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Outline

Geologic nature of the subsurface (clastics)
— Aquifers and aquitards

— K distribution

— Connectivity

Geologic facies, high-resolution heterogeneity
approach
— Why?
— Methods:
« FP-MC{(T-PROGS)
. Method atod .
+ Advancedrandom-walkparticle-method (RAWHETD
Hydrologic observations
— Preferential flow
— Mass sequestration; difficult remediation
— Broad residence time distributions
— Challenge of MNA



Observations: Clastic Alluvial
Sediments

Most can be subdivided into texture classes
based on coarse, fine and mixed textures
(textural facies).

With the exception of eolian and glacial-fluvial
outwash from continental glaciers...

Most “aquifers™ contain substantial fraction of
non-aquifer sediments.

In-K o2 < 2 therefore is rare. (i.e., ‘extreme
heterogeneity’ is the norm)
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Lithofacies Logs
Lawrence Livermore National Laboratory
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Sand, silt,

and clay i Slhlf and clay
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MEGASCOPIC HETEROGENEITY

MACROSCOPIC HETEROGENEITY
Stratification - Permeability patterns
@ Textural/ diagenetic contrast - @ Anisotropy

® Low k zones @ Vertical/ lateral trends

- @ Discontinous porous strata @ Heterogeneity ...
(D) Nonuniformity - : e ‘QZ.,,??T"’“



Large In-K 0?2

Example 1: Wilcox Group, East Texas Basin
(fluvial); Fogg (1986)

Example 2: Livermore Valley (LLNL)
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Core Data, LLNL
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Hydraulic Conductivity, Adjusted for Proportions
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HYDRAULIC PROPERTIES

for
Ground-Water Flow Experiments

ORIGINAL REVISED
K(m/s) S.(m7) K(m/s) S (m7)

Debris Flows 5e-6 2e-5 5e-6 2e-5
2e-9 5e-4 5e-10 7e-4

Levee 3e-6 5e-5 2e-6 3e-5
6e-5 ' 6e-5

* from pumping tests




Typical Subsurface Complexty, LLNL Site (Carle & Fogg, 1996)
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Connectivity of High-K Facies
Generally Good



Galloway &
Hobday 1983

Suspended-load channel e aa-2480




Typical Subsurface Complexty, LLNL Site (Carle & Fogg, 1996)
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Kings River Alluvial Fan
Realization 5

[ gravel sand || muddy sand [l mud [ paleosol
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PHYSICAL REVIEW E 72, 026120 (2005)

Finite-size scaling analysis of percolation in three-dimensional correlated binary Markov chain
random fields

Thomas Harter
University of California, Davis, California 95616-8628, USA
(Received 26 December 2004; published 18 August 2005)

* Lit.: percolation threshold p. = 0.3116 in
uncorrelated, 3D fields.

* Percolation threshold p_, decreases to
0.2-0.13 for correlated, 3D fields with

(mean length)/(system length) = 1/5 to 1/100
* Applies to TP-MC and Gaussian fields.







Key Question Then:
What Prevents Connectivity?

.....Mainly spatially persistent
unconformities.



Sequence Stratigraphic Organization;

Paleosol Aquitards
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Where Paleosols Channeled Out,

Vertical Flow Enhanced

South Modesto Formation

Graham E. Fogg, University of California, Davis
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Weissmann and Fogg (1999)
Weissmann, Carle and Fogg (1999)

Weissmann, Mount and Fogg (2002)




Consequences: Examples

 Groundwater residence time
distribution

* Plume modeling
 Pump and treat
* Monitored natural attenuation



Kings River Alluvial Fan
Realization 5

[ gravel sand || muddy sand [l mud [ paleosol
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Simulated and Measured CFC Age
| ,

Neglects pre-1950’s water
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% particles to water table

Groundwater age distributions for well B4-2 (screen depth: 35.1 m)
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Simulation Experiment:
Pump-and-Treat (PAT)

« Simulate plume (TCE) development; 40
yr; 10 realizations.

« Simulate plume recovery via pumping
well; yrs 41-70.

* ar =0.01m (10 x 20 x 0.5 m grid
blocks)

* o, Irrelevant.
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400m Downgradient
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Monitored Natural Attenuation
(MNA)

* High-resolution transport experiments
test the role of heterogeneity in MNA:

— How can heterogeneity confound plume
monitoring results?

— Are conventional (proposed) monitoring
schemes adequate?

— How do we assess the uncertainty in
apparent NA?

Graham E. Fogg, 2010



Monitored Natural Attenuation:

First-Order Rate Constants
US EPA November, 2002

e Concentration vs. Distance

— Is plume “expanding, showing relatively little
change, or shrinking?”

Log C

Distance
Graham E. Fogg, 2010



Monitored Natural Attenuation:
First-Order Rate Constants

US EPA November, 2002

e Concentration vs. Time

— “Lifecycle of the plume is controlled by the rate”
at the source location of a shrinking plume.

Log C at Source

Time
Graham E. Fogg, 2010



From Freeze and Cherry (1979)

Generic Plumes

-3 Uniform flow

Continuous 1
@ point source
of tracer

(a)

—3 Uniform flow
Instantaneous 3o
point source . S ——

..............

OO0
.....

00
o)
OO0
O .
OO
_.4

(b)

Figure 9.5 Spreading of a tracer in a two-dimensional uniform flow field in
an isotropic sand. (a) Continuous tracer feed with step-function
initial condition ; (b) instantaneous point source.

Graham E. Fogg, 2010




Groundwater Monitoring

Well Network Along Primary Flow Path
after McAllister and Chiang [1994]

W-1  MW-3 MW-5 W-7
0 @ & & 02 & 029

MW-2 MW-4 MW-6

®®  Monitoring Well
Concentration Contour
® Source

T A practical approach to evaluating natural attenuation of contaminants in groundwater,

Ground Water Monitoring and Remediation, 161- 173, Spring, 1994.
Graham E. Fogg, 2010



LLNL System
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Flow System
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Transport Results

20 Years 40 Years

Graham E. Fogg, 2010



Monitored Natural Attenuation

* |s the plume shrinking?
* Are source concentrations declining?

Graham E. Fogg, 2010



Normalized Concentration

Monitoring Results
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“Observations’

* Plume 1s shrinking towards source.
* Source concentration 1s decreasing.

* Plume is naturally attenuating at an
appreciable rate.

Graham E. Fogg, 2010
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Normalized Concentration

Exhaustive Sampling: Total Mass in the Plane

Concentration vs Time
5 year Source
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Normalized Concentration

Exhaustive Sampling: Total Mass in the Plane (25-45 yrs)

Concentration vs Time
5 year Source
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Normalized Concentration

Exhaustive Sampling: Total Mass in the Plane

Concentration vs Time
5 year Source
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Exhaustive Sampling: Total Mass in the Plane - The Rest of the Plume

Concentration vs Time
5 year Source
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Transport Results

20 Years 40 Years

Graham E. Fogg, 2010



Conclusions:
Monitoring for Natural Attenuation

« Heterogeneity can lead to unexpected plume
behavior that can confound conventional
monitoring schemes

* Apparent plume concentrations and/or plume
lengths may deceptively appear stable or
decreasing with time.

« Natural attenuation declared successful
based on trends that can easily result from
iInadequate sample density or lack of an
appropriate physical model.

Graham E. Fogg, 2010



Summary

« Connected network paradigm, including
substantial volumes of low-K media, is
consistent with fairly wide range of geologic
conditions, and hydrologic observations,
iIncluding scale-dependent o.

 Results In:
— Early breakthrough
— Difficult remediation

— Widely varying groundwater ages within water
samples

— Monitoring challenges



Disconnects:

( *Remediation of groundwater contaminants is
difficult and often impossible within project time
scales (e.g., 5-10 yr).

 «Typical models of groundwater contaminant
transport often match plume extents but are
abysmally optimistic at predicting cleanup times.

*Typical groundwater models are based on
relatively homogeneous conceptualizations,
' Including In K variances < 1-2.

*Typical subsurface systems are sufficiently
\ heterogeneous to have In K variances >5-15.




