Addressing Population Variability in Risk Assessment: Challenges and Opportunities

SRP Risk e-Learning Webinar 31 May 2018

Weihsueh A. Chiu, PhD Texas A&M University

Conflict of Interest Statement

Neither myself nor any of my coauthors, including members of our immediate families, have any financial interest or affiliation with a commercial organization that has a direct or indirect interest in the subject matter of my presentation.

Outline

- Motivation for addressing population variability and susceptibility
- Opportunities using emerging populationbased in vivo, in vitro, and in silico approaches
 - Hazard identification and mechanisms of toxicity
 - Dose-Response Assessment
- Challenges in risk characterization

Claudius Galenus (Galen of Pergamum)

129-217 AD

"But remember throughout that no external cause is efficient without a predisposition of the body itself.
Otherwise, external causes which affect one would affect

all. "

Library of Congress

"Uncertainty" or "Safety" Factors

How well can we characterize variability?

Toxicity values and risk characterization

- Limited power to examine population variability/susceptibility.
- Generalizing from occupational/patient cohorts to the population.
- Available for relatively few chemicals (<1000).
- Homogeneous (genetics, diet, etc.) experimental animals.
- Available for relatively few chemicals (~100 PBPK; <1000 total).
- Few examples analyzing population variability or uncertainty.
 - Available for more chemicals (~10,000).
 - Uncertain relationship to health risk.
 - Genetically homogeneous in vitro systems.
 - Available for only a few endpoints (~10?).
 - Qualitative, not quantitative.
 - Most are artificially linear constructs.
 - Variability/susceptibility not included.
 - Available for relatively few chemicals (<1000).
 - Do not adequately address uncertainty, variability, susceptibility (10-fold factor).
 - In most cases, do not explicitly estimate risk.

Population Variability in Susceptibility Remains a Risk Assessment Challenge

Animals, in vitro, or in silico data Humans **Individual Predictions** for an Average Jérémy (France) **B6C3F1** Hybrid Mice Male (or Female) Martijn (Holland) Yuki (Japan) HeLa cells **PBPK models** Todd (USA) **Predictions** for a Variable **Population Population** See review Chiu & Rusyn (2018)

doi:10.1007/s00335-017-9731-6

New Population-Based Approaches and Tools

- Genetically diverse mouse populations
 - Diversity Panel
 - Collaborative Cross, Diversity Outbred
- Populations of human cells
 - Cell lines
 - Inducted pluripotent stem cells
- Computational modeling of populations

Challenges for Hazard Identification

Hazard Identification: Why Use Population-Based Models?

Mouse

- Poor models of humans
- Good models of humans

Range of Human Responses

Extrapolation

- Reduce chances of being "unlucky" and picking a strain that is a "poor" model of humans
- Obtaining information about potential range of population variability

Mouse Diversity Panel (MDP)

- Comprised of dozens of conventional inbred strains
- Each line is genetically distinct
- Many strains have a high degree of genetic relatedness between them, potentially limiting degree of genetic diversity across strains

Extreme Transgressive Variation Average Daily Running Distance

- **5 5**

Strain

Selection

Founder Strains: A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/H1LtJ, CAST/EiJ, PWK/PhJ, WSB/EiJ

F1 Diallel Cross→F1 Crosses

Initiation: Interbred 144
segregating CC lines between

G2:F4 and G2:F12 generations

Collaborative Cross (CC)

- >100 RI lines available
- Each RI line is genetically distinct
- Within each RI line, all mice are genetically identical

Diversity Outbred (DO)

- Large population of genetically unique individuals
- High level of genomic heterozygosity
- Each individual animal is genetically unique

Harrill & McAllister (2018) https://doi.org/10.1289/EHP1274

Mouse and Human Response Phenotypes to Ebola Virus Infection

Hazard Identification:

Proof of Principle Using Population-Based Mouse Models

Challenges for Characterizing Mechanisms of Toxicity and Susceptibility

Animals, in vitro, or in silico data Humans **Predictions** for an Average Jérémy (France) **B6C3F1 Hybrid Mice** Male (or Female) Martijn (Holland) i (Japan) Knockout studies probe one gene at a time **Predictions** Difficult to distinguish interfor a Variable and intra-species susceptibility **Population** differences

Individual

Population

Population-Based Models to Investigate Mechanisms of Toxicity and Susceptibility

Mechanisms of Toxicity and Susceptibility: Proof of Principle Using Population-Based Mouse Models

Confirmed in human cohorts

CD44 Candidate
Susceptibility Gene

Recovery

Apoptosis & Inflammation

Challenges for Dose-Response Assessment

Population Variability in Toxicokinetics

Human population variability of trichloroethylene pharmacokinetics

Bayesian Population PBPK Model

parameters vary by individual [~50 individuals total]

	Ratio of 95th percentile/ 50th percentile individual	
	Human inter-individual variability	
TCE oxidized by P450	1.11 (1.05, 1.22)	
Total TCA produced	2.09 (1.81, 2.51)	
TCE conj. with GSH	6.61 (3.95, 11.17)	

Depending on the toxic moiety (which may be different for different effects), humans could have very low or very high variability.

Using a population of mouse strains to address TCE toxicokinetic variability

Using a population of mouse strains to address TCE toxicokinetic variability

	Ratio of 95th percentile/50th percentile individual or strain*	
	Human inter-individual variability	Mouse inter-strain variability
TCE oxidized by P450	1.11 (1.05, 1.22)	1.05 (1.01, 1.27)
Total TCA produced	2.09 (1.81, 2.51)	1.77 (1.36, 2.99)
TCE conj. with GSH	6.61 (3.95, 11.17)	7.12 (3.43, 20.7)

*Median and 95% CI

Estimates of mouse population variability from multi-strain experiments are consistent with estimates of human population variability from controlled human exposure studies.

Total TCA (mg/kg)

Source: Chiu et al., 2014

129S1/SvImJ

Population Variability in Toxicodynamics

Genetically diverse human population

Genetically defined sample of population High throughput in vitro model system

Structurally diverse chemical population

Chemical-Specific TD Variability Factor (TDVF₀₁):

The factor estimated to protect up to the most sensitive 1% for human toxicodynamic variability for a chemical

Abdo et al., 2015 Chiu et al., 2017

https://doi.org/10.14573/altex.1608251

~3-fold

>8-fold

Genetically diverse human population

http://en.wikipedia.org/wiki/1000 Genomes Project

Insertion Copy Number Virtual Copy

Genetically defined sample of population

High throughput in vitro model system

Structurally diverse chemical population

~170 compounds

Chemical-Specific TD Variability Factor (TDVF₀₁):

The factor estimated to protect up to the most sensitive 1% for human toxicodynamic variability for a chemical

Abdo et al., 2015 Chiu et al., 2017

https://doi.org/10.14573/altex.1608251

Next Step: Other Cell Types and Phenotypes

- Induced pluripotent stem cells (iPSC)
 - Multiple cell types, eventually from multiple individuals
 - Cell-type-specific measures of function/ toxicity

- Viability
- Mitochondria Integrity
- Oxidative Stress
- Lipid Accumulation
- Cell Beating Parameters
- Viability
- · Mitochondrial Integrity
- Neurite Outgrowth
- Viability
- Mitochondrial Integrity
- Tubulogenesis
- Cytokine Production
- Viability
- Mitochondrial Integrity
- Viability
- Phagocytosis
- Cytokine Production
- Viability
- Mitochondria Integrity
- Oxidative Stress

Challenges to Risk Characterization

Acknowledging that "safe" exposures are **not risk-free**.

- •Uncertainty can never achieve 100% certainty
- Variability can never ensure 100% of population is protected

What is the risk at the RfD?

- Applied WHO/IPCS probabilistic framework to >1500 endpoints for >600 chemicals
- Exposure at the RfD implies upper 95% confidence bound population incidence of several percent.
- Noted that there is wide range of severity of the associated effects, from clinical chemistry to mortality (!).

Confirmation that the RfD is not 100% risk-free!

Challenges to Risk Characterization

Emerging data and methods have the potential to identify who may remain at risk.

- •Risk-based policies presume individuals are unidentifiable.
- Precedent in cardiovascular health for calculating individual risk profiles.
- •What if toxicity testing were done on each individuals' cells?

23andMe

Summary and Conclusions: Addressing Population Variability and Susceptibility

- Hazard identification: Multiple opportunities for improvement
 - Population-based experimental models are more likely to overlap with human population responses
 - Genetic-based analyses of experimental populations have potential to identify mechanisms of toxicity and susceptibility
- Dose-Response Assessment: Multiple opportunities for improvement
 - Population PBPK modeling of toxicokinetic variability facilitated by new population-based in vivo and in vitro data
 - Emerging genetically diverse cell-based systems, including iPSC-based technologies, for assessing toxicodynamic variability
 - Potential for directly estimating population dose-response experimentally in toxicity testing using genetically diverse populations
 - Probabilistic dose-response modeling necessary to integrate population-based data for characterizing risk
 - Risk Characterization: Challenges to communication and policy