

#### Inhalation Exposure and Disposition of PCBs

NIEHS Superfund Research Program and EPA Clu-In Webinar PCBs in Schools: Session 1 Overview and Exposure Assessment April 21, 2014

Peter S. Thorne, MS, PhD

Professor and Head,

Department of Occupational and Environmental Health

Director, Environmental Health Sciences Research Center





#### Human Exposure to PCBs Ingestion and Occupational → Inhalation

- Legacy pollution Highly stable PCB mixtures
  - Aroclors (US and UK)
    Clofen (Germany)
  - Phenoclor (France)
    Kanechlor & Santotherm (Japan)
- Sources: transformers, capacitors, machining oils, hydraulic fluids, plasticizers in caulk
- Modern day PCB exposures: (legacy), paints, pigments 50 PCB congeners detected in yellow paint
  - Most frequently detected in yellow azo pigments<sup>1</sup>: PCB 11, 8, 6, 4, 1, 12/13, 2, 3, 209, 52
  - Includes non-aroclors: PCB 11, 209



#### Human Exposure to PCBs Ingestion → Inhalation



- Increasing awareness of PCBs in schools
  - Airborne exposures are important
  - How to remediate contaminated schools?
  - How low is safe?
- PCBs in homes and apartment buildings in Denmark, Germany, U.S.
  - Caulk and sealants, paints and pigments
  - Other synthetic building materials?
- Dredging, hauling, disposal of contaminated sediments concern for community level exposures

Marek et al. (2010) ES&T, 44, 2822–2827. Meyer et al. (2013) Int J Hyg Environ Hlth, 216, 755-762. Kohler et al. (2005) ES&T, 39 167-173. Herrick et al (2004) EHP, 112, 1051-1053.

# What do we know about the fate of inhaled PCBs?

- We have conducted 6 inhalation studies in rodents
  - Aroclor 1242
  - Chicago Air Mixture (CAM)
  - PCB 11
  - PCB 3
  - <sup>14</sup>C-PCB 11



- CAM+ (CAM supplemented with PCB 11)
- Studies include acute, subacute, subchronic

Our rodent studies show rapid distribution and metabolism of inhaled PCB congeners

#### Aroclor 1242 study

- Acute and subacute inhalation studies
- Rats exposed via inhalation
- t<sub>1/2</sub>= liver: 5.6 h; lung: 8.2 h; brain: 8.5 h; blood: 9.7 h
- Lung, liver, adipose tissue levels higher than brain or blood
- 10 d exposure  $\rightarrow$  6.6 µg/g lipid weight in lung & liver
- Minimal toxicity at 1400 μg (5.6 mg/kg)
- Hu X, Adamcakova-Dodd A, Lehmler HJ, Hu D, Kania-Korwel I, Hornbuckle KC, Thorne PS. Time course of congener uptake and elimination in rats after shortterm inhalation exposure to an airborne polychlorinated biphenyl(PCB) mixture. *Environ Sci Technol*, 44(17):6893-6900, 2010.

Our rodent studies show rapid distribution and metabolism of inhaled PCB congeners

#### CAM Subchronic Study

- Exposure atmospheres match the PCB profile of urban air
- 4-week nose-only inhalation studies.
- Inhalation exposure contributes to body burden of mostly trito hexa-chlorobipenyls
- Distinct congener spectrum was found: similar between lung, serum, liver, brain and adipose tissue.
- Accumulation of neurotoxic PCBs in brain: PCB28, 105 and 118.
- Hu X, Adamcakova-Dodd A, Lehmler HJ, Hu D, Hornbuckle K, Thorne PS. Subchronic inhalation exposure study of an airborne polychlorinated biphenyl mixture resembling the Chicago ambient air congener profile. *Environ Sci Technol*, 14(59):9653-62, 2012. PMID: 22846166

#### Generation: 520 μg/m<sup>3</sup>



PCB congener number

 A distinct profile of ~25 accumulated congeners in tissue

| Tissue              | Blood            | Lung              |
|---------------------|------------------|-------------------|
| 4 wk PCB<br>Exposed | 12.88 ±<br>1.38* | 67.19 ±<br>4.14** |
| Sham                | 2.30 ±           | 7.46 ±            |
| Exposed             | 1.29             | 0.98              |
| Sentinels           | 2.65             | 6.85              |

 $\sum$ PCB in tissue after exposure (ng/g tissue weight) \*p < 0.001, \*\*p < 0.0001



Our rodent studies show complete uptake from the lung and rapid metabolism of inhaled PCB 11



3,3'-Dichlorobiphenyl

#### <sup>14</sup>C-PCB 11 ADME study

- Time course studies of absorption, distribution metabolism and excretion of <sup>14</sup>C PCB11 and its metabolites were conducted and achieved a mass balance.
- Hu X, Adamcakova-Dodd A, Thorne, PS. The fate of inhaled <sup>14</sup>C-labelled PCB11 and it metabolites *in vivo*. *Environ*. *Internat.*, 63:92-100, 2014.

## [<sup>14</sup>C]-PCB11 Study 3,3'-Dichlorobiphenyl



- Even though we find PCB 11 in the indoor air of every home and school, virtually nothing is known about its fate and toxicity
- Objective: To determine the fate of PCB 11 in rats
- Approach: build a mass balance model for PCB 11 and its metabolites



#### Heat Map of Radioactive PCB 11



#### The majority of dose is excreted in hours



- Fecal elimination is the major pathway of excretion.
- Exhaled PCB 11 accounts for <0.2% of administered dose.
- Absorption of PCB in lung is complete.





## Rapid elimination from most tissues

| Phase             | <b>t</b> <sub>1/2</sub> -1 | t <sub>1/2</sub> -2 |  |
|-------------------|----------------------------|---------------------|--|
| Trachea           | 9 min                      | 2.6 hr              |  |
| Thyroid           | 14 min                     | 5.3 hr              |  |
| Lung              | 13 min                     | 3.7 hr              |  |
| Liver             | 24 min                     | 3.7 hr              |  |
| Heart             | 12 min                     | 3.9 hr              |  |
| Pancreas          | 21 min                     | 7.7 hr              |  |
| Brain             | 12 min                     | 2.7 hr              |  |
| Diaphragm         | 18 min                     | 3.9 hr              |  |
| Blood             | 33 min                     | 4.1 hr              |  |
| Salivary<br>gland | 14min                      | 4.3 hr              |  |
| Spleen            | 15 min                     | 6.3 hr              |  |
| Thymus            | 14 min                     | 4.7 hr              |  |
| Muscle            | 14 min                     | 6.4 hr              |  |
| Testis            | 17 min                     | 3.9 hr              |  |
| Seminal vesicles  | 19 min                     | 4.1 hr              |  |

#### Summary from PCB 11 animal studies

- Complete and fast uptake of inhaled PCB
  - PCB11 is 99.8% absorbed after lung exposure.
- Rapid distribution of PCB11
  - High tissue concentration of PCB11 at 12 min after exposure
  - Delayed uptake in adipose tissue and other fatty tissues (skin, epididymis)
- Extremely fast elimination of PCB11 and metabolites
  - 50% of dose excreted by 12 h
  - 37% of dose in intestinal digestive matter that was about to be excreted
  - The initial elimination phase is very short ( $t_{1/2}$  = 10-30 min)
  - Biomarkers may demonstrate same-day exposures
- Phase II metabolites dominate in systemic circulation
  - PCB11 and OH-PCB11s decay most rapidly to minimal levels within 25 min
  - Phase II metabolites serve as better biomarkers of PCB11 exposure



## The AESOP Study

(Airborne Exposures to Semi-volatile Organic Pollutants)



 Community-based, two-cohort study of PCB exposures among adolescent children and their mothers

## The AESOP Study

- Prospective cohort study of PCB exposures in school children and their mothers
- Focus on air exposures and lower chlorinated congeners
- Two communities:
  - Columbus Junction
  - East Chicago





#### East Chicago and Indiana Harbor and Ship Canal IHSC dredging began Nov 2012 - IHSC is a source of PCBs



Columbus Community School District



#### **Columbus Community Schools** Serving small rural towns and farm families





20

Artist: Jeanne DeWall

#### The AESOP Study Aims & Enrollment

- 1. Measure exposures of atmospheric PCBs at homes & schools in both cohorts.
- 2. Analyze blood and urine for PCBs and PCB metabolites.
- 3. Gather demographic, residential, occupational, activity and dietary information from subjects by questionnaire.
- 4. Utilize exposure and questionnaire data to develop an exposure model for the atmospheric PCB congeners.

| Cohort    | Location          | Total | Households* | Children      | Mothers |
|-----------|-------------------|-------|-------------|---------------|---------|
| Urban     | East Chicago      | 129   | 63          | 66 (35 girls) | 63      |
| Rural     | Columbus Junction | 135   | 61          | 74 (40 girls) | 61      |
| Total enr | ollment           | 264   | 124         | 140           | 124     |

\*Household = home with enrolled child(ren) and his/her mother

#### **AESOP Cohort Demographics**



School Data

**Community Data** 

#### Demographics of the AESOP Study schools and communities.

| School and                | East Chicago          |              | Columbus Junction          |
|---------------------------|-----------------------|--------------|----------------------------|
| Community-level           | West Side             | Block Middle | Columbus Community         |
| Data                      | Middle School         | School       | Middle School              |
| Grades                    | 6-8                   | 7-8          | 6-8                        |
| Year Built*               | 1976                  | 1968         | 1918                       |
| Enrollment                | 497                   | 493          | 237                        |
| Free/Discounted Lunch     | 82%                   | 81%          | 63%                        |
| Hispanic                  | 52.1%                 | 42.0%        | 61.6%                      |
| White (non-Hispanic)      | 3.6%                  | 0.4%         | 37.6%                      |
| African American          | 43.5%                 | 56.0%        | 0.8%                       |
| Multirace/other           | 0.8%                  | 1.6%         | 0%                         |
| Population                | East Chicago (29,698) |              | Louisa Co. (11,278)        |
| Median household income   | \$27,700              |              | \$47,900                   |
| Income below poverty line | 35.0%                 |              | 18.9%                      |
| Residents foreign born    | 14.7%, 91% Latino     |              | 20.9%, 97% Latino <b>†</b> |
| Education < high school   | 27.4%                 |              | 34.2%                      |
| High school               | 36.0%                 |              | 28.2%                      |
| Some college              | 23.8%                 |              | 23.0%                      |
| College degree or higher  | 12.8%                 |              | 14.6%                      |

*†* Non-citizens are grossly under-represented in this figure.

Health status data for AESOP Study subjects (mean ± stddev or %)

|                                    | East Chicago  |                | Columbus Junction |                |
|------------------------------------|---------------|----------------|-------------------|----------------|
|                                    | Children      | Mothers        | Children          | Mothers        |
| Age at enrollment, yrs             | $13\pm1$      | 41 ± 6         | $13\pm1$          | $46\pm4$       |
| Body Mass Index, kg/m <sup>2</sup> | $24.0\pm 6.6$ | $33.7 \pm 8.2$ | $23.8\pm5.3$      | $30.4 \pm 7.4$ |
| % Breastfed                        | 33 %          |                | 68 %              |                |
| Cholesterol, mg/dL                 | $149\pm26$    | $179\pm37$     | $145\pm25$        | $170\pm30$     |
| % Overweight (Obese)               | 33 (15)       | 90 (61)        | 36 (14)           | 70 (41)        |

- Rates of breastfeeding were low in East Chicago, especially among Black women
- The community is concerned about obesity and type II diabetes

2012 BRFSS data Adult Obesity Prevalence

#### **AESOP Exposure Measurements**



Blood collected annually in the home from mother and child (N=940)

Columbus Junction Schools have 7 times the ∑[PCB] of Homes



East Chicago Schools have 5 times the ∑[PCB] of Homes



#### Modeling Approach

$$Exp_{PCBj} = \sum_{i=1}^{3} T_i * Q * [PCBj] [=] (\mu g \ yr^{-1})$$

Where  $\text{Exp}_{\text{PCBj}}$  is PCB exposure for the jth congener,  $T_i$  is the time spent in location *i* in hours per year; Q is the inhalation rate in m<sup>3</sup> d<sup>-1</sup>; and  $[PCB]_j$  (ng m<sup>-3</sup>) is the measured airborne concentration of PCB*j*.

 $T_i$  values have been obtained for three locations (home, schools, and outside) using time-activity questionnaires completed each year. Q will be calculated based on age, sex, height, and race/ethnicity.





Average modeled PCB inhalation exposure for EC children and mothers average 20.1  $\mu$ g/yr and 13.2  $\mu$ g/yr. CJ children and mothers average 7.4  $\mu$ g/yr and 3.0  $\mu$ g/yr. Inhalation exposure for CJ subjects is less than half that of modeled exposure for EC subjects. **Preliminary Data** 

#### Indoor Air PCB Concentrations in Homes

- Median ∑PCB indoor air concentrations for EC homes (3.37 ng m<sup>-3</sup>) were significantly higher (p=0.05) than for CJ homes (1.05 ng m<sup>-3</sup>)
- One outlier home in EC had ∑PCB concentrations of 164 ng m<sup>-3</sup>
- Two outlier homes in CJ had ∑PCB concentrations of 16 ng m<sup>-3</sup> and 23 ng m<sup>-3</sup>
- PCB inhalation exposure for individuals in these homes were 20 to 50 times greater than the median PCB inhalation exposures in EC, and CJ, respectively.



### Evaluation of Lipids, PCBs, OH-PCBs

- 30 mL blood collected annually from each subject
- Cholesterol, triglycerides, HDL
- 209 PCB congeners
- 64 OH-PCBs
- Urine collection next year  $\rightarrow$  PCB sulfates



Concentrations of the sum of all detected PCBs (left) and OH-PCBs (right). Mothers > Children. Several individuals have values well above the 95% percentile (circles)



#### Most frequently detected congeners (red=100% detection)

|               | East Chicago |             | Columbus Junction |             |
|---------------|--------------|-------------|-------------------|-------------|
|               | Children     | Mothers     | Children          | Mothers     |
|               | 153+168      | 153+168     | 153+168           | 153+168     |
|               | 138+163+129  | 138+163+129 | 138+163+129       | 193+180     |
| Children are  | 193+180      | 193+180     | 193+180           | 203         |
| Enriched with | <b>11</b>    | 203         | 15                | 170         |
| lower         | 15           | 187         | 3                 | 146         |
|               | 8            | 202         | 2                 | 137         |
| chlorinated   | 3            | 137         | 11                | 138+163+129 |
| PCBs          | 2            | 167         | _ 14              | 198+199     |
|               | 28+20        | 118         | 146               | 156+157     |



#### PCB Congeners in Serum

A total of 174 PCB congeners were detected in the samples

#### Conclusions from the AESOP Study

- PAS facilitate exposure assessment for mono- to hexa-chlorinated PCBs
- Children & adults have significant inhalation exposures
- Older schools represent a 10-fold higher source of semivolatile PCBs than most homes
- Children's sera are enriched with lower chlorinated PCBs compared to their mothers
- PCB 11, a non-Aloclor, is among the highest serum PCBs and reflects current exposure
- PCB 153 is high in adults but low in children and reflects legacy exposure

## The AESOP Study

It takes a village:

AESOP Study Team:



Jeanne DeWall, Study Coordinator Barb Mendenhall, Nancy Morales, Bilingual Field Staff Keri C. Hornbuckle, Analytical Core Director & Co-Investigator Rachel Marek, Wen Xin Koh, Blood Analyses Matt Ampleman, Air & Questionnaire Data Analysis Andres Martinez, Dingfei Hu, Air Analyses Kai Wang, Mike Jones, Biostatistics Craig Just, David Osterberg, Comm. Outreach

## Acknowledgements

- AESOP Study subjects
- Funding from NIH/NIEHS P42 ES013661
- EC and CJ Community Advisory Boards



