Fish Liver Microtissues for Aquatic Tox: Integrating Morphological & Molecular Responses for *In Vitro* Assessment of Environmental Pollutants

April Rodd
PostDoc @ Brown University, Dept Pathology & Laboratory Medicine
Alternative Toxicity Testing Approaches

What do we do when a new, potentially toxic material needs to be tested?
Alternative Toxicity Testing Approaches

Select Target Organs & Cells

High-throughput Screens

Complex Cell Models
3D Models for Environmental Toxicology

- 2D cells do not accurately reflect the response of *in vivo* tissues
 - Increasing need for advanced screening tools for aquatic toxicology
- 3D cell culture acts as a bridge between monolayer *in vitro* assays and *in vivo* exposures
 - Balancing increased throughput with increased tissue complexity

In Vivo → *In Vitro*
Aromatic Hydrocarbon Toxicity

- Polycyclic aromatic hydrocarbons (PAHs) persist in sediment and can accumulate in lipids
 - Many are carcinogenic and EPA priority pollutants
 - Metabolic activation by Cytochrome P450 enzymes can cause cell death, reactive oxygen species, and DNA adducts

![Metabolism of Aromatic Hydrocarbons](image)

Metabolism of Aromatic Hydrocarbons

Naphthalene → **Benzo(a)pyrene** → **Additional Enzymes** → **P-450** → **Carcinogenic Metabolites**

Carcinogenic Metabolites

- Benzo(a)pyrene 7,8 diol-9,10 epoxide
- Naphthalene-1,2-epoxide
- 1,2-Naphthoquinone
Fish Liver Microtissue Formation

- Microtissues formed with PLHC-1 fish liver cells
 - Self-assemble through cell-cell adhesion and cytoskeletal forces
 - Method applied to many cell types and known to increase hepatocyte differentiation
- Can be assessed using both fluorescent and histological techniques
Microtissue Characterization

- Microtissues are stable and viable for at least 2 weeks
- Markers of liver differentiation stable or increasing over time
Cytochrome P450 1A (Cyp1a) Expression

- Cyp1a metabolizes polycyclic aromatic hydrocarbons (PAHs)
 - Generates both detoxified and reactive metabolites
 - Specific biomarker upregulated in response to PAH exposure
Microtissue Exposure to Benzo(a)pyrene

- 3D cell culture allows for more prolonged and complex exposures
 - Microtissues have extended window of exposure
 - Added complexity of multiple exposures
- Metabolic activation of PAHs can cause delayed effects
 - May go undetected following acute, single exposure exposures
Microtissue Exposure to Benzo(a)pyrene

- 3D cell culture allows for more prolonged and complex exposures
 - Microtissues have extended window of exposure
 - Added complexity of multiple exposures
- Metabolic activation of PAHs can cause delayed effects
 - May go undetected following acute, single exposure exposures
Sensitive Cyp1a Induction After B(a)p Exposure

- Response to a 24hr benzo(a)pyrene exposure
 - Highly sensitive increase in *cyp1a* gene expression
 - Dose dependent increase in Cyp1a protein *in situ* with three-dimensional protein induction

![Cyp1a Gene Expression](image)

![Cyp1a Protein Expression](image)

Scale bars 50μm
Sensitive Cyp1a Induction After B(a)p Exposure

- Response to a 24hr benzo(a)pyrene exposure
 - Highly sensitive increase in \(cyp1a \) gene expression
 - Dose dependent increase in Cyp1a protein \textit{in situ} with three-dimensional protein induction

\textit{Cyp1a Protein Expression}

<table>
<thead>
<tr>
<th>Condition</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>![Image]</td>
</tr>
<tr>
<td>100nM b(a)p</td>
<td>![Image]</td>
</tr>
<tr>
<td>1(\mu)M b(a)p</td>
<td>![Image]</td>
</tr>
<tr>
<td>5(\mu)M b(a)p</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

Scale bars 50\(\mu \)m
Continued Cellular Changes During Recovery

- Continued adverse effects after recovery period
 - 2D monolayer cells proliferate, while 3D microtissues do not
 - Gene expression of *cyp1a* falls following b(a)p removal

![Cyp1a Gene Expression Graph](image)

![Cyp1a Protein Expression Images](image)

Scale bars 50µm
Continued Cellular Changes During Recovery

- Continued adverse effects after recovery period
 - Cell death and spheroid morphological change continue to increase

Scale bars 50µm
Cyp1a Induction Unaltered By Previous B(a)p Exposure

- Cyp1a gene or protein expression equally induced after second 24hr exposure to b(a)p
Changes in Microtissue Architecture After Repeated B(a)p Exposure

- Repeated exposure to benzo(a)pyrene shows survivability
 - Survival of spheroid core after high exposures
 - Disrupted spheroid architecture and morphology

Scale bars 50µm
Hematoxylin & Eosin
Effect of Multiple B(a)p Exposures

100nM b(a)p 5μM b(a)p

5μM b(a)p 100nM b(a)p

5μM b(a)p

Cyp1a Nuclei

Cyp1a Nuclei

Sublethal

Dose

First Exposure

Second Exposure
Summary

• Single benzo(a)pyrene exposures elicit sensitive and specific responses in fish liver microtissues

• Repeated exposure results in tissue-level changes to microtissue architecture without altering the induction of Cyp1a

• Microtissues can be used as a sensitive tool to assess environmentally relevant aquatic exposures
Acknowledgments

- Plavicki Lab, Dept of Pathology & Lab Medicine
 - PI: Jessica Plavicki, PhD

- Kane Lab, Dept of Pathology & Lab Medicine
 - PI: Agnes Kane, MD, PhD
 - Pranita Kabadi, PhD
 - Charles Vaslet, PhD
 - Norma Messier
 - Alysha Simmons
 - Cynthia Browning, PhD
 - Annette von dem Bussche, PhD

- Hurt Lab, School of Engineering
 - PI: Robert Hurt, PhD

Funding:
- NIEHS Superfund Research Program P42 ES013660
- NIEHS Training Grant T32 ES07272
- Institute at Brown for Environment & Society (IBES)
- Generous gift of support by Donna McGraw Weiss ‘89 and Jason Weiss