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Outline 

•  Geologic nature of the subsurface (clastics) 
–  Aquifers and aquitards 
–  K distribution 
–  Connectivity 

•  Geologic facies, high-resolution heterogeneity 
approach 
–  Why? 
–  Methods:  

•  TP-MC (T-PROGS) 
•  Methods motivated by connectivity 
•  Advanced random-walk particle method (RWHET) 

•  Hydrologic observations 
–  Preferential flow 
–  Mass sequestration; difficult remediation 
–  Broad residence time distributions 
–  Challenge of MNA 



Observations: Clastic Alluvial 
Sediments 

•  Most can be subdivided into texture classes 
based on coarse, fine and mixed textures 
(textural facies). 

•  With the exception of eolian and glacial-fluvial 
outwash from continental glaciers… 

•  Most “aquifers” contain substantial fraction of 
non-aquifer sediments. 

•  ln-K σ2 < 2 therefore is rare. (i.e., ‘extreme 
heterogeneity’ is the norm) 
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Large ln-K σ2 

Example 1: Wilcox Group, East Texas Basin 
(fluvial); Fogg (1986) 

Example 2: Livermore Valley (LLNL) 









Fig. 1  Core descriptions (from Carle, 1996) 
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Connectivity of High-K Facies 
Generally Good 



© Thomas Harter, University of California, Davis, 2010 
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•  Lit.: percolation threshold pc = 0.3116 in 
uncorrelated, 3D fields. 

•  Percolation threshold pav decreases to 
0.2-0.13 for correlated, 3D fields with  

(mean length)/(system length) = 1/5 to 1/100 
•  Applies to TP-MC and Gaussian fields. 





Key Question Then: 
What Prevents Connectivity? 

…..Mainly spatially persistent 
unconformities. 
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Sequence Stratigraphic Organization;  

Paleosol Aquitards 

Weissmann & Fogg, 1999 
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Where Paleosols Channeled Out, 

Vertical Flow Enhanced 
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Sequence Stratigraphic Units for Non-Stationary  
Conditional Simulation 
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Weissmann and Fogg (1999) 
Weissmann, Carle and Fogg (1999) 

Weissmann, Mount and Fogg (2002) 



• Groundwater residence time 
distribution 

• Plume modeling 
• Pump and treat 
• Monitored natural attenuation 

Consequences: Examples 
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From Burow et al. (1999) 

Transect, Wells, Screened Intervals 
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Simulated and Measured CFC Age 
Neglects pre-1950’s water 



From Burow et al. (1999) 

Transect, Wells, Screened Intervals 



Groundwater age distributions for well B4-2 (screen depth: 35.1 m) 



Pump and Treat 
Example 



Fraction of Total Mass as f(dist.), yr 40"



Simulation Experiment:  
Pump-and-Treat (PAT) 

•  Simulate plume (TCE) development; 40 
yr; 10 realizations. 

•  Simulate plume recovery via pumping 
well; yrs 41-70. 

•  αT = 0.01 m (10 x 20 x 0.5 m grid 
blocks) 

•  αL irrelevant. 
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Monitored Natural Attenuation 
(MNA) 

•  High-resolution transport experiments 
test the role of heterogeneity in MNA: 
– How can heterogeneity confound plume 

monitoring results? 
– Are conventional (proposed) monitoring 

schemes adequate?  
– How do we assess the uncertainty in 

apparent NA? 

Graham E. Fogg, 2010 



Monitored Natural Attenuation: 
First-Order Rate Constants 

US EPA November, 2002 

•  Concentration vs. Distance  
–  Is plume “expanding, showing relatively little 

change, or shrinking?” 
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Monitored Natural Attenuation: 
First-Order Rate Constants 

 US EPA November, 2002 
•  Concentration vs. Time 

– “Lifecycle of the plume is controlled by the rate”  
at the source location of a shrinking plume. 
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Generic Plumes 

Graham E. Fogg, 2010 



MW-1 
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Monitoring Well 
Concentration Contour 
Source 

Groundwater Monitoring 
Well Network Along Primary Flow Path 

after McAllister and Chiang [1994] 

† A practical approach to evaluating natural attenuation of contaminants in groundwater, 

Ground Water Monitoring and Remediation, 161- 173, Spring, 1994.  
Graham E. Fogg, 2010 



LLNL System 
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Flow System 
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Transport Results 

20 Years 40 Years 

Graham E. Fogg, 2010 



Monitored Natural Attenuation 

•  Is the plume shrinking? 
•  Are source concentrations declining? 

Graham E. Fogg, 2010 
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Monitoring Results 
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“Observations” 

•  Plume is shrinking towards source. 
•  Source concentration is decreasing. 
•  Plume is naturally attenuating at an 

appreciable rate.  

Graham E. Fogg, 2010 



Full Informed 
Year 30 

Nondetect 

Source 

•  Conservative contaminant 
•  Plume growing 

Graham E. Fogg, 2010 



Exhaustive Sampling: Total Mass in the Plane 
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Exhaustive Sampling: Total Mass in the Plane (25-45 yrs) 

Graham E. Fogg, 2010 



Exhaustive Sampling: Total Mass in the Plane 
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Exhaustive Sampling: Total Mass in the Plane - The Rest of the Plume 
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Transport Results 

20 Years 40 Years 
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Conclusions:  
Monitoring for Natural Attenuation 

•  Heterogeneity can lead to unexpected plume 
behavior that can confound conventional 
monitoring schemes 

•  Apparent plume concentrations and/or plume 
lengths may deceptively appear stable or 
decreasing with time.  

•  Natural attenuation declared successful 
based on trends that can easily result from 
inadequate sample density or lack of an 
appropriate physical model. 

Graham E. Fogg, 2010 



Summary 
•  Connected network paradigm, including 

substantial volumes of low-K media, is 
consistent with fairly wide range of geologic 
conditions, and hydrologic observations, 
including scale-dependent α. 

•  Results in: 
–  Early breakthrough 
–  Difficult remediation 
–  Widely varying groundwater ages within water 

samples 
–  Monitoring challenges 



Disconnects: 
• Remediation of groundwater contaminants is 
difficult and often impossible within project time 
scales (e.g., 5-10 yr). 
• Typical models of groundwater contaminant 
transport often match plume extents but are 
abysmally optimistic at predicting cleanup times. 
• Typical groundwater models are based on 
relatively homogeneous conceptualizations, 
including ln K variances < 1-2. 
• Typical subsurface systems are sufficiently 
heterogeneous to have ln K variances >5-15. 


