Passive Sampling for Measuring Freely Dissolved Contaminants in Sediments: Basics, Principles & Applications

> Robert M Burgess U.S. EPA ORD NHEERL Atlantic Ecology Division Narragansett, RI, USA

EPA United States Environmental Protection Agency

OUTLINE

- Why use passive sampling methods (PSM) and what they tell us
- Why do we care about the freely dissolved concentration (C_{free})
- Types of PSM and how they work
- Preparing, deploying, recovering, and storing PSM
- Analyzing PSM data
- Evaluating PSM applications
- Summary
 - Focus on nonionic organic contaminants (no metals)

PAHs

Furans

Dioxins

WHY USE PASSIVE SAMPLING METHODS (PSM) AND WHAT THEY TELL US

- (1) Freely dissolved concentrations (C_{free}) of contaminants of concern (COC) in water around passive sampler
 - Surrogate for bioavailable concentrations of COC
 - Media
 - Porewater (Interstitial Water)
 - Water column
 - Compare to Water Quality Criteria (WQC), other water quality standards, sediment guidelines or water-only toxicity data

(2) Concentration of COCs in passive sampler

- Evidence of correlation with bioaccumulation by aquatic organisms
- Serve as surrogates for biomonitoring organisms
 - Benthic and water column organisms
 - Especially in situations where mussels or fish cannot be used (e.g., low dissolved oxygen, toxicity, low/high temperature constraints (ice))

WHY DO WE CARE ABOUT THE FREELY DISSOLVED CONCENTRATION (C_{FREE})?

- For benthic organisms: What media is an effective surrogate for exposure to bioavailable chemicals?
 - Sediment?
 - Food?
 - Water column?
 - Pore Water = Freely dissolved?

Kepone

Chironomus tentans

Adams et al. (1985) addressed this question

- Two Kepone-amended sediments (same levels)
 - 1.5% and 12.3% Sediment organic carbon
- Freshwater midge (Chironomus tentans)
- Flow-through and static 14 day exposures
- Acute and chronic (growth) endpoints
- Exposure-response relationships
 - Survival and growth versus exposure

WHY DO WE CARE ABOUT THE FREELY DISSOLVED CONCENTRATION (C_{FREE})?

United States Environmental Protection Agency

WHY DO WE CARE ABOUT THE FREELY DISSOLVED CONCENTRATION (C_{FREE})?

United States Environmental Protection Agency

WHY USE PASSIVE SAMPLING METHODS (PSM) AND WHAT THEY TELL US

Measuring freely dissolved concentrations (C_{free}) in the pore waters and water column

Is there another sampling methods? Some problems: $\sqrt{\text{thepfreely}}$ dissolved concentrations (C_{free}) of Centrifugation or squeezing pore water results in limited volumes

- Several artifacts including losses to filters and surfaces and contamination by colloids and small particles reduce accuracy of analysis
- Collecting large volumes of pore waters is logistically challenging, scientifically dodgy and generally expensive
- Water Column
 - Logistically and technically difficult to collect and extract large volumes of surface water
 - Same artifacts as pore water collection
 - Analytical detection limits are often not sufficiently low

Jnited States Environmental Protection Aaencv

WHY USE PSM AND WHAT THEY TELL US

United States Environmental Protection Agency

WHY USE PSM AND WHAT THEY TELL US

BRaBéčvesicelavjälin geitlichendetet en en tichozaira berej likhikuiram

WHY USE PSM AND WHAT THEY TELL US

25th Annual NARPM Training Program **Environmental Protection**

Agency

United States Environmental Protection Agency

Polyethylene (PE)

Polyoxymethylene (POM)

Solid Phase Microextraction (SPME)

Semi-Permeable Membrane Device (SPMD)

United States Environmental Protection

United States Environmental Protection Agency

Deployment Time (days)

0

Number of peer-reviewed publications by PSM

ironmental Protection 25th Anr

Superfund sites where PSMs have been used (Updated 2 November 2017):

- Allegany Ballistics Laboratory (Region 3)
- Aniston PCB (Region 4)
- Berry's Creek (Region 2)
- Brodhead Creek (Region 3)
- Columbia Slough (Region 10)
- Dover Gas Light (Region 3)
- Diamond Alkali (Region 2)
- Grand Calumet (GLNPO-Region 5)
- Grasse River (Region 2)
- Lake Hartwell (Region 4)
- Lower Duwamish Waterway (Region 10)
- Manistique River (Region 5)
- McCormick and Baxter (Region 10)

- Metal Bank (Region 3)
- MW Manufacturing (Region 3)
- Naval Station Newport (Region 1)
- New Bedford Harbor (Region 1)
- Ordot Landfill (Region 9)
- Pacific Sound Resources (Region 10)
- Palos Verdes Shelf (Region 9)
- Portland Harbor (Region 10)
- San Jacinto Waste Pits (Region 6)
- Tennessee Products (Region 4)
- United Heckathorn (Region 9)
- Whitmoyer Laboratories (Region 3)
- Wyckoff (Region 10)

Passive Sampler (PE or POM)

(1) Solvent Cleaning (~24 hours)

(2) Deployment and Recovery (~ 30 days)

(3) Storage (-4 °C wrapped in foil)

(6) GC/MS Analysis and Data Interpretation

(5) Volume reduction (~ 1 hour)

(4) Solvent Extraction (48 hours)

(NHEERL & Brown U)

Water Column Deployment

Pore water Deployment

United States Environmental Protection Agency

25th Annual NARPM Training Program

(Texas Tech U

SPME (inside

Pore water Deployment

PE or POM (in aluminum frame)

United States Environmental Protection

Aaencv

PREPARING, DEPLOYING, RECOVERING, AND STORING PSM Pore water Deployment

(U Maryland Baltimore County)

Pore water Deployment

United States Environmental Protection Agency

PREPARING, DEPLOYING, RECOVERING, AND STORING PASSIVE SAMPLERS

Pore water Deployment

United States

Environmental Protection

25th Annual NARPM Training Program

OSRTI's Environmental Response Team Dive Team & Region 10's Dive Team have extensive experience deploying and recovering passive samplers – cost-effective resource

26

Porewater Deployment

SPME in copper tubing

(Palos Verdes Shelf Superfund Site)

PE and POM (in aluminum frames)

(NHEERL)

- Raw data (from the analytical laboratory)
 - Measured concentration of contaminants in the passive sample $(C_{Sampler})$
 - Units
 - ng/g sampler
 - ng/mL sampler (convert to μ g/g sampler by dividing by the passive sampler density (e.g., PE = 0.92 g/mL))

Calculate contaminant freely dissolved concentration (C_{free}) (ng/mL):

$$C_{free} = \frac{C_{Sampler}}{K_{Sampler} - free}$$

United States Environmental Protection Agency

 Establishing when equilibrium between the contaminants and passive sampler occurs

- Challenge in all monitoring (including biomonitoring)
- Potentially expensive to determine (i.e., extra samples = \$\$\$)
 - Perform time series (e.g., collect PSM weekly for 30 days)
 - Compare different thicknesses of PSM
- One approach: Performance Reference Compounds (PRCs) loaded into the passive sampler to predict equilibrium
 - PRC is a chemical that behaves like the target COC

United States Environmental Protection Agency

Deployment Time (days)

25th Annual NARPM Training Program

30

Two other methods:

- Diffusion-based
 - Rate of PRC diffusion through polymer is used to determine magnitude of disequilibrium correction for target contaminants
- Exchange rate-based
 - PRC data used to calculate disequilibrium-corrected exchange rates for target contaminants
- Both methods are very calculation intensive and are available on computer-based graphical-user interfaces (GUIs) or spreadsheets
 - GUIs available on-line
 - Superfund website
 - SERDP/ESTCP websites

Aaencv

33

Determining COC Flux

Inited States

 Using PSM to measure transport of COCs between sediments and water column

Recover passive sampler

United States Environmental Protection Agency

United States Environmental Protection Agency

EVALUATING PSM APPLICATIONS Developing Pore Water Remedial Goals (PWRGs)

- PWRGs are values intended to protect organisms living in and on the sediments from direct toxicity from sediment contaminants
- Two basic elements:
 - Method for measuring or inferring the freely dissolved concentration (C_{free}) of contaminant in pore water
 - Threshold chemical concentration that delineates acceptable and unacceptable toxicological exposures
- Basic quantitative form:

$$PWRG = \frac{C_{free} (\mu g/L)}{Threshold Chemical Concentration (\mu g/L)}$$

Derived from

Passive Sampling

SUMMARY

- Passive sampling provides data on:
 - Freely dissolved concentrations (C_{free}) of COCs
 - Effective surrogate for bioavailable contaminant concentrations
 - Concentration of COCs in the passive sampler
- Approach operates based on the well-understood principles of equilibrium partitioning and sampling
- Preparation, deployment, recovery and storage are no more complicated than current contaminant sampling methods
 - Possibly greater scientifically-robustness, logistically simpler, and more cost-effective
- Applications

1

- Assessing COC bioavailability
- Measuring COC fluxes
- Developing Pore Water Remedial Goals (PWRGs)

SUMMARY

- Useful documents
 - https://semspub.epa.gov/work/HQ/175405.pdf (2012)
 - http://www.epa.gov/nheerl/download_files/publications/ RB%20ESB%202012final_2.pdf (2012)
 - Society of Environmental Toxicology and Chemistry journal: Integrated Environmental Assessment and Management 2014 Series (Six papers on passive sampling) (2014)
 - https://semspub.epa.gov/work/HQ/100000146.pdf (2017)
 - https://semspub.epa.gov/work/HQ/100000539.pdf (2017)

25th Annual NARPM Training Program

©ESTCR