concept of sample support:   The mass of 

sample included within a volume specified by size, shape, and orientation, for which an average 

concentration is measured or estimated.  The term can be used loosely to refer to the approximate 

scale or resolution of a measurement or estimate, but implies a strict geometric definition of scale 

or resolution.  A support can be thought of as a moving window smoother that eliminates all of the 

variability at smaller supports. The term support applies not just to samples, but any area or 

volume over which an average is taken.   

If multiple samples are taken in an area, the set of measurements can be considered as a statistical 

sample of the area.  However, the population represented by the sample statistics is a hypothetical 

population: The set of all possible samples of the same support.  The problem with statistical 

sampling of soils is that no support is unique. If one chooses a different support, such as a different 

core diameter, then the population represented by the statistical sample is different even though the 

sampled area remains the same. With one exception, all statistical parameters such as maximum, 

minimum, median, 95
th

 percentile, standard deviation, and skewness are likely to change when the 

sample support changes.  The arithmetic mean is the only statistical parameter that remains 

constant over an area regardless of the sample support.  Smaller supports generally lead to more 

variable statistical distributions. 

While a typical soil core might be 2 centimeters in diameter, it could just as easily be 2 

millimeters, 20 centimeters, 2 meters, or 20 meters.  There is no inherent theoretical reason to 

choose one over another. Each is equally valid.  In practice, however, each is not equally useful. If 

we are concerned with locating contaminated areas of a particular size, sample supports that are 

too large will fail to resolve relevant detail, potentially missing areas of concern.  On the other 

hand, sample supports that are too small will introduce irrelevant detail that obscures the larger 

pattern we seek.   

Samples with large or small supports provide different information.  It is critical in soil cleanup 

design to recognize the importance of spatial variability and scale, and to make necessary 

allowances for scale changes in the decision making process.   

There are two ways to deal with spatial variability and support in soil cleanup design.  One is to 

adopt the geostatistical framework, where the variogram provides a continuous quantitative model 

of spatial variability at all scales.  In principle, this the best approach because the variogram leads 

to kriging estimation.  Kriging uses the information available from a sample, in combination with 

other samples, to make estimates over a relatively large spatial area. By squeezing the most out of 

the data, geostatistics can use less of it, leading to more efficient sampling designs.  The problem 

with the geostatistical approach is that it is complex and often difficult to implement without 

specialized and costly expertise.  Thus the geostatistical approach may not always be worthwhile, 

especially for relatively small cleanup projects. 

The alternative approach is to treat the problem as a classical statistical stratification exercise.  The 

site is subdivided into spatial strata such as exposure units (EU‟s), which in turn may be stratified 
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into remediation units (RU‟s) which are sampled at some sample support.   Spatial variability and 

support are dealt with by a simple nested variance model:  

vars:RU + varRU:EU + varEU:site = vars:site 

 The variance of the samples within a remediation unit plus the variance of remediation units 

within an exposure unit plus the variance of exposure units within the site equals the total variance 

of samples within the site.  The nested variance model breaks up the continuous variogram into a 

set of fixed supports.  In this design process, variability within a stratum is assumed to be random. 

No interpolation is used. The arithmetic mean of random samples (or a composite of random 

samples) is used to estimate a stratum mean.   The mean of a larger stratum is the arithmetic mean 

of the smaller strata within it.  

The nested variance approach leads to simple cook-book designs that do not require statistical or 

geostatistical analysis of the data during the cleanup process.  This approach is used in developing 

the generic designs described below. 

Cleanup Objectives – Area, Risk, and Confidence 

Perhaps the most important decision in designing a cleanup operation is choosing the right 

objective.  The obvious objective of a cleanup is to clean up contaminated soil. It is also obvious 

that we generally clean up contamination because it poses some sort of risk; so, risk management 

is at least an implicit objective.  For design purposes, we need to be much more explicit.  A 

cleanup process should remove some contamination and thus reduce risk.  What is needed is a 

precise quantitative answer to “how clean is clean enough?”   

The first step in answering that question is to specify a target threshold concentration:  “We want 

to remove all of the soil with contaminant concentrations greater than 10 ppm.”  As discussed 

above, however, it is not meaningful to specify concentration without specifying support. We need 

to decide over what area to apply the threshold: one square millimeter, one square meter, one 

square kilometer, or…?   

As with air quality standards, it makes sense to choose areas that are plausibly linked to human 

exposure, such as ¼ acre for residential exposure or 1 acre for industrial exposure.  It is 

inappropriate to apply target thresholds to individual sample cores for the same reason we don‟t 

apply air quality standards to one-second averages… because they contribute a small  fraction to 

an individual‟s total exposure.  Conversely, it is also inappropriate to apply the cleanup level to 

areas of hundreds or thousands of acres because this “dilutes” risk by averaging the risks to both 

exposed and unexposed individuals.  

We apply exposure unit thresholds to the average concentration of exposure units without any 

concern about how the concentration may vary within smaller supports.  This follows directly from 

two assumptions: risk is directly proportional to concentration; and, exposure probabilities are 

everywhere equal.  The latter assumption applies to hypothetical future exposures, but is not 

applicable when, say, cleaning up an existing residence where actual high-exposure areas, such as 

play areas or gardens, can be identified. 

Finally, we need to decide exactly how we are going to deal with decision uncertainty in order to 

completely specify the design criteria.  If correct risk management is the only consideration, the 

probability that the cleanup will fail because of decision error is part of the posterior risk of the 

cleanup process. Formally, the posterior risk, conditional on the cleanup process being 

implemented, equals the probability that the post-cleanup concentration will be x, times the risk if 
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it is x, summed over all possible values of x.   If the exposure unit threshold is equal to 1 ppm, a 

cleanup will satisfy the risk-based objective if the expected mean exposure unit concentration after 

cleanup is at or below 1 ppm.   

Although the risk-based objective is completely defensible scientifically, it leads to the acceptance 

of relatively high failure rates at concentration levels just above the threshold.  This is the most 

cost-effective approach to cleanup, but may pose problems when dealing with immediately 

affected stakeholders, as when cleaning existing residences, schoolyards, or parks.  Rather than 

trying to convince people who are worried about failures that they should be looking only at the 

expected outcome, it may be more appropriate to incorporate reassurance into an alternate 

confidence-based objective: 95% certainty that the mean concentration of the exposure unit after 

cleanup will be at or below the threshold.  This approach does not abandon the notion that risk is 

the primary concern. The exposure unit still provides a risk-based scale, although it might change 

from a hypothetical future residence to an actual one with real people. The confidence-based 

design results in a high probability that the risk will not exceed the threshold. 

Cleanup designs for both risk-based and confidence-based objectives are included in the tables 

below. 

Decision Rules 

The basic form of a decision rule is: 

 If (condition) then (action1); otherwise (action2). 

 

Choosing the best decision rule is a critical part of designing a cleanup process.  It is not sufficient 

to simply restate the objective in the form of a decision rule, as: 

 If the mean concentration of an exposure unit is greater than the threshold level, then clean it; 

otherwise do nothing. 

 

The rule above is not a useful decision rule because we cannot know the true concentration of the 

exposure unit. We must state the condition in terms of what we actually know, or can estimate, 

from sample data. Examples of possible practical decision rules include: 

 If the mean concentration of the samples in an exposure unit is greater than a cleanup level 

(CL), then clean it; otherwise do nothing.  Or: 

 If the Student‟s t 95% upper confidence limit (UCL) of an exposure unit is greater than the CL, 

then clean it; otherwise do nothing.  Or: 

 If the ordinary kriging estimate of an exposure unit is greater than 0.5 * the CL, then clean it; 

otherwise do nothing.  Or the more complex iterative truncation rule: 

 If the estimated mean concentration of an exposure unit is greater than the CL, then flag the 

highest remaining estimated remediation unit for cleanup, recalculate the residual estimated 

exposure unit mean (with concentrations of flagged units set equal to zero), and repeat this 

rule; otherwise stop and clean up any flagged units. 

 

The CL may be equal to the target threshold level, but in general it is simply another design 

variable that must be chosen along with the form of the rule and the sampling scheme. 
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 Given a clear, quantitative cleanup objective, such as the risk-based or the confidence-based 

objective described earlier, any of the above decision rules (as well as numerous others) could 

accomplish the objective with suitable choices for the sampling scheme and the CL.   

The rule using Student‟s t is an example of a statistical hypothesis test.  Formal hypothesis tests 

provide useful decision rules because their performance is known when particular assumptions, 

such as normality, are met.  Those assumptions are rarely, if ever, met in soil cleanup operations. 

Soil contaminant distributions are typically highly skewed.  Log-transforms often make the results 

approximately normal, but decisions made on log-transforms are not necessarily valid decisions 

with respect to risk. The reason for this follows from the earlier discussion that related posterior 

risk to the expected mean concentration of an EU after cleanup. Statistics calculated on log-

transformed data are not directly related to expected mean concentration.  Therefore, it is not easy 

to evaluate the effect on risk of a decision based on log-transformed data.  Similar problems occur 

with non-parametric statistical tests that compare medians or other percentiles.  Percentiles of a 

sample distribution are a function of the particular sample support, and are not directly related to 

risk in an exposure unit.   

The last paragraph notwithstanding, hypothesis tests are valid decision rules because they can 

generate yes-or-no decisions based on sample data. The primary reason they do not appear in the 

generic cleanup approach is to keep it as simple as possible.   

 

The Generic Cleanup Procedure 

The approach is a slightly simplified version of the method used at Piazza Road, (Ryti, et al., 

1992). Piazza Road was a cooperative venture between EPA‟s Region 7, Office of Research and 

Development (ORD), and what was then the Quality Assurance Management Staff (QAMS) to 

field-test the current data quality objectives (DQO) guidance that was introduced in 1993.  The 

Piazza Road cleanup design was a multi-scale iterative truncation method with specified EU and 

RU supports. The highest RU‟s within an EU were removed iteratively until the residual EU 

threshold fell below a risk-based cleanup level.  Piazza Road demonstrated the importance of 

applying risk-based performance criteria at the appropriate risk management scale.  The risk of 

concern was residential exposure, so the exposure unit was chosen to be 5000 square feet. 

Selective cleanup on smaller remediation units was desired in order to treat the minimum amount 

of soil required to bring the exposure unit below the threshold. A pilot study was conducted to 

evaluate sample variability within several typical EU‟s. The pilot data was used to choose the most 

effective RU size and sampling scheme in a manner similar to the simulation methods described 

below. This approach was shown to significantly reduce treatment costs while strictly controlling 

risk.  

Assumptions 

 

The generic approach is designed to be applicable to a variety of cleanup problems that have 

certain characteristics in common with the Piazza Road case:   

 Direct exposure (contact, ingestion, and inhalation) to soil is the primary concern. 

 The major health concern is chronic exposure to dispersed contamination. 

 Surface soil is a layer of some specified constant thickness, such as the upper 6 inches, or a 

similar natural layer of relatively constant thickness. 
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 Contamination at depth is not a problem, or can be dealt with sequentially; i.e., by sampling 

the next lower layer after removing the surface layer.  

 An individual sample (or composite increment) is a small diameter vertical core through 

the surface layer. 

 Sampling, compositing, sub-sampling, and measurement are done according to sound 

sampling theory and good laboratory practice to adequately control total measurement 

error. (Gerlach and Nocerino, 2003) 

 

 

Selecting a Cleanup Design 

 

 Define the total clean-up area. This may be the entire site, or more likely, a sub-area of the 

site, such as a stratum or operable unit that has been identified based on site history and 

previous site investigations. 

 Select the size of the exposure unit based on future use. Typically, this will be on the order 

of ¼ acre if a future residential exposure scenario is relevant, or one acre for a future 

industrial scenario. As discussed earlier, this is needed to focus the objective at scales large 

enough to be relevant to human exposure, but not so large as to obscure significant 

contamination through over-dilution. 

 Choose the target threshold for mean EU concentration, and determine if it will be 

implemented as a risk-based or confidence based objective. 

 Estimate the variability of samples within a typical EU in terms of log standard deviation. 

This will be used to help choose the design. The design tables include different designs for 

different levels of variability. Ideally this variability estimate should be based on data 

obtained during earlier phases of site investigation.  Otherwise it may be estimated by 

analogy to other similar sites.  

 Select the appropriate design from Table 2 or 3. The design will specify the size of an RU, 

how many samples and composite measurements should be taken within each RU, and the 

CL for the design. 

 

Implementing the Cleanup Operation 

 

 Sample all of the RU‟s in an EU, according to the design. Calculate the sample mean for 

each RU. If the design specifies only one sample or composite per RU, the measured value 

is taken as the RU mean.  

 Make clean-up decisions using iterative truncation logic:  If the mean EU concentration 

exceeds the CL, clean the highest measured RU (in case of a tie, choose either); repeat until 

the estimated residual mean EU is below the CL. 

 

Note that the designs in Tables 2 and 3 do not specify the size of an EU.  The designs depend only 

on the variability of samples within the EU, expressed as log standard deviation.  At any particular 

site, if you reduced the exposure unit, say from one acre to ¼ acre, the standard deviation of 

samples within the smaller EU would also be reduced.  This would likely lead to selecting a 

different design from the tables. 
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The generic method provides a standard of comparison for any proposed cleanup alternative.  The 

test results below show how well the generic method performs in terms of decision outcomes 

under the assumed conditions.  The performance of any proposed alternative should be 

demonstrated by similar testing to be better or cheaper than the generic approach.  

The risk-based and confidence-based cleanup objectives have been defined strictly in terms of 

what will be considered a successful cleanup by the regulator.  As long as a cleanup meets the 

objectives, the regulator should have no particular concern about the details of the design.  The 

operator, or whoever is paying the cleanup costs, has the primary interest in choosing the optimal 

design, which can be defined as the lowest cost design that meets the objectives.   

The total cost of a design includes sampling and cleanup costs.  The generic design tables included 

below provide an operator with several simple design options that will work.  The operator will 

have to determine whether it is worthwhile to look for a lower cost alternative, and to demonstrate 

that it will work. 

 

Evaluating Design Performance through Computer Simulations 

Cleanup designs were evaluated through computer simulations of the sampling and decision 

making process.  A design consists of a choosing the size of an RU, the number of composite 

samples in each RU, the number of sample increments in each composite, and a CL to be applied 

to the estimated residual EU mean during the iterative truncation process.  Designs were tested at 

five different levels of assumed sample variability within an EU.  Variability was assumed to be 

log-normal, with log standard deviations of 0.5, 0.75, 1.00, 1.25, or 1.50.  The latter two represent 

quite high variability, corresponding to coefficients of variation (CV‟s) of approximately 2 and 3, 

respectively. 

Total measurement error for all designs was assumed to have an RSD of 0.212, or 21.2%.  This 

would correspond to independent sub sampling and analytical errors of 15% each, where the error 

variances are additive: 0.212 = (0.15*0.15 + 0.15*0.15). (RSD and CV are mathematically 

identical measures of variability. CV typically denotes variability in a population or sample data 

set, while RSD usually refers to variability in the measurement process). The alternative designs 

section below discusses how a design can be adjusted when measurement variability is 

significantly different from this assumption. 

Four choices of RU size, relative to EU size, were evaluated: EU area/RU area = 1, 1/4, 1/16, 1/64.  

Smaller RU sizes permit a more selective cleanup that tends to reduce the cleanup cost, but they 

also incur higher sampling costs. When EU area/RU area = 1, the cleanup is not selective – the 

decision to clean an EU is all or nothing. 

For one of the chosen log standard deviations, each of the four RU sizes was evaluated over the 

following ranges of design parameters: 

  1 to 8 composite samples per RU.  Assume 1 analytical measurement per composite 

sample. 

 1 to 16 sample increments per composite 

 CL from 0.5 to 2.0 times the target EU threshold. 
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Because of computational constraints, only a selected subset of the possible composite and sample 

combinations was evaluated.  The combinations provided a stepwise reduction in RU estimation 

variance. The search for acceptable designs began with the highest CL and the highest variance 

sampling scheme (lowest number of composites and samples). The design was tested by 

simulation. If it did not succeed, the next lowest sampling scheme was tested, and so on until all 

sample schemes had been tried. Then the CL was lowered and the process repeated. The first 

design to strictly satisfy the design objective was chosen for inclusion in the tables.  

To simulate the decision process, a target threshold for EU mean concentration was set at 1.0.  A 

series of „true‟ EU concentrations was chosen to cover the range from 0.1 to 100 times the target 

threshold. The EU log standard deviation was partitioned into within-RU and between-RU 

components. „True‟ RU means were randomly generated so that the mean of the true RU means 

equals the selected EU mean. Each RU was sampled randomly with a specified number of 

composite samples and sample increments. Measurement error was added to the mean of the 

samples to produce the RU estimated means. 

Iterative truncation was performed on the RU estimated means until the estimated residual EU 

mean (assuming zero concentration after cleanup) was less than the current CL.  The 

corresponding true residual EU mean was calculated to see how the cleanup actually worked.  For 

the selected EU mean, the entire process was repeated 1000 times. For the risk-based objective, the 

average or expected performance was compared to the target threshold.  For the confidence-based 

objective, the 95
th

 percentile of the 1000 true residual EU means was used. Finally, to evaluate the 

overall performance of the method, the entire simulation process was repeated for the chosen series 

of true EU concentrations. 

Table 1 shows how the iterative truncation process works for a single EU with a true mean 

concentration of 3.0.  The sampling scheme being tested was 1 composite, 6 samples per 

composite, and CL =1.0.  If the true mean concentrations of the RU‟s were known, the best 

decision would be to clean the four highest RU‟s. Based on composite measurements, the first, 

second and fifth highest RU‟s were actually cleaned, resulting in a residual EU concentration of 

1.09, slightly higher than the target threshold.  In this case, the measured value of the fifth highest 

RU was nearly three times too high, so the benefit from cleaning it was overestimated.  This kind 

of conditional bias is inherent in truncation decisions.  On average, measured values will predict 

better results than you actually achieve. This is illustrated in the bottom row of Table 1, which 

shows the average results from 1000 repetitions of the decision process on 1000 different EU‟s, all 

with a true mean of 3.0.  The average estimated residual concentration is 0.89, while the true 

residual is 1.02, nearly 15% higher.  Ideally, you would have liked to have the estimated residual 

as close to 1.0 as possible.  It is necessary to clean the next whole RU that drives the estimate at or 

below the CL, resulting in a slightly conservative estimated cleanup.  Here it almost compensates 

for the conditional bias.  Nevertheless, the design here fails the strict risk-based criterion that the 

residual EU mean should be at or below the threshold. In the design process we would move on to 

the next lower variance sampling scheme and try again. 

 

Table1.  Simulated cleanup decisions for 16 RU's in 
an EU. Underlined RU’s should have been cleaned. 
RU’s in italics were cleaned. 
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 Before Cleanup  After Cleanup 

 True RU Est. RU  True RU Est. RU 

 4.65 3.91  4.65 3.91 

 1.66 1.43  1.66 1.43 

 3.73 10.57  0.00 0.00 

 0.29 0.20  0.29 0.20 

 0.32 0.31  0.32 0.31 

 0.42 0.33  0.42 0.33 

 0.12 0.09  0.12 0.09 

 0.78 0.74  0.78 0.74 

 2.12 2.13  2.12 2.13 

 0.14 0.07  0.14 0.07 

 0.39 0.40  0.39 0.40 

 18.84 17.11  0.00 0.00 

 4.30 4.11  4.30 4.11 

 8.00 8.37  0.00 0.00 

 1.54 1.19  1.54 1.19 

 0.70 0.81  0.70 0.81 

      

Single EU  3.00 3.24  1.09 0.98 

      

1000 Reps 3.00 3.00  1.02 0.89 

 

The third RU in Table 1 has a nearly three-fold estimation error that makes us think we are 

cleaning three times the contaminant that is actually there.  Because that RU is only one of 16 

cleanup decisions, the final cleanup only misses the target by about 10%. 

Figure 1 shows the expected performance of the method over a range of EU concentrations.  The 

steep line shows the initial true EU concentration and the horizontal line shows the target residual 

concentration of 1.0. Points show the cleanup performance in terms of true mean residual EU 

concentration. Overall, the performance here is very good, but this design is rejected because some 

points exceed the target threshold.    
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Figure 1 - Performance of the decision process for EU’s with 16 RU’s, each estimated by one 6-increment composite 

sample. The horizontal line represents target performance.  Each point is the average of 1000 simulated EU cleanups. 

 

Figures 2 -6 provide an alternative way of visualizing the performance of a design.  The 1000 EU 

repetitions at each of 10 EU concentrations are displayed as if they were a large “site” with a total 

of 10,000 EU‟s.  The EU concentrations are displayed as color-coded pixels on a site map.  Figure 

2 shows the EU concentrations before cleanup – the numbers in the white vertical column are the 

original concentrations.  The numbers double as the color key for the subsequent after-cleanup 

maps: The number represents the upper concentration limit for the associated color. 

 

Figures 2 and 4 illustrate the performance of two successful risk-based designs. Figure 3 is the 

result of a non-selective cleanup, where the RU is the same as the EU.  In Figure 4, the cleanup 

was highly selective, with 16 RU‟s in each EU.  The numbers in the white column are the average 

after cleanup concentrations of the EU‟s in the corresponding row.  The more selective cleanup 

reduces the cleanup area from 55% to 39% of the total site area, but at the expense of much more 

sampling.   

 

 Figures 5 and 6 are similar to Figures 4 and 5, but show the performance of confidence-based 

cleanup designs.  
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Figure 2 - 10,000 simulated EU’s representing one design test simulation, displayed as a hypothetical site map.  

Each horizontal band contains 1000 EU pixels. The initial EU concentrations are shown in the white column.  

Colors are considered to represent concentrations equal to or less than the initial concentration, so that after 

cleanup, all EU’s equal to or les than 1.0 will be a shade of green, and all EU’s greater than 1.0 will be a shade 

of red.  The site mean is the mean of all EU’s. The contaminated mean is the mean of all EU’s with initial 

concentrations greater than or equal to 1.0. 
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Figure 3 - The hypothetical site from Figure 2 after a successful risk-based cleanup with 1 RU per EU. The 

numbers in the white column are the average, or expected, post-cleanup concentrations.  The criterion for a 

successful design is that none of these concentrations exceed 1.0.  1 RU per EU is the non-selective all-or-

nothing option.  This results in 100% cleanup of the higher concentration EU’s, with 55% of the total site area 

cleaned. 
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Figure 4 - The hypothetical site from Figure 2 after a successful risk-based cleanup with 16 RU’s per EU.  This 

is a selective cleanup where most contaminated EU’s are partially cleaned.  The total area cleaned drops to 39% 

of the site, while sampling costs increase. 
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Figure 5 - The hypothetical site from Figure 2 after a successful confidence-based cleanup with 1 RU per EU. 
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Figure 6 - The hypothetical site from Figure 2 after a successful confidence-based cleanup with 16 RU’s per EU. 

 

Cleanup Design Tables 

Tables 2 and 3 contain successful risk-based and confidence-based designs, respectively.  For a 

specified log standard deviation, each column represents one successful design.  The first four 

rows describe the design, and the next two describe design performance for the hypothetical site.  

The last row lists the standard error of the RU mean, expressed as RSD.  This combines sampling 

and measurement errors: 

RU mean RSD = e
2
/ncs + RUsd

2
/(ncs*nsi), where 

 

  e = measurement RSD, RUsd = within-RU log sample standard deviation, 

ncs = number of composite samples, and  nsi = number of sample increments 

/composite. 

 

+ 

Table 2.      

Generic designs -- Risk-based   
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  Log Standard Deviation = 0.5 
       

RU's per EU  1 4 16 64 

Composites  1 2 2 2 

Samples per Composite 4 9 9 9 

Cleanup Level   1.9 1.2 1 0.9 

Percent of Site Cleaned 55 51 48 47 

Site mean  0.28 0.38 0.55 0.7 

RU mean RSD  0.33 0.17 0.16 0.16 

       

       

  Log Standard Deviation = 0.75 
       

RU's per EU  1 4 16 64 

Composites  1 2 2 8 

Samples per Composite 10 9 9 13 

Cleanup Level   1.9 1.2 1 1 

Percent of Site Cleaned 55 50 45 43 

Site mean  0.28 0.41 0.61 0.74 

RU mean RSD  0.32 0.2 0.17 0.08 

       

       

  Log Standard Deviation = 1.00 
       

RU's per EU  1 4 16 64 

Composites  5 1 1 7 

Samples per Composite 5 7 12 7 

Cleanup Level   1.9 1.2 1 1 

Percent of Site Cleaned 55 48 42 39 

Site mean  0.27 0.48 0.69 0.75 

RU mean RSD  0.22 0.34 0.26 0.09 

       

       

  Log Standard Deviation = 1.25 
       

RU's per EU  1 4 16 64 

Composites  7 2 2 7 

Samples per Composite 7 9 9 7 

Cleanup Level   1.9 1.3 1 1 

Percent of Site Cleaned 55 45 39 35 

Site mean  0.27 0.5 0.68 0.75 

RU mean RSD  0.2 0.26 0.21 0.1 

       

       

  Log Standard Deviation = 1.50 
       

RU's per EU  1 4 16 64 

Composites  5 2 1 5 
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Samples per Composite 7 9 16 7 

Cleanup Level   1.8 1.3 1 1 

Percent of Site Cleaned 56 43 35 31 

Site mean  0.28 0.54 0.72 0.76 

RU mean RSD  0.27 0.29 0.28 0.13 

 

 

 

Table 3.      

Generic designs -- Confidence-based  
       

  Log Standard Deviation = 0.5 
       

RU's per EU  1 4 16 64 

Composites  5 7 2 2 

Samples per Composite 7 7 9 9 

Cleanup Level   1.6 0.95 0.85 0.8 

Percent of Site Cleaned 60 55 51 49 

Site mean  0.19 0.29 0.47 0.62 

RU mean RSD  0.13 0.09 0.16 0.16 

       

       

  Log Standard Deviation = 0.75 
       

RU's per EU  1 4 16 64 

Composites  8 5 7 8 

Samples per Composite 13 7 7 13 

Cleanup Level   1.6 0.95 0.95 0.95 

Percent of Site Cleaned 60 54 46 43 

Site mean  0.19 0.3 0.55 0.71 

RU mean RSD  0.11 0.13 0.1 0.08 

       

       

  Log Standard Deviation = 1.0 
       

RU's per EU  1 4 16 64 

Composites  7 5 5 7 

Samples per Composite 7 5 7 7 

Cleanup Level   1.4 0.9 0.9 0.95 

Percent of Site Cleaned 60 53 44 40 

Site mean  0.18 0.3 0.56 0.72 

RU mean RSD  0.16 0.17 0.13 0.09 

       

       

  Log Standard Deviation =1.25 
       

RU's per EU  1 4 16 64 

Composites  8 7 5 7 
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Samples per Composite 16 9 7 7 

Cleanup Level   1.4 0.95 0.9 0.95 

Percent of Site Cleaned 60 51 40 36 

Site mean  0.18 0.32 0.59 0.72 

RU mean RSD  0.13 0.14 0.14 0.1 

       

       

  Log Standard Deviation =1.50 
       

RU's per EU  1 4 16 64 

Composites  8 7 8 5 

Samples per Composite 11 7 13 7 

Cleanup Level   1.2 0.9 0.95 0.9 

Percent of Site Cleaned 62 49 36 32 

Site mean  0.17 0.33 0.62 0.69 

RU mean RSD  0.18 0.17 0.11 0.13 

 

 

Some trends in the tables are noteworthy.  As expected, increasing the number of RU‟s in an EU 

makes the cleanup more selective, thus reducing the site area that needs to be cleaned. This is also 

reflected in the mean site concentration, which increases as the cleaned area decreases. Very 

significantly, the amount of reduction in cleanup area diminishes as the number of RU‟s increases.   

 

Table 4 shows a simple cost analysis for the four risk-based designs from Table 2 where log 

standard deviation equals 1.25.  Total cost is computed by multiplying unit EU cleanup cost by the 

average percentage cleaned, and adding sample and composite costs. A 4 RU design is almost 

certain to be more cost effective than a non-selective design.  The most highly selective designs are 

not cost effective here except when unit cleanup costs are very high relative to unit sampling costs.  

  
Table 4: Total Cleanup Costs (Sampling plus Cleanup) 

     

Cleanup Cost                         RU per EU                      

in $ per EU 1 4 16 64 

10,000 6,340 5,620 8,380 10,000 

20,000 11,840 10,120 12,280 13,600 

40,000 22,480 19,120 20,080 20,800 

80,000 44,840 37,120 35,680 35,200 

     

Based on designs from Table 2, log sd =1.25  

Sampling costs assume $10/sample, $50/composite 

 

Cleanup levels decrease as the number of RU‟s increases. Cleanup levels higher or lower than the 

target threshold introduce a bias into the decision process. This CL bias can compensate for other 

biases in the process. One source of decision bias is introduced by the decision rule itself, which 

cleans the next whole RU required to bring the EU estimate “at or below” the CL.  On average, 

this biases cleanup decisions toward over-cleaning. A separate selection bias occurs because of 

estimation errors. Even if the estimation errors themselves are unbiased, the decisions become 

biased. Decision errors in both directions combine to fail to clean some higher concentration soil, 
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while erroneously cleaning some lower concentration soils. The end result is a bias toward under-

cleaning. With large RU‟s, the average of “at or below” is quite a bit below, so the over-cleaning 

bias dominates.  With very small RU‟s, the over-cleaning bias becomes negligible, and the 

selection bias dominates.  The changing CL‟s compensate for these shifting bias effects. 

 

How robust are the designs? 

What if we used only half as many composites as we should?  What if measurement error is much 

worse than we think?  What if the variability in an RU is much higher than we designed for?  Good 

designs should fail gently.  That is, fairly large errors in the design or in the design assumptions 

should result in relatively minor errors when a cleanup is actually implemented.  

 

Figures 7-9 illustrate alternate outcomes for the selective risk-based cleanup of Figure 4, 

corresponding to the three questions in the previous paragraph. The results in Figures 7 and 9 

would fail the strict criterion for inclusion of a design in Table 2 because some of the after-cleanup 

average concentrations exceed 1.0.  That criterion is conservative, because it requires that the 

design succeed under a worst-case scenario – that all contaminated soil at the site has precisely the 

concentration at which the design performs worst.  At an actual site with a range of contaminant 

concentrations, a risk-based design is successful if the expected after-cleanup concentration for all 

contaminated EU‟s is at or below the target threshold.  In these examples, the expected after-

cleanup concentration is indicated by the “contaminated mean”, which ranges from 0.89 to 0.92.  If 

these simulations represented actual sites, the cleanups would be successful in spite of the design 

flaws. 
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Figure 7 Test of robustness.  The design here uses one-half the number of composites indicated in Table 2. 
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Figure 8 Test of robustness.  The total measurement error in this cleanup simulation is twice as high as was 

assumed in generating Table 2 (RSD= 0.3 instead of 0.212). 
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Figure 9 Test of robustness.  Simulations for generating Table 2 calculated within RU and between RU 

variances as if EU variability were described by a zero-nugget variogram.  Here the design is applied to a 

simulated site where 50% of EU variance is nugget (random noise). 

 

Alternative Designs 

The designs tabulated above are not optimal; they are only a subset of many possible successful 

designs.  The planning team needs to decide if it is worth the time and effort to try to find a better 

solution (and to defend it to the regulators or the public).  Some possible options for improvements 

are described below: 

 If large areas of the site are expected to be either very dirty or very clean, an adaptive 

sampling or triage approach may be effective. Individual EU‟s, or groups of EU‟s could be 

screened by a preliminary composite sample. The initial decision rule would be three-fold: 

clean the highest concentration EU‟s; take no further action on the lowest concentration 

EU‟s; or initiate a selective iterative truncation design. This limits the high sampling cost 

associated with sampling every RU in an EU during a selective cleanup is limited to those 

EU‟s where it will make the most difference. 
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 Field analytical methods can be used to provide real-time information for a single-pass 

cleanup. Sometimes this comes at the expense of increased measurement error.  As 

discussed above, 

RU mean RSD = e
2
/ncs + RUsd

2
/(ncs*nsi) 

RU mean RSD quantifies the overall ability of the sampling scheme to estimate mean RU 

concentrations.  Any combination of samples and composites where RU mean RSD is less 

than or equal to the tabulated value, will provide an acceptable design. The tabulated 

designs assume that e = 0.212. (In a QA/QC program, e can be measured directly by 

comparing field splits). If e for the existing measurement method differs from 0.212, a 

design can be adapted by changing ncs or nsi. Similarly, designs can be adapted to 

accommodate alternate methods, such as changing to field analytical methods, or 

modifying sub-sampling procedures 

 If spatial “features” are larger than RU‟s, that is, if cleanup would likely occur as a group 

of contiguous RU‟s, then geostatistics will usually provide better results.  The designs in 

Tables 2 and 3 assume no correlations among samples, RU‟s, or EU‟s.  As a consequence, 

only samples within an RU can be used to estimate the RU, and every RU must be 

sampled.  The geostatistical model allows using data near an RU to be used for estimating 

the RU mean, even if there are no samples in the RU itself.  Through kriging, the 

information in a sample or composite is extended spatially to multiple RU‟s, so long as it 

continues to add value to an estimate. When this is valid it can significantly reduce the 

amount of sampling required. 

 

Software 

 

The design simulations were done using R, a freeware statistical computing language. R can be 

downloaded from the site listed in the references. The code for producing a set of risk-based 

designs similar to those in Table 2 is provided below. Because of the variability inherent in 

simulations, results may not be identical between runs.  Although R can be run under Windows, it 

is not point-and-click software; rather it requires the user to type commands. A long series of 

commands, like the code below, is executed by saving it as a text file with a “.R” extension, 

linking R to the appropriate file directory, and running it with the command: 

source(“filename.R”). 

 
####  List EU means to test. For each EU mean: 
####    For each repetition: 
####      Create a (lognomal) set of RU's in the EU. Normalize to EU mean. 
####      Sample RU's. Remove highest RU until est EU < threshold T. 
####      Calculate true residual EU mean 
####    Average residual EU means over repetitions 
####----------------------------------------------- 
#### Initialize variables 
trueeumean=c(.1,.2,.5,1,2,5,10,20,50,100) ### list of true EU means: the simulated 'site' 
nummeans=length(trueeumean) 
eusd=c(.5,.75,1,1.25,1.5) ### population log standard deviations in the EU 
samprsd=c(0.212) ### measurement error RSD 
runumber=c(1,4,16,64)  #### number of ru in an eu 
T=c(1.9,1.8,1.7,1.6,1.5,1.4,1.3,1.2,1.1,1.0,.95,.90,.85,.80,.75) ## cleanup thresholds(estimated residual concentration) 
tx=1 
target=1 ## desired residual concentration 
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residualeumean=numeric() 
estresidmean=numeric() 
residualeumax=numeric() 
fractioncleaned=numeric() 
samprumean=numeric() 
est=numeric() 
true=est 
reps=1000 
residual=numeric() 
estresid=numeric() 
rucleaned=numeric() 
cleaned=numeric() 
notcleaned=numeric() 
samptotal=0 
count=1 
sl=numeric() 
prow=c(1,1,2,2,3,3) 
pcol=c(1,2,1,2,1,2) 
count.out=numeric() 
ru.out=numeric() 
comp.out=numeric() 
samp.out=numeric() 
eusd.out=numeric() 
error.out=numeric() 
threshold.out=numeric() 
maxmean.out=numeric() 
maxucl95.out=numeric() 
cost.out=numeric() 
mwin.out=numeric() 
uwin.out=numeric() 
site.out=numeric() 
totalrsd.out=numeric() 
cc=8 
ss=16 
source ("sort.data.frame.R") ###from:http://www.biostat.wustl.edu/archives/html/s-news/2004-09/msg00171.html 
### plot ‘before’ site map 
beforegrid=rep(trueeumean,1000);beforegrid=sort(beforegrid) 
dim(beforegrid)=c(100,100) 
ggrid=beforegrid 
windows(width=5,height=5) 
image(ggrid,col=c("palegreen1","palegreen2","palegreen3","pink3","violetred1","violetred2", 
                  "red","brown"),breaks=c(0,.201,.501,1.001,2.001, 
                   5.001,10.001,20.001,100.001),xaxt="n",yaxt="n");title(main="Before Cleanup") 
text(.03,.1,paste("max EU mean=",max(trueeumean),"  site mean=",mean(trueeumean)),pos=4,cex=.8) 
text(.03,.05,paste("contaminated mean = ",round(mean(trueeumean[trueeumean>=1]),2)),pos=4,cex=.8) 
polygon(c(.85,.95,.95,.85),c(0,0,1,1),col="white") 
text(.9,((1:10)-.5)/10,paste(round(trueeumean,2)),cex=.8) 
abline(h=(2:10)/10) 
abline(v=0) 
lines(c(.8,1),c(.1,.1)) 
 
for(rl in 1:length(runumber)) #### number of ru in eu 
{ 
runum=runumber[rl] 
if (runum==4) {tx=4} ### skip some of the higher cleanup thresholds that won't work in this case. 
if (runum==16) {tx=6} 
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if (runum==64) {tx=9} 
 
for (ml in 1:length(samprsd))  #### measurement error sd 
{ 
 
for(sl in 1:length(eusd))  #### log sd 
{ 
 
### calculate within ru and between ru variances. Assuming a linear variogram and square ru & 
### eu shapes, within ru variance is proportional to side(ru)/side(eu) 
svar=(eusd[sl]*eusd[sl])/sqrt(runum) 
sampinru=sqrt(svar) 
ruineu=sqrt(eusd[sl]*eusd[sl]-sampinru*sampinru) 
#### generate a table of designs for this eu-ru combo. All combinations of composite and samples are considered. 
#### total ru variance (tvar) is computed for each. When multiple designs have the same total number of samples,  
#### the one with fewest composites is chosen. Sort designs by tvar,select highest tvar and any lower tvar design 
#### where tvar is at least .02 lower than the last selected design. 
ruvar=rep(svar,cc*ss) 
errorvar=rep(samprsd[ml]*samprsd[ml],cc*ss) 
composites=sort(rep(1:cc,ss)) 
samples=rep(1:ss,cc) 
nsamps=samples*composites 
tvar=ruvar/nsamps + errorvar/composites 
 
tempdesign=data.frame(composites,samples,nsamps,tvar) 
tempdesign=sort.data.frame(~nsamps+composites,tempdesign) 
design=tempdesign[1,] 
 
for (i in 2:length(tempdesign[,1])) ##retain n with fewest composites 
{  
  if (tempdesign[i,3]>tempdesign[(i-1),3]) {design=rbind(design,tempdesign[i,])} 
} 
 
tempdesign=design 
design=tempdesign[1,] 
flag=1 
for(i in 2:length(tempdesign[,1]))  ## retain sufficiently decreasing variance designs 
{  
   
  if(tempdesign[flag,4]-tempdesign[i,4]>.02) 
   { 
   design=rbind(design,tempdesign[i,]) 
   flag=i 
   } 
} 
### table of designs completed 
 
hit=FALSE 
for(tl in tx:length(T))  #### action threshold 
{ 
 
if(hit) break 
 
#### create within-RU population of samples normalized to mean=1 
sampset=(exp(rnorm(10000,0,sampinru))); sampset=sampset/mean(sampset) 
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##pdf(file=paste(count,"-",eusd[sl],samprsd[ml],runum,T[tl],".pdf"),height=10,width=7.5) 
##frame() 
##par(mfrow=c(3,2),cex=.66) 
for (cl in 1:length(design$nsamps)) #### test a design 
{ 
compnum=design$composites[cl] 
sampnum=design$samples[cl] 
aftergrid=numeric() 
 
for (i in 1:nummeans)  #### sample a particular EU mean 
{ 
 
  for (j in 1:reps)   #### sample the EU a bunch of times 
  { 
    residual[j]=0 
    rucleaned[j]=runum 
    ####  create the RU means and normalize to the EU mean 
    truerumean=exp(rnorm(runum,0,ruineu));truerumean=(truerumean/mean(truerumean))*trueeumean[i] 
 
    for (k in 1:runum)    
    { 
    #### generate RU measurements: composite mean plus analytical error (RSD) 
      samprumean[k]= truerumean[k]*mean(sample(sampset,sampnum*compnum))*rnorm(1,1,samprsd[ml]/sqrt(compnum)) 
      samptotal=samptotal+ samprumean[k] 
    } #### next k ru's per eu 
    srank=rank(samprumean) 
    est=rep(0,runum) 
    true=rep(0,runum) 
    for (k in 1:runum) 
    { 
      #### cumulates the true and estimated EU residual assuming the k lowest-sample-ranked RU's are uncleaned 
      #### retains the true EU residual for highest estimate (i.e.,minimum cleanup) that meets threshold 
      est[k] = sum(samprumean[srank<=k])/runum 
      true[k] = sum(truerumean[srank<=k])/runum 
      if (est[k]<T[tl])  
       { 
       residual[j]=true[k];estresid[j]=est[k] 
       rucleaned[j]=runum-k 
       } 
    } #### next k 
    aftergrid=c(aftergrid,residual[j])    
  } #### next j sampling repetition 
  #### keep score for the particular EU mean 
  residualeumean[i]=mean(residual) 
  estresidmean[i]=mean(estresid) 
  ##residualeumax[i]=max(residual) 
  residual=sort(residual); residualeumax[i]=residual[round(.95*length(residual))] ##upper 95 percentile 
  fractioncleaned[i]=mean(rucleaned)/runum 
} #### next i eu mean 
 
mwin.out[count]=0 
uwin.out[count]=0 
if(max(residualeumean)<=1) ### test residualeumax for confidence objective 
{  ### begin output if design is successful 
hit=TRUE 
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mwin.out[count]=1   
s=samptotal/(runum*reps*nummeans) 
count.out[count]=count 
ru.out[count]=runum 
comp.out[count]=design$composites[cl] 
samp.out[count]=design$samples[cl] 
eusd.out[count]=eusd[sl] 
error.out[count]=samprsd[ml] 
totalrsd.out[count]=round(sqrt(design$tvar[cl]),2) 
threshold.out[count]=T[tl] 
maxmean.out[count]=round(max(residualeumean),2) 
maxucl95.out[count]=round(max(residualeumax),2) 
cost.out[count]=round(mean(fractioncleaned)*100,0) 
site.out[count]=round(mean(residualeumean),2) 
### plot ‘after’ site map 
dim(aftergrid)=c(100,100) 
ggrid=aftergrid 
windows(width=5,height=5) 
image(ggrid,col=c("palegreen1","palegreen2","palegreen3","pink3","violetred1","violetred2", 
                  "red","brown"),breaks=c(0,.201,.501,1.001,2.001, 
                   5.001,10.001,20.001,100.001),xaxt="n",yaxt="n");title(main=paste("After Cleanup: ",runum,"RU's per EU – 
                  sd=",eusd[sl])) 
text(.03,.16,"Risk-based Objective",pos=4,cex=.8) ### change risk to confidence if needed 
text(.03,.12,paste("site mean=",site.out[count]," contaminated mean = ",round(mean(aftergrid[,31:100]),2)),pos=4,cex=.8) 
text(.03,.08,paste(comp.out[count],"composites",samp.out[count],"samples/composite"),pos=4,cex=.8)   
text(.03,.04,paste("CL=",threshold.out[count]," ",cost.out[count],"% cleaned"),pos=4,cex=.8) 
 
polygon(c(.85,.95,.95,.85),c(0,0,1,1),col="white") 
text(.9,(1:10-.5)/10,paste(round(residualeumean,2)),cex=.8) 
abline(h=(2:10)/10) 
abline(v=0) 
lines(c(.8,1),c(.1,.1)) 
 
## alternative plot: performance graph 
##oldpar=par(mfg=c(prow[cl],pcol[cl])) 
##plot(trueeumean,residualeumean,type="p",xlab="Initial EU Mean", 
##ylab="Residual EU Mean",main=paste("Generic Cleanup Performance"), 
##lwd=2,ylim = range(0,10),xlim = range(0,max(trueeumean))) 
 
##lines(c(0,target,1000000),c(0,target,target),lwd=2) 
##text(10,9.7,paste(runum,"RU per EU"),pos=4,cex=1.2) 
##text(10,9,paste(compnum,"samples/composite"),pos=4,cex=1.2) 
##text(10,8,paste("EU log sd =",eusd[sl]),pos=4) 
##text(10,7.5,paste("measurement error log sd =",samprsd[ml]),pos=4) 
##text(10,7,paste("EU target concentration =",target),pos=4) 
##text(10,6.5,paste("EU action level =",T[tl]),pos=4) 
##text(10,5.5,paste("Circle: mean EU residual"),pos=4) 
##text(10,5,paste("Plus: upper 95% EU residual"),pos=4) 
##text(10,4,paste("Cleanup cost:",round(mean(fractioncleaned)*nummeans,2),"of",nummeans,"EU's cleaned"),pos=4) 
##text(10,3.5,paste("maximum expected EU residual:",round(max(residualeumean),2)),pos=4) 
##points(trueeumean,residualeumax,pch=3) 
count=count+1 
break 
}  #### end output for successful design 
}  #### next cl design 
##dev.off() 
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##par(mfrow=c(1,1),mfg=c(1,1,1,1),cex=1) 
 
}  #### next tl target action level 
 
}  #### next sl eu log standard deviation 
 
}  #### next ml measurement error 
 
}  #### next rl number of ru's in an eu 
 
gc.table=data.frame(ru.out,comp.out,samp.out,eusd.out,error.out,threshold.out, 
                    maxmean.out,maxucl95.out,cost.out,site.out,totalrsd.out) 
filedate=date() 
substring(filedate,14)="_" 
substring(filedate,17)="_" 
write.table(gc.table,file=paste("risk",filedate,".txt")) 
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