

Development of Porewater Remediation Goals (PWRGs) for the Protection of Benthic Organisms

Lawrence Burkhard Research Chemist ORD – NHEERL – MED

13-August-2018

Introduction

Development of Porewater Remediation Goals (PWRGs) for the Protection of Benthic Organisms EPA 600/R-15/289 October 2017

Introduction

OLEM-OSRTI requested this guidance

- Numerous stakeholders
 - Asking for the incorporation of bioavailability measures into developing remedial goals
 - Techniques are available for assessing bioavailability

Results (Potentially)

- Simpler/less aggressive remedial designs
 - Remediate only the portion of the chemical causing the risk at the site
- Lower remedial costs
- Quicker completion of remedial actions

Methodology applicable to

- Protection of benthic organisms from direct toxicity from sediment contaminants
- Applicable to nonpolar organic chemicals
 - PAHs, chlorinated benzenes, pesticides ...

Methodology not applicable to

- Effects resulting from bioaccumulation via the food chain
 - PCBs & PCDD/PCDFs
- Higher trophic level benthic species
 - Crab, lobster, catfish, carp
- Pelagic species
- Cationic metals (Cu, Cd, Zn, Pb, Ni, Ag) & polar organics
 - Passive samplers in different stage of development

BACKGROUND

Need for thresholds for contaminants in sediments

- Unacceptable risks
- ◆ Initial approaches \rightarrow Empirical (pre-2000s)
 - Ignore bioavailability considerations
- Factors influencing sediment toxicity
 - Metals → sulfide
 - Organics \rightarrow organic carbon

 Development of Equilibrium Partitioning Sediment Benchmarks (ESBs) (2000s)

ESBs based upon EqP theory

- EqP asserts:
 - All phases in sediment are at equilibrium with each other
 - Bioavailability directly proportional to the chemical's activity
 - Chemical activity is the same in all sediment phases
 - C_{free} in pore water: good estimate of chemical activity
- Bioavailable chemical = C_{free} in pore water

ESBs developed in 2000s because

- Methods for measuring C_{free} in pore water
 - Unavailable, many artifacts & biases

- Equilibrium Partitioning Sediment Benchmarks (ESBs, µg/g-oc)
 - ESB is same for all sites
 - Adjusted for site-specific sediment organic carbon content → bulk concentrations (µg/kg-dw)

Theoretical underpinning of ESBs strong!

Not all "organic carbon" in sediments is the "same"

- Variety of diagenic, petrogenic, and pyrogenic forms
- K_{oc} values vary across different carbon types
- K_{oc} values vary within and across sites

- Diagenic organic carbon-water partitioning
- K_{OC} values lower \rightarrow more chemical being bioavailable

With development of passive sampling

- C_{free} in porewater can be measured
 - Measure of chemical activity
 - Measure of chemical bioavailability in sediments
 - Bioavailable chemical = C_{free} in pore water

Guidance approach

- Two basic elements
 - Method of measuring/inferring freely dissolved chemical concentrations in sediment pore water
 - Threshold chemical concentrations that delineates acceptable and unacceptable exposures

Final Chronic Values

Thresholds for Acceptable/Unacceptable

EPA's Equilibrium Sediment Benchmarks

- Final Chronic Value (FCV) from EPA's Ambient Water Quality Criterion (AWQC) for aquatic life is exposure threshold
- Secondary Chronic Values (SCV)
 - Derived using Great Lakes Water Quality Initiative methodology
 - For chemicals without FCVs

PWRG methodology uses

- Final Chronic Values (FCVs)
- Secondary Chronic Values (SCVs)

FCVs and SCVs

- Derived using toxicity sensitivity distributions with benthic and pelagic organisms
- 5th percentile from the Species Sensitivity Distribution

Logical question:

 Are benthic organisms consistently more or less sensitive to chemical toxicants than are pelagic organisms?

 Comparison of the minimum LC50 for infaunal and epibenthic species (X-axis) and water column species (Y-axis). Data from AWQC or draft AWQC documents (Di Toro et al. 1991)

Suggested Methodology Developing PWRGs

 Follows Superfund's eight-step ERA guidance

EXHIBIT I-2

Screening Level Characterization of the Nature and Extent of Contamination

- Measure f_{OC} and C_S for all COCs (µg/kg-dw) in surficial sediments across the site
- 2) Compute C_{SOC} (µg/kg-OC) for all COCs
- 3) Compute Toxic Units (TUs) for COCs
 - For single toxicant case, TU = C_{SOC}/ESB
 - For mixture of toxicants,
 - For each COC: $TU_i = C_{SOC,i} / ESB_i$
 - Total TUs = ∑TU_i

	Step 2:
e	Screening Level
	Step 3:
	Problem Formulation
	Step 4:
	Study Design
	DQO Process
	Otom 5:
	Field Ve ification
	Step 6:
	Site Investigation
	Exposure Analysis
	Step 7:
	Risk Characterization

Step 1: Screening Level

Step 8: Risk Management

Step 8: **Risk Management**

Study Design and DQO Process

Problem Formulation

assessment endpoints

Develop Work Plan (WP) and Sampling and Analysis Plan (SAP) in support of CSM and data needs

Site Investigation and Data Analysis

- Passively sample surface sediments where total TUs > 1.0
- 5) Derive C_{free} and K_{OC} values for surface sediments with total TUs > 1.0

Step 8: Risk Management

Baseline Ecological Risk Assessment

6) Compute Toxic Units (TUs) for COCs

- For single toxicant case, PWTU = C_{free}/FCV
- For mixture of toxicants, for each COC in the mixture:
 - Compute pore water TU for each COC, $PWTU_i = C_{free,i}/FCV_i$

- Compute total mixture pore water TUs, $PWTU_{Mixture} = \Sigma PWTU_{i}$

- 7) For locations where:
 - Total PWTUs \leq 1.0, little potential for risk.
 - Total PWTUs > 1.0, unacceptable risks indicated
 - Proceed to Remedial Goal Development

Step 2:						
Screening Level						
Step 3:						
Problem Formulation						
Step 4:						
Study Design						
&						
DQO Process						
Step 5:						
Field Ve ification						
Step 6:						
Site Investigation						

Step 1: Screening Level

& Exposure Analysis

Step 7: Risk Characterization

Step 8: Risk Management

Step 1: **Screening Level**

Derive site specific f_{OC:SS} and K_{OC:SS} values

$$K\downarrow OC:SS = (C\downarrow S / f\downarrow OC:SS) / C\downarrow free$$

a) PWRG for single toxicant:

$$C_{S:PWRG} = K_{OC:SS} \times f_{OC:SS} \times C_{free:PWRG}$$

where $C_{free:PWRG} = FCV$

•
$$C_{S:PWRG,Mixture} = \Sigma C_{S:PWRG,i}$$

b)

Step 7: **Risk Characterization**

Exposure Analysis

Step 1: Screening Level

Step 8: **Risk Management**

Step through illustrative example

1) Measure f_{OC} (define nature and variability)

1) Measure C_{sediment} (define nature and variability)

3) Compute Toxic Units (TUs) for Dieldrin

4) Passively sample sediments with TUs > 1.0

5) Measure C_{free} for sediments with TUs > 1.0

5) Measure K_{OC} for sediments with TUs > 1.0

7) Total PWTUs \leq 1.0: Little potential risk

7) Total PWTUs > 1.0: Unacceptable risks

8) Remedial Goal Development 3 options

Dieldrin

Log Kow

FCV

ESB freshwater

- Concentration in:
 - Pore water

Flow

Source Area

- Bulk sediment
- Sediment organic carbon basis

C_{free:PWRG} (μg/L) C_{S:PWRG} (μg/kg-dw) C_{SOC:PWRG} (μg/kg-oc)

Project team will need to select an option!

12 ug/g_{oc}

5.28

0.06589 ug/L

- 8) Remedial Goal Development
 - Focus on bulk sediment option: C_{S:PWRG} (µg/kg dw)
 - $C\downarrow S: PWRG = K\downarrow OC: SS \times f\downarrow OC: SS \times C\downarrow free: PWRG$

- 8) Remedial Goal Development
 - Focus on bulk sediment option: C_{S:PWRG} (µg/kg dw)
 - C\$\$:PWRG = K\$OC:SS × f\$OC:SS × C\$free:PWRG

8) Remedial Goal Development

- Bulk sediment option: C_{S:PWRG} (µg/kg dw)
- $C\downarrow S: PWRG = K\downarrow OC: SS \times f\downarrow OC: SS \times C\downarrow free: PWRG$
- Sample by sample PWRG development
 - Not realistic
 - Not enough data
- For your site: Develop site K_{OC:SS} and f_{OC:SS}
 - Central tendency value for K_{OC:SS} and f_{OC:SS}
 - mean or median
 - Use 95% UCL as RME
 - Define by OUs, sub-areas ... of the site?

- 8) Remedial Goal Development
 - K_{OC:SS} and f_{OC:SS} development
 - If low variability
 - Selecting a single value should be straight forwards
 - If high variability
 - Will require some work to determine appropriate values
 - » Spatial patterns
 - » Site history and knowledge may allow parsing of the variability
 - » Distribution of the values
 - » Subdividing the site

- 8) Remedial Goal Development
 - K_{OC:SS} and f_{OC:SS} development
 - How many passive sampling measurements are enough for a site?
 - Site specific decision
 - 1 or 2 samples clearly not enough
 - Measure bulk and $C_{\mbox{\scriptsize free}}$ concentrations on all sediments too expensive
 - Depends upon expect variance
 - » Use power analysis to estimate sample numbers
 - What samples should be done?
 - Surface sediments

Mixtures: PWRG Methodology

Must use Toxic Units (TUs)

Individual components

 $PWTU\downarrow i = C\downarrow free, i / FCV\downarrow i$

Mixture

 $PWTU\downarrow Mixture = \sum_{i=1}^{j} PWTU\downarrow i$

Mixtures: PWRG Methodology

Table 4-3. Example calculation of pore water toxicity and PWRGs for a sediment with a PAH Mixture as the known toxicants.

	<u>Meas</u> <u>Concer</u>	<u>sured</u> <u>ntration</u>			1.704% = 1/58.68				
	Sediment	Pore Water (C _{free})	Aqueous Solubility	Narcosis FCV	Pore Water Toxic Units	PWRGs	PWRG Toxic Units	Site- Specific Log K _{oc}	Bulk Sediment PRWGs
РАН	µg/g (dw)	µg/L	µg/L	µg/L		µg/L		L/kg (OC)	µg/g (dw)
Naphthalene	3.33	2.89	30,995	193.5	0.015	0.049	0.0003	4.154	0.057
C1-Naphthalenes	1.07	2.13		81.69	0.026	0.036	0.0004	3.794	0.018
C2-Naphthalenes	2.57	26.8 J		30.24	0.886	0.457	0.0151	3.074	0.044
C3-Naphthalenes	1.94	35.5 J		11.10	3.198	0.605	0.0545	2.830	0.033
C4-Naphthalenes	1.01	18.5 J		4.048	4.570	0.315	0.0779	2.830	0.017
Benzo[e]pyrene	5.69	0.387	4.012	0.9008	0.430	0.007	0.0073	5.260	0.097
Indeno[1,2,3-cd]pyrene	6.39	0.12 J		0.2750	0.436	0.002	0.0074	5.819	0.109
Dibenz[a,h]anthracene	1.82	0.055 J	0.6012	0.2825	0.195	0.001	0.0033	5.612	0.031
Benzo[ghi]perylene	6.40	0.173 J	0.2600	0.4391	0.394	0.003	0.0067	5.661	0.109
Total Organic Carbon	8.08%								
Total	191.27	-	-	-	58.681	-	1.0	-	3.260

Mixtures: PWRG Methodology

8) Remedial Goal Development for Mixtures

- Beyond K_{OC:SS} and f_{OC:SS} development just discussed
- Composition of mixture will vary across the site
- If low variability
 - Selecting a single composition should be straight forwards
- If high variability
 - Will require some work to determine appropriate values
 - » Spatial patterns
 - » Site history and knowledge may allow parsing of the variability
 - » Distribution of the values
 - » Subdividing the site

Consistency of Sediment Toxicity Testing Results and PWRGs

Consistency of Sediment Toxicity Testing Results and PWRGs

- In RI, sediment toxicity tests are often done
 - Benthic organisms
- PWRG methodology for protection of benthic organisms

When consistency exist

- Reasonably assured the causes of toxicity are identified
- Developed PWRGs will be protective of benthic organisms at the site

PAH mixture species sensitivity distribution genus mean acute values for marine and freshwater toxicity testing species

Species	Genus Mean Acute Value (µmole/ g octanol)	Percentage Rank of Genera		
5 th Percentile distribution value	FAV = 9.32	5.0%		
Hyalella azteca**	13.9**	10.2%**		
Leptocheirus plumulosus	19.0	22.4%		
Rhepoxynius abronius	19.9	26.5%		
Eohaustorius estuarius	22.1	32.6%		
Ampelisca abdita	30.9	55.1%		
Chironomus tentans	68.4	79.5%		

Measured sediment toxicity survival data for *Hyalella azteca* in 28-day test with sediments contaminated with PAHs (Kreitinger et al 2007). ---- and •••• lines are the mean and 95% confidence levels for the EC50 derived from the water-only toxicity testing data for *H. azteca*.

Measured sediment toxicity survival data for *Hyalella azteca* in 28-day test with sediments contaminated with PAHs (Kreitinger et al 2007). ---- and •••• lines are the mean and 95% confidence levels for the EC50 derived from the water-only toxicity testing data for *H. azteca*.

Measured sediment toxicity survival data for *Hyalella azteca* in 28-day test with sediments contaminated with PAHs (Kreitinger et al 2007). The - - - and ••••• lines are the mean and 95% confidence levels for the EC50 derived from the water-only toxicity testing data. If data exists in the data set illustrated by ▲ - Suggests: Presence of other unidentified toxicants ▲ - Suggests: Wrong toxicants have been identified

Consistency not demonstrated!

- 28-day survival data for 97 samples from six MPG and two AI-smelter sites (Hawthorne et al. 2007)
 - Results:
 - Form dose-response shape
 - Breakpoint between toxic and non-toxic samples
 - Breakpoint centered around 1.0 TU I

Summary

Methodology applicable to

- Protection of benthic organisms from direct toxicity from sediment contaminants
- Applicable to nonpolar organic chemicals
 - PAHs, chlorinated benzenes, pesticides ...

Methodology not applicable to

- Effects resulting from bioaccumulation via the food chain
 - PCBs & PCDD/PCDFs
- Higher trophic level benthic species
 - Crab, lobster, catfish, carp
- Pelagic species
- Cationic metals (Cu, Cd, Zn, Pb, Ni, Ag) & polar organics
 - Passive samplers in different stage of development

Summary

Guidance available

- EPA 600/R-15/289
- Looking for case study sites
 - Develop examples

