

Welcome to the CLU-IN Internet Seminar

ProUCL Webinar Part II

Sponsored by: USEPA ORD Site Characterization and Monitoring Technical Support Center (SCMTSC)

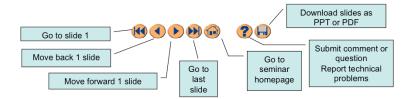
Delivered: March 16, 2011, 1:00 PM - 4:00 PM, EDT (17:00-20:00 GMT)

Instructors:

Anita Singh, PhD, Operations Researcher Senior Staff Scientist, Information System and Global Services - Civil, Lockheed Martin (asingh428@gmail.com)

Narian Armbya (narania@gmail.com)

Nancy Rios Jafolla, U.S. EPA Region 3 (rios-jafolla.nancy@epa.gov)


Moderator:

Felicia Barnett, U.S. EPA, ORD Site Characterization and Monitoring Technical Support Center (SCMTSC) (barnett.felicia@epa.gov)

Visit the Clean Up Information Network online at www.cluin.org

Housekeeping

- Please mute your phone lines, Do NOT put this call on hold
 - press *6 to mute #6 to unmute your lines at anytime (or applicable instructions)
- Q&A
- Turn off any pop-up blockers
- Move through slides using # links on left or buttons

- · This event is being recorded
- Archives accessed for free http://cluin.org/live/archive/

2

Although I'm sure that some of you have these rules memorized from previous CLU-IN events, let's run through them quickly for our new participants.

Please mute your phone lines during the seminar to minimize disruption and background noise. If you do not have a mute button, press *6 to mute #6 to unmute your lines at anytime. Also, please do NOT put this call on hold as this may bring delightful, but unwanted background music over the lines and interupt the seminar.

You should note that throughout the seminar, we will ask for your feedback. You do not need to wait for Q&A breaks to ask questions or provide comments. To submit comments/questions and report technical problems, please use the ? Icon at the top of your screen. You can move forward/backward in the slides by using the single arrow buttons (left moves back 1 slide, right moves advances 1 slide). The double arrowed buttons will take you to 1st and last slides respectively. You may also advance to any slide using the numbered links that appear on the left side of your screen. The button with a house icon will take you back to main seminar page which displays our agenda, speaker information, links to the slides and additional resources. Lastly, the button with a computer disc can be used to download and save today's presentation materials.

With that, please move to slide 3.

LOCKHEED MARTIN

ProUCL 4.1.00

Single and Two Sample Hypotheses Testing Approaches and Oneway ANOVA

http://www.epa.gov/osp/hstl/tsc/software.htm

3

Focus of ProUCL 4.1 Webinar II

- Focus of Webinar II is to make participants familiar with Statistical capabilities of ProUCL 4.1
- ▶ Emphasis will be placed on showing how to use ProUCL4.1 to:
 - Perform Single and Two Sample Hypotheses tests on data sets with nondetects (NDs) and without NDs
 - Perform Oneway Analysis of Variance (ANOVA)
 - · Compute Background Threshold Values (BTVs)
 - Perform Trend Analysis using Linear Regression, Mann-Kendall trend test, and Theil-Sen trend test
 - Estimate mean, standard deviation, and Upper Limits based upon data sets with ND observations (e.g., KM method)
 - Interpret results generated by ProUCL

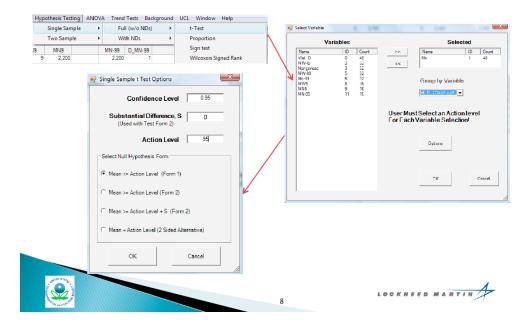
Due to time limitation-statistical details will not be covered

Null and Alternative Hypotheses

- H₀: Null hypothesis statement (baseline condition)
- H₁: Alternative hypothesis statement
 - Null hypothesis, H_0 : Site mean $\leq C_s$
 - Alternative hypothesis, H_1 : Site mean $> C_s$
- Hypotheses tests are performed on sampled data:
 - Therefore statistics used to test hypotheses suffer from uncertainties; and
 - Conclusions derived using those statistics suffer from decision errors

Decision Errors in Hypothesis Testing

- Two types of decision errors can be made:
 - Type 1 Error = Probability (reject the null statement when it is true) = false positive error = α = false rejection rate
 - Type 2 Error = Probability (do not reject the null statement when it is false) = false negative error = β = false acceptance rate
- \blacktriangleright Width of gray region, α , and β are specified in DQOs
- Whenever possible, adequate amount of data should be collected based upon DQOs



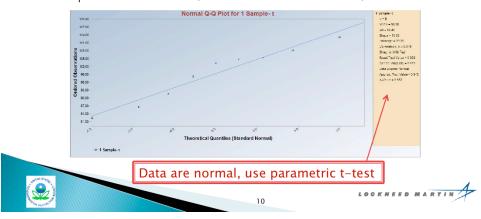
What is a P-value?

- P- value is associated with a test statistic such as a t-test
 - p-value is the smallest value of level of significance (Type I error) for which the null hypothesis is rejected
 - 1%, 5%, and 10% are common significance levels to which p-values are compared
 - A p-value < .05 rejects the null hypothesis at " 5% level"
- ProUCL computes p-values for most of the hypothesis tests in ProUCL

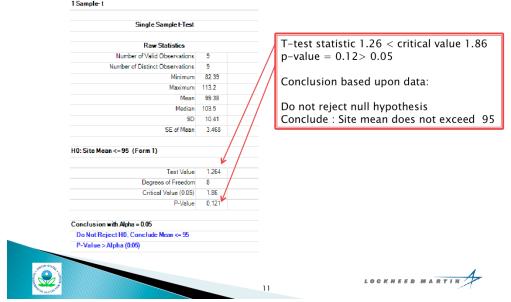
Single Sample Hypothesis Tests in ProUCL

Hypothesis Test to Verify Attainment of Clean Standard

- Is site mean comparable to a cleanup threshold: C_s?


 - Null hypothesis, H_0 : Site mean $\leq C_s$ Alternative hypothesis, H_1 : Site mean $> C_s$
- Use parametric or nonparametric test
 - Parametric t-test compares site mean with a threshold
 - Nonparametric tests: Sign test and Wilcoxon Signed Rank (WSR) test compare site median with a threshold
- WSR test more powerful than Sign test

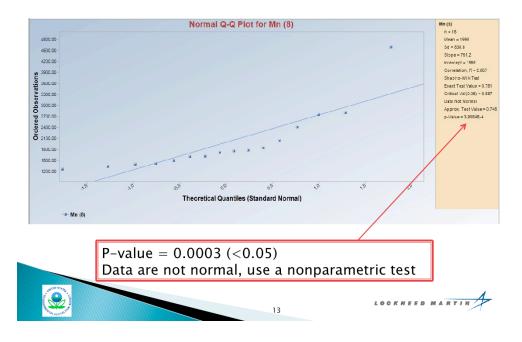
T-Test: Compare Site Mean with Threshold


- 9 soil samples from a site area: 82.39 103.46 104.93 105.52 98.37 113.23 86.62 91.72 108.21 (EPA 2006)
 - Cleanup standard, $C_s = 95$
- Objective: Does site area meet cleanup standard?

 - H_0 : Site mean \leq 95 (meets standard), vs. H_1 : Site mean >95 (does not meet standard)

T-Test: Compare Site Mean with Threshold

Proucl generated t-test results:

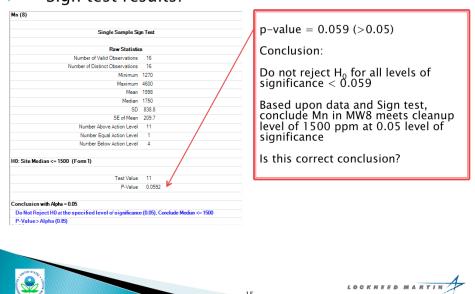


Sign Test: Compare Site Median with Threshold

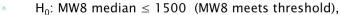
- Sign test is used when data set is not normal and/or consists of NDs $\,$
- MW8 Mn data : 4600 2760 1270 1860 1790 1730 1420 1500 1610 1400 1350 1770 2050 2420 1630 2810
- Cleanup threshold = 1500
- $H_0\colon MW8\ median \leq 1500\ \ \mbox{(threshold met)} \ H_1\colon MW8\ median > 1500$
- Data not normally distributed
- Use nonparametric Sign test

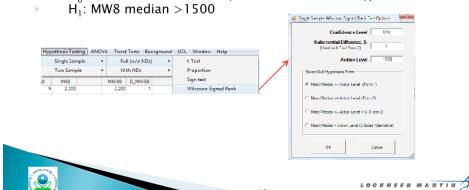
Sign Test: Compare Site Median with Threshold

Boxplot Comparing MW8 Median with Threshold

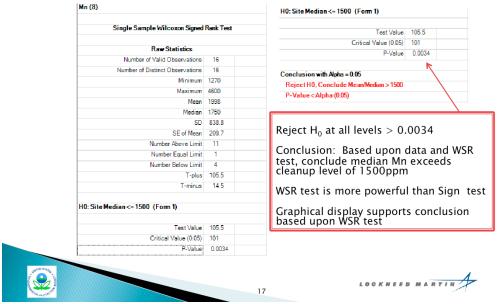


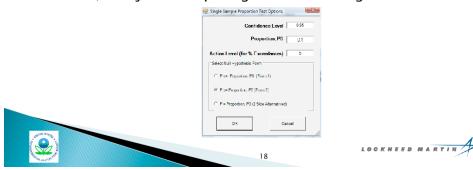
MW 8 mean = 1998, MW8 median = 1750, Threshold = 1500 Box plot suggests that site median exceeds threshold


Sign Test: Compare Site Median with Threshold


Sign test results:

WSR Test: Compare Site Median with Threshold

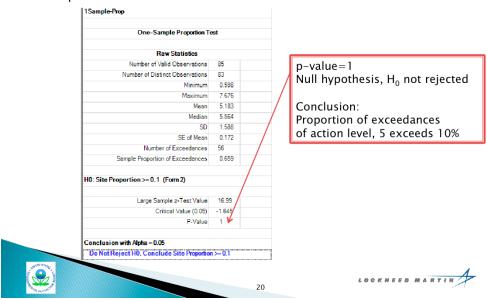

- Wilcoxon Signed Rank (WSR) test is more powerful than Sign test
 - WSR is used when data not normal and/or data consist of NDs
- Using MW8 Mn data:


WSR Test: Compare Site Median with Threshold

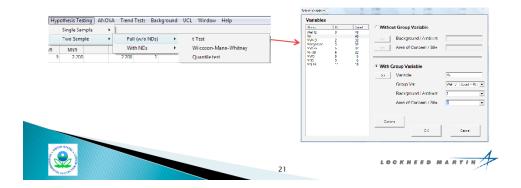
WSR test results:

Proportion Test to Compare Proportion of Exceedances with Allowable Proportion, Po

- Used to determine if proportion of exceedances of an action level, A_0 by sampled data from a population (e.g., batch of drums, monitoring wells) meets pre-specified proportion, P_0 of exceedances
 - H_0 : Proportion P of exceedances of A_0 by sampled data $\geq P_0$ vs. H_1 : Proportion P of exceedances of A_0 by sampled data $< P_0$
- If sample proportion p exceeds P_0 , population (e.g., lot of drums) is rejected requiring further investigation

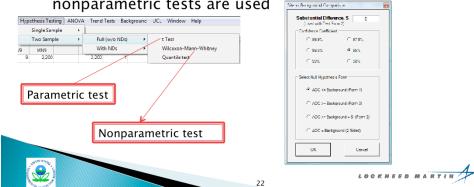

Proportion Test to Compare Proportion of Exceedances with Allowable Proportion, Po

- Sampled Data of size 85from EPA (2006): 4.19 5.3086 6.0524 3.3634 5.6631 5.0993 3.5597 5.8967 6.2773 4.9834 6.5021 7.3062 7.3321 5.505 7.4876 5.9948 7.1185 5.4988 6.1111 4.309 5.0479 3.9595 4.6125 5.6875 6.5491 7.6761 7.0345 6.8311 4.6146 6.6419 0.5981 5.898 5.7146 6.7668 5.5998 3.0195 5.2547 6.8017 4.0221 6.058 5.135 6.2445 6.0979 5.8625 3.6893 5.4765 5.5635 5.4628 6.0424 6.3631 5.88 5.89 1.46 4.05 1.09 2.59 1.69 3.16 2.08 2.61 3.42 2.54 4.91 4.1 6.74 7.27 7.42 7.5 6.56 4.64 5.98 3.14 3.23 5.8 6.17 6.01 5.8 3.6 5.765 5.55 5.48 3.693 5.9 5.5635 5.4
 - Action level, $A_0 = 5$
 - Allowable proportion, P_0 of exceedances = 0.1 (10%)
 - H_0 : Proportion of exceedances of 5 by sampled data ≥ 0.1
 - $_{\circ}$ H₁: Proportion of exceedances of 5 by sampled data < 0.1


Proportion Test to Compare Proportion of Exceedances with Allowable Proportion, P_0

Proportion test results:

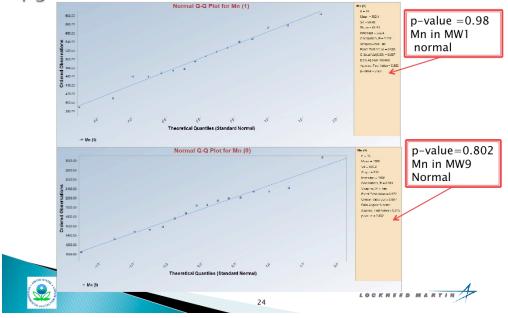
Two Sample Hypothesis Tests


- Are site concentrations greater than background?
 - H_0 : Site mean \geq Background mean, vs.
 - H₁: Site mean < Background mean
- Are subsurface soil concentrations comparable to surface soil concentrations?
 - H_0 : Subsurface soil median \leq Surface soil median, vs.
 - \cdot H_1° : Subsurface soil median concentration > Surface soil

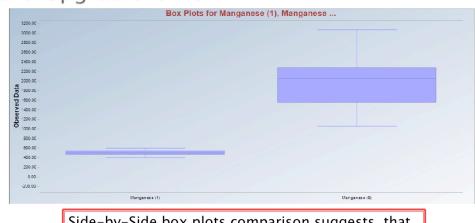
Two Sample Hypothesis Tests

- Are downgradient MW concentrations of a COPC comparable to upgradient well concentrations?
 - H_0 : MW mean \leq Background well mean H_1 : MW mean > Background well mean

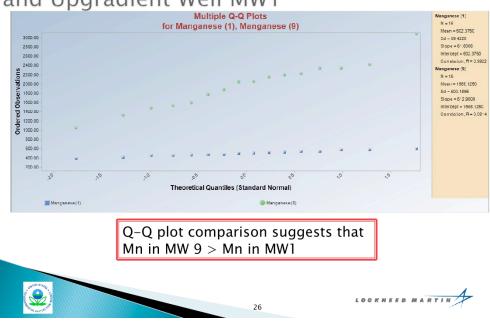
Depending upon data distributions – parametric or nonparametric tests are used



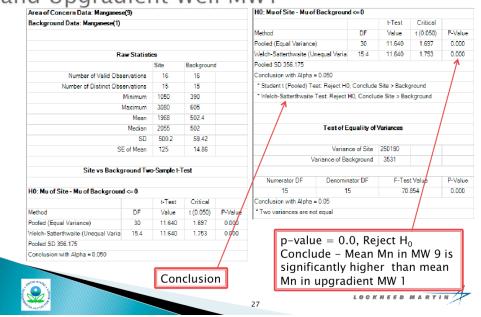
T-Test: Compare Manganese in Wells MW9 and Background Well MW1


- Mn in MW9:2200 2340 2340 2420 2150 2220 2050 2060 1770 1330 1590 1530 1480 1050 3080 1880
- Mn in Upgradient well, MW1:460 527 579 541 518 574 460 547 605 496 478 508 469 475 411 390
 - H_0 : Mean Mn in MW9 \leq Mean Mn in MW1 H_1 : Mean of MW9 > Mean of MW1
- T-test requires data sets to be normally distributed

T-Test: Compare Manganese in Wells: MW9 and Upgradient Well MW1


T-Test: Compare Manganese in Wells: MW9 and Upgradient Well MW1

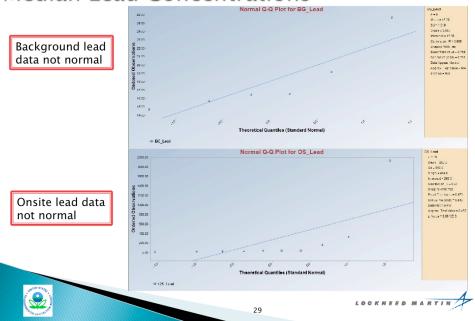
Side-by-Side box plots comparison suggests that Mn in MW 9 > Mn in MW1



T-Test: Compare Manganese in Wells: MW9 and Upgradient Well MW1 Multiple Q-Q Plots Meganete (1) Net 6

T-Test: Compare Manganese in Wells: MW9 and Upgradient Well MW1

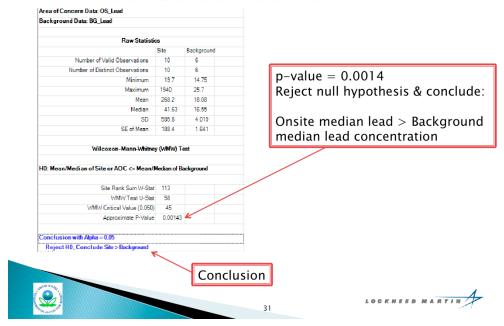
Area of Concern Data: Manganese(9) | HO: Muof Site-Muof Background <= 0



Wilcoxon Mann Whitney (WMW) Test: Compare Onsite vs. Background Median Lead

- Nonparametric WMW test can also be used on data sets with nondetects with a single detection limit
- Onsite and background data from a Superfund Site:
 - Onsite Lead: 27.1 38 23.8 38.6 19.7 47.4 165 338 1940 44.65
 - Background Lead: 25.7 15.7 16.6 16.5 14.75 19.2
 - H_0 : Onsite median lead \leq Background median lead, vs.
 - H₁: Onsite median lead > background median lead concentration

WMW Test: Compare Onsite vs. Background Median Lead Concentrations

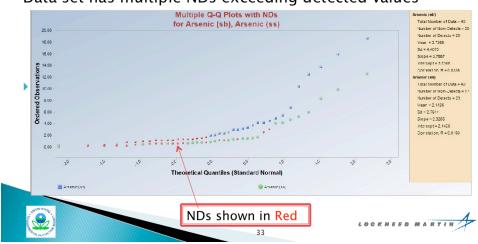

WMW Test: Compare Onsite vs. Background Median Lead Concentrations

Side-by-Side box plots comparison suggests that onsite lead > background lead

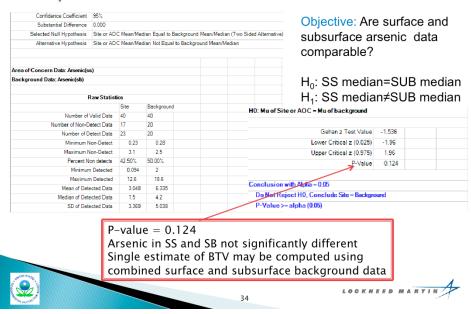
WMW Test: Compare Onsite vs. Background Median Lead Concentrations

Gehan Test for Data Sets with NDs and Multiple Detection Limits (DLs)

- Nonparametric Gehan test can be used to compare concentrations of two populations when data sets consist of NDs with multiple DLs.
 - $^{\circ}$ H_0 : Surface soil median arsenic = subsurface soil median arsenic, vs.
 - H₁: Surface soil median arsenic ≠ subsurface soil median arsenic concentration

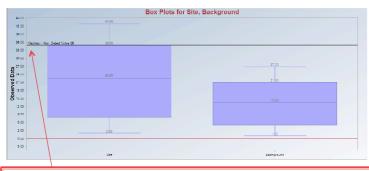


Gehan Test on Arsenic Data with NDs and Multiple DLs


Background arsenic data from subsurface (SB) and surface soils (SS) of a Federal Facility

Need to estimate BTV

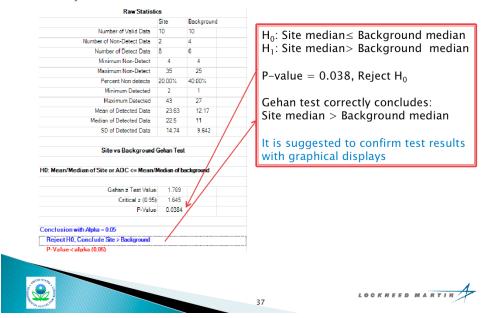
Data set has multiple NDs exceeding detected values



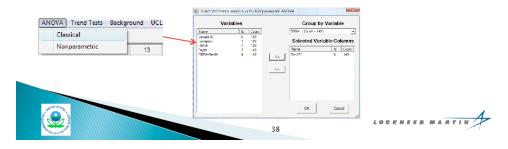
Gehan Test on Arsenic Data with NDs and Multiple DLs

WMW and Gehan Tests on Data Sets with NDs and Multiple DLs

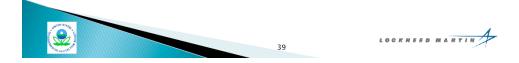
Data sets have multiple DLs with NDs > detects


Site data has highest ND > detected values Box Plots suggest that Site arsenic > Background arsenic

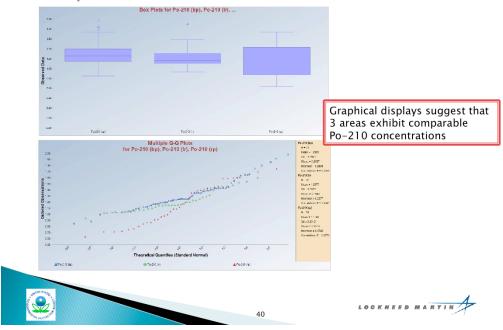
WMW Test on Data Sets with NDs and



Gehan Test on Data Sets with NDs and Multiple DLs


Oneway Analysis of Variance (ANOVA)

- Oneway ANOVA is used to compare mean/median concentrations of more than two groups such as:
 - Arsenic concentrations in several AOCs
 - Inter-well comparisons
 - Null Hypothesis: Mean concentrations are similar
 - Alternative hypothesis: Mean concentrations are different
- Classical and nonparametric Kruskal-Wallis(K-W) ANOVA:



Oneway ANOVA on Po-210 data from 3 Areas

- ➤ Consider Polonium -210 (Po-210) data from 3 reference areas (LR, RP, and BP).
- Objective: Compute site-specific estimate of background level concentration for Po-210.
- ▶ First determine if Po-210 data from 3 areas come from the same population
- \rightarrow H₀: Po-210 means of 3 areas are comparable, vs.
- ▶ H₁: Po-210 means of 3 areas are not comparable

Oneway ANOVA on Po –210 data from 3 Areas

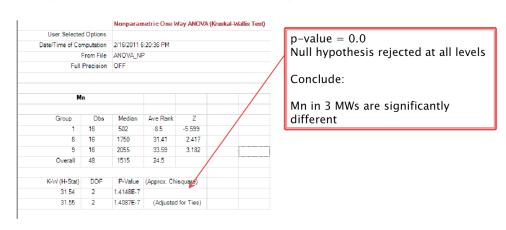
Oneway ANOVA on Po -210 data from 3 Areas

P-value = 0.066 Null hypothesis not rejected

Conclude:

Po-210 data from 3 areas come from same background population

A single estimate of background threshold can be computed based upon merged Po-210 data set



Nonparametric K-W Oneway ANOVA on Mn Data

- Consider Mn data from 3 monitoring wells (MWs)
- Objective: Perform Inter-well comparison
 - $^{\circ}\,$ $H_{0}:$ Median Mn concentrations of 3 MWs are comparable, vs.
 - \circ H₁: Median Mn concentrations of 3 areas are not comparable
- Kruskal-Wallis Test results are shown next

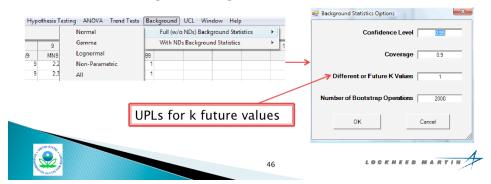
Nonparametric K-W Oneway ANOVA on Mn data

LOCKHEED MARTIN

ProUCL 4.1.00

Upper Percentile, Upper Prediction Limit (UPL), and Upper Tolerance Limit (UTL) to Estimate Background Threshold Values (BTVs) http://www.epa.gov/osp/hstl/tsc/software.htm

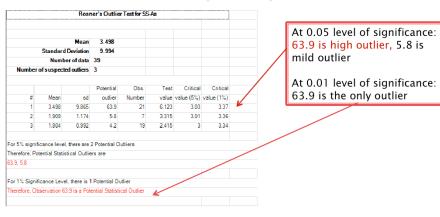
44


Upper Percentiles, UPLs, and UTLs

- ▶ Based upon an "established background data set", upper percentiles, UPL95, and UTL95-95 are computed to:
 - Estimate background level concentrations, background threshold values (BTVs), not-to-exceed values
- Onsite observations are compared with BTVs to:
 - Identify contaminants of potential concern
 - Determine potentially polluted site locations
 - Perform Intra-well comparisons to identify non-complying wells in groundwater (GW) studies

UPLs and UTLs - "Full" Data without NDs

- Surface soil arsenic background data of size 39 from a Federal Facility: 1.9 1.2 1.5 3.4 3.6 2 5.8 1.4 1.5 1.2 2.9 0.46 0.65 0.84 0.75 0.53 2.5 2.5 4.2 2.9 63.9 1.8 1.1 1.5 1.4 1.1 2.7 2.9 1.2 2.4 1.1 1.4 4.1 2.1 0.68 1.6 1.7 0.83 1.2
- Estimate BTVs:
 - Are there any outliers?
 - Data normal, lognormal or gamma distribution?

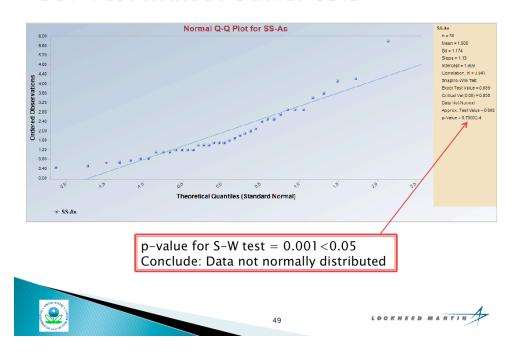

Boxplot - there is at least one potential outlier

Q-Q Plot for SB-As

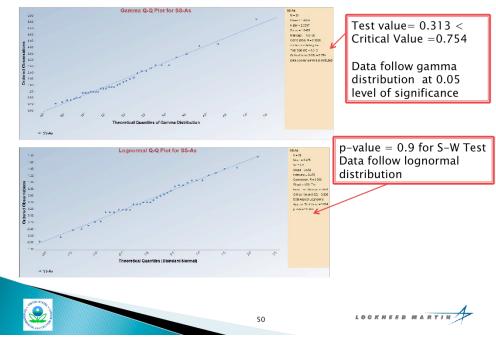
Q-Q plot - there is at least one potential outlier

Q-Q plot - there is at least one potential outlier

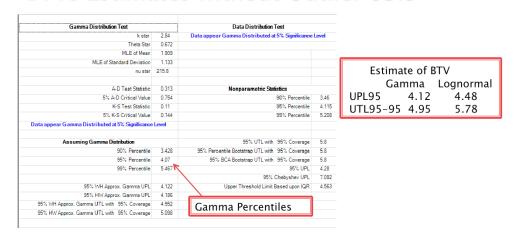
Rosner Outlier Test (n>25)



Project Team should determine if 5.8 represents an outlier


Here only 63.9 is considered outlier, BTVs are estimated without 63.9

GOF Test without Outlier 63.9

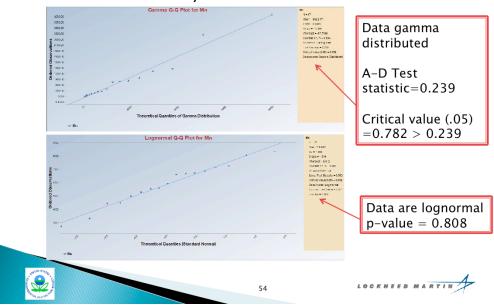

GOF Test without Outlier 63.9

BTV Estimates Less Outlier 63.9 (All Option)

		d Statistics	Backgrou	
		Lognormal Distribution Test		Normal Distribution Test
	0.984	Shapiro Wilk Test Statistic	0.889	Shapiro Wilk Test Statistic
	0.938	Shapiro Wilk Critical Value	0.938	Shapiro Wilk Critical Value
		Data appear Lognormal at 5% Significance Level		Data not Normal at 5% Significance Level
		Assuming Lognormal Distribution		Assuming Normal Distribution
	5.778	95% UTL with 95% Coverage	4.412	95% UTL with 95% Coverage
	4.483	95% UPL (t)	3.915	95% UPL (t)
	3.468	90% Percentile (z)	3.413	90% Percentile (z)
	4.313	95% Percentile (z)	3.84	95% Percentile (z)
	6.493	99% Percentile (z)	4.64	99% Percentile (z)
	ſ			
Lognorm		Data Distribution Test		Gamma Distribution Test
percentil		Data appear Gamma Distributed at 5% Significance I	2.84	k star
	L		0.672	Theta Star
			1.909	MLE of Mean
			1.133	MLE of Standard Deviation
			215.8	nu star
		Nonparametric Statistics	0.313	A-D Test Statistic
	3.46	90% Percentile	0.754	5% A-D Critical Value
	4,115	95% Percentile	0.11	K-S Test Statistic
				5% K-S Critical Value
	5.208	99% Percentile	0.144	5% K-5 Childar value

BTVs Estimates without Outlier 63.9

Use of UPLs and UTLs based upon gamma distribution is suggested


Influence of Outliers on UPLs and UTLs

- Mn data from a Navy Site:15.8 28.2 90.6 1490 85.6 281 4300 199 838 777 824 1010 1350 390 150 3250 259
 - As determined in UCL95 section, 4300 and 3250 represent potential outliers
 - · Project team should make a decision about their disposition
 - Data (with outliers)follow gamma as well as lognormal distribution – see next slide
 - Just like UCL95, lognormal distribution based (with or without outliers) UPLs and UTLs are unacceptably large

GOF Tests on Mn Data with outliers

Mn data from a Navy Site

Influence of Outliers on UPLs and UTLs

		Log-Transformed Statistics		
Minimum	15.8	Minimum	2.76	
Maximum	4300	Maximum	8.366	
Second Largest	3250	Second Largest	8.086	
First Quartile	150	First Quartile	5.011	
Median	390	Median	5.966	
Third Quartile	1010	Third Quartile	6.918	
Mean	902.2	Mean	5.912	
SD	1189	SD	1.568	
Coefficient of Variation	1.318			
Skewness	2.046			
	Background St	atistics		
Normal Distribution Test		Lognormal Distribution Test		
Shapiro Wilk Test Statistic	0.725	Shapiro Wilk Test Statistic	0.969	
Shapiro Wilk Critical Value	0.892	Shapiro Wilk Critical Value	0.892	
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Leve	d	
Assuming Normal Distribution		Assuming Lognormal Distribution		
95% UTL with 95% Coverage	3859	95% UTL with 95% Coverage	18203	
	3039	95% UPL (t)	6176	
95% UPL (t)				
95% UPL (t) 90% Percentile (z)	2427	90% Percentile (z)	2755	
17		90% Percentile (z) 95% Percentile (z)		Inflated

Influence of Outliers on UPLs and UTLs

Gamma Distribution Test		Data Distribution Test	
k star 0.599		Data appear Gamma Distributed at 5% Significance	Level
Theta Star	1506		
MLE of Mean	902.2		
MLE of Standard Deviation	1166		
nu star	20.37		
A-D Test Statistic	0.239	Nonparametric Statistics	
5% A-D Critical Value	0.782	90% Percentile	2194
K-S Test Statistic	0.117	95% Percentile	3460
5% K-S Critical Value	0.218	99% Percentile	4132
Data appear Gamma Distributed at 5% Significance	Level		
Assuming Gamma Distribution		95% UTL with 95% Coverage	4300
90% Percentile	2347	95% Percentile Bootstrap UTL with 95% Coverage	4300
95% Percentile	3249	95% BCA Bootstrap UTL with 95% Coverage	4300
99% Percentile	5428	95% UPL	4300
		95% Chebyshev UPL	6237
95% WH Approx. Gamma UPL	3423	Upper Threshold Limit Based upon IQR	2300
95% HW Approx. Gamma UPL	3688		
95% WH Approx. Gamma UTL with 95% Coverage	5595		
95% HW Approx. Gamma UTL with 95% Coverage	6508		

Statistics computed using 2 outliers

UPLs and UTLs without 2 Outliers

Raw Statistics		Log-Transformed Statistics		
Minimum	15.8	Minimum	2.76	
Maximum	1490	Maximum	7.307	
Second Largest	1350	Second Largest	7.208	
First Quartile	120.3	First Quartile	4.759	
Median	281	Median	5.638	
Third Quartile	831	Third Quartile	6.723	
Mean	519.2	Mean	5.604	
SD	491.4	SD	1.392	
Coefficient of Variation	0.946			
Skewness	0.807			
	Background St	atistics		
Normal Distribution Test		Lognormal Distribution Test		
Shapiro Wilk Test Statistic	0.87	Shapiro Wilk Test Statistic	0.929	
Shapiro Wilk Critical Value	0.881	Shapiro Wilk Critical Value	0.881	
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level		
Assuming Normal Distribution		Assuming Lognormal Distribution		
	1780	95% UTL with 95% Coverage	9666 🦟	
95% UTL with 95% Coverage				Elevate
95% UTL with 95% Coverage 95% UPL (t)	1413	95% UPL (t)	3417	
		95% UPL (t) 90% Percentile (z)		
95% UPL (t)	1149	90% Percentile (z)		lognorr

UPLs and UTLs without 2 Outliers

Gamma Distribution Test		Data Distribution Test Data appear Gamma Distributed at 5% Significance Leve		
MLE of Mean	519.2			
MLE of Standard Deviation	593.5			
nu star	22.96			
A-D Test Statistic	0.298	Nonparametric Statistics		
5% A-D Critical Value	0.768	90% Percentile	1214	
K-S Test Statistic	0.175	95% Percentile	1392	
5% K-S Critical Value	0.229	99% Percentile	1470	
Data appear Gamma Distributed at 5% Significance	Level			
Assuming Gamma Distribution		95% UTL with 95% Coverage	1490	
90% Percentile	1276	95% Percentile Bootstrap UTL with 95% Coverage	1490	
95% Percentile	1711	95% BCA Bootstrap UTL with 95% Coverage	1490	
99% Percentile	2743	95% UPL	1490	
		95% Chebyshev UPL	2731	
95% WH Approx. Gamma UPL	1863	Upper Threshold Limit Based upon IQR	1897	
95% HW Approx. Gamma UPL	2039			
95% WH Approx. Gamma UTL with 95% Coverage	3015			
95% HW Approx. Gamma UTL with 95% Coverage	3556			

THE STATE OF THE S

Statistics computed without 2 outliers 4300 and 3250

58

95% UPLs with and without 2 outliers

- Dutliers (4300, 3250) distorted all statistics
- Lognormal distribution yields unrealistically high values
- Data are gamma distributed

• Use of UPLs or UTLs based upon gamma distribution is suggested

	Method	With outliers n=17	Without outliers n=15
Elevated	Normal UPL95	3039	1413
values	Gamma UPL95 (WH)	3423	1863
	Lognormal UPL95	6176	3417
	Nonparametric UPL95	4300	1490
	Nonparametric 95% Percentile	3460	1392
	Normal 95% Percentile	2859	1328
BRITAN ENAME	Maximum	4300	1490
To the same of the		59	LOCKHEED MARTIN

95-95 UTLs with and without 2 Outliers

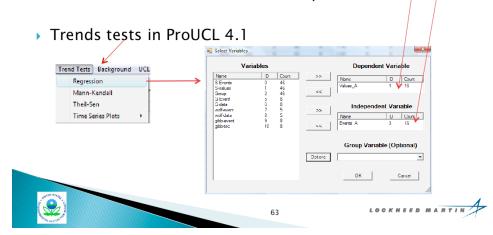
- Dutliers (4300 and 3250) distorted all statistics
- Lognormal distribution yields unrealistically high values
- Data are gamma distributed
 - Use of UPLs or UTLs based upon gamma distribution is suggested

	Method	With outliers n=17	Without outliers n=15
	Normal UTL95/95	3859	1780
	Gamma UTL95/95 (WH)	5595	3015
	Lognormal UTL95/95	18203	9666
Elevated values	Nonparametric UTL95/95	4300	1490
	Gamma 95% Percentile	3249	1711
	Lognormal 95% Percentile	4869	2681
	Maximum	4300	1490
AND ROLL OF		60	LOCKHEED MARTIN

Steps to Estimate BTVs

- Make sure no significant outliers or multiple populations are present in background data set
 - Use graphical displays to visualize data
 - Graphical methods provide useful information about outliers, multiple populations
- Perform GOF test to determine data distribution
 - Depending upon data distribution, use an appropriate parametric or nonparametric estimate of BTV
 - May want to consult a statistician for further clarification

ProUCL 4.1.00


Trend Analysis: Linear Regression, Mann-Kendall Trend Test, and Theil-Sen Trend Line

http://www.epa.gov/osp/hstl/tsc/software.htm

52

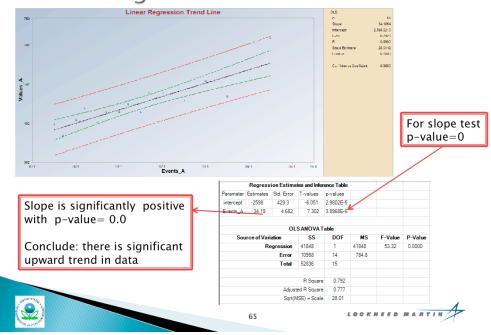
Trend Tests

- Trend tests are used to determine if concentrations (e.g., in a compliance well) are decreasing/increasing over time.
- A time variable and concentration variable with equal number of observations should be present in data set

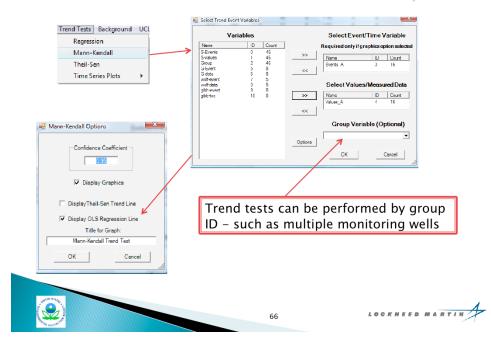
_

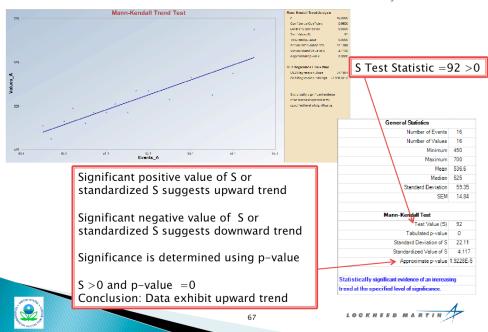
Linear Regression Line

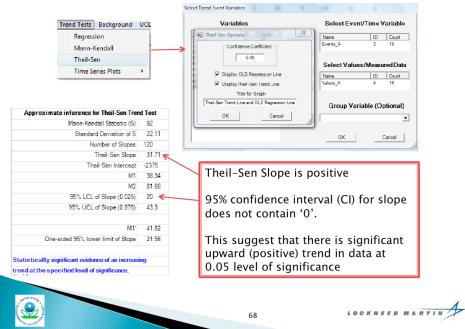
Linear regression Line Test


Slope of line determines trend in data
Significant positive slope suggests
upward trend
Significant negative slope suggests
downward trend

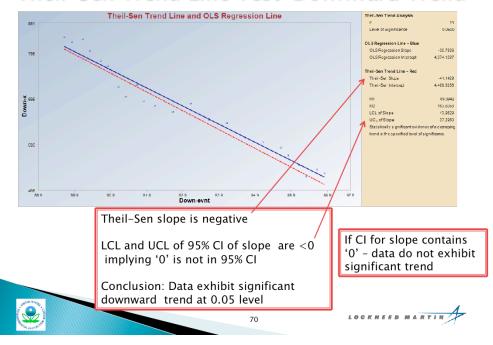
Insignificant slope suggests no evidence of trend in data

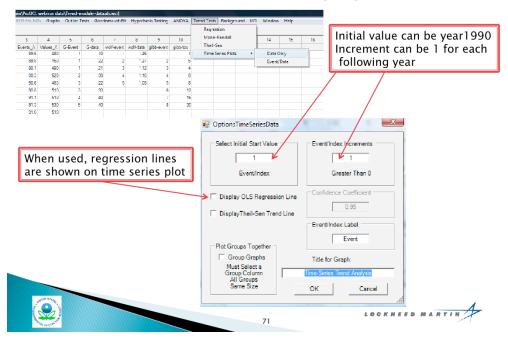

Significance is determined using p-value of slope test


Linear Regression Trend Line

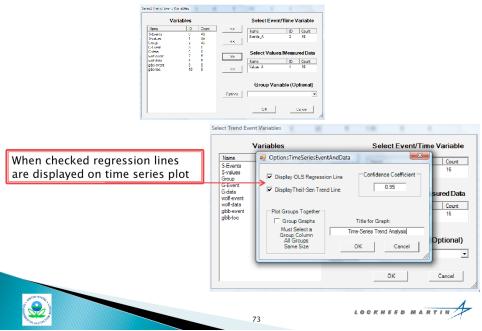

Mann-Kendall Trend Test Statistic, S

Mann-Kendall Trend Test Statistic, S

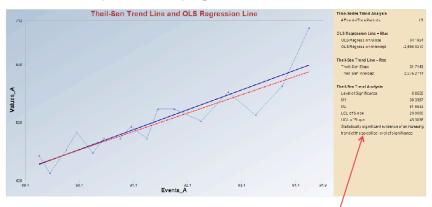

Theil-Sen Trend Line Test - Upward Trend


Conclusion: Data exhibit significant upward trend at 0.05 level

Theil-Sen Trend Line Test-Downward Trend

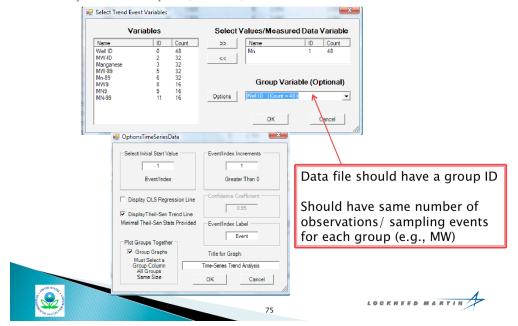

Time Series Plots with Data Only Option

Time Series Plots

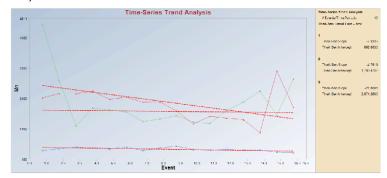


Time Series Plot for Data vs. Sampling Events

Time Series Plot Identifying Trend in Data


Time Series plot identifying trend as a function of events

 Graph exhibits upward trend which is confirmed by trend test statistics



Time Series Plots – Comparing Concentrations of Multiple Groups (Wells)

Time Series Plots - Comparing Arsenic in Upgradient and Monitoring Wells

Groundwater data from 3 MW wells: Well 1 is upgradient well, and wells 8 and 9 are MW wells

Graph suggests that As in MW 8 and MW 9 are much higher than upgradient well 1.

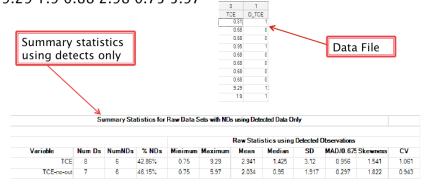
LOCKHEED MARTIN

ProUCL 4.1.00

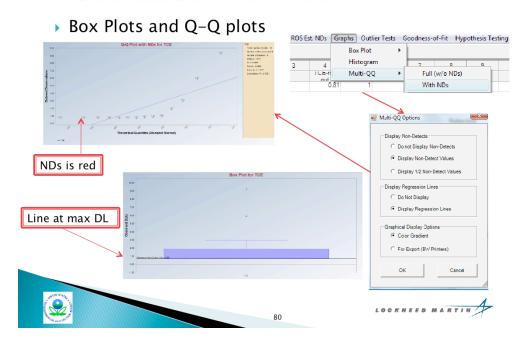
Computing Mean, Variance, UCL95, UPL95, and Upper Tolerance Limit for Data Sets with Nondetect (ND) Observations

http://www.epa.gov/osp/hstl/tsc/software.htm

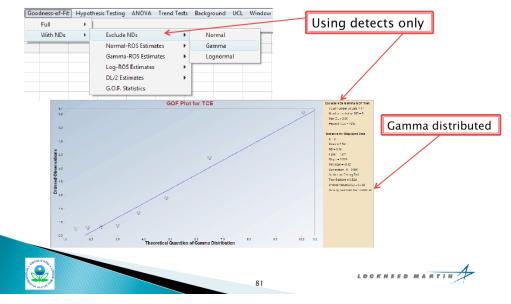
//


Estimation Methods for Data Sets with NDs

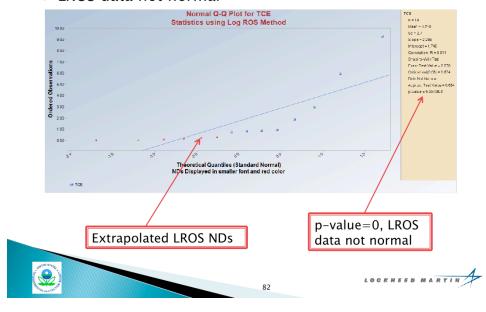
- Parametric methods:
 - MLE (Normal), Regression on order statistics (ROS)
- Nonparametric methods:
 - Substitution, Kaplan-Meier (KM), and bootstrap methods
- For data sets with NDs, nonparametric methods (e.g., KM method) are preferred as distributional assumptions are hard to justify, especially when
 - NDs exceed detected values
 - Multiple detection limits (DLs) are present


Upper Limits for Data Sets with NDs

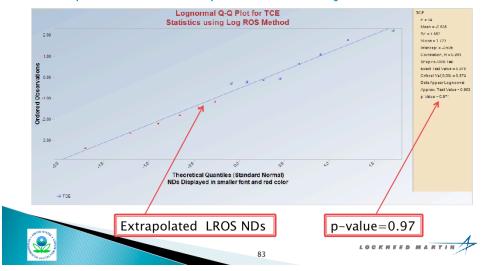
TCE data of size 14 has 6 NDs with a single DL = 0.68 Data are :0.81 < 0.68 < 0.68 0.95 < 0.68 < 0.68 < 0.68 < 0.68 9.29 1.9 0.88 2.98 0.75 5.97


Data from Drs. Warren and Nussbaum's Workshop at 2010 NARPM conference

TCE Data Set with NDs


Gamma GOF Test on Detected data

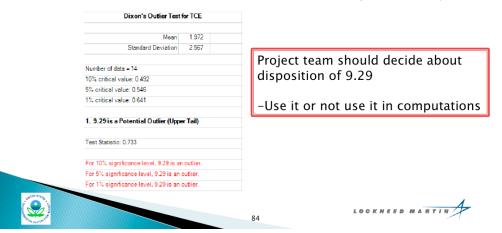
Detected data appear to follow Gamma distribution


Lognormal ROS Method

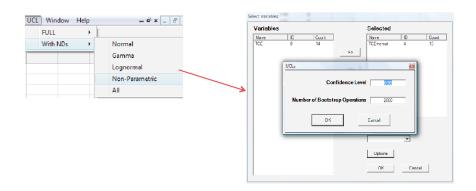
LROS data not normal

Lognormal ROS Method

- LROS data are lognormal; Use parametric H-UCL or bootstrap method. Data set is of small size, H-UCL can be very large
- ▶ If nonparametric bootstrap methods used just use KM method



TCE Data Set with NDs


Any outliers?

At least one outlier = 9.29 (Dixon test), NDs=DL/2

UCLs for TCE Data with NDs

UCLs for TCE Data with NDs (with 9.29) - LROS

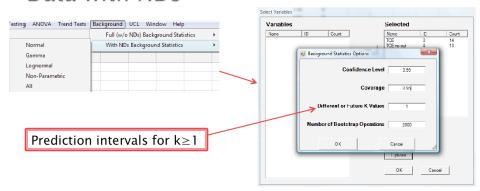
D	∠/2 Substituti	on Method	
Mean	1.826	95% H-Stat (DL/2) UCL	4.462
SD	2.65		
Mean (in Log Scale)	-0.1		
SD (in Log Scale)	1.135		
	Log ROS Me	ethod	
Mean	1.748	95% t UCL	3.026
SD	2.7	95% Percentile Bootstrap UCL	3.039
Mean (in Log Scale)	-0.535	95% BCA Bootstrap UCL	3.442
SD (in Log Scale)	1.652	95% H-UCL (Log ROS)	14.23
Ka	plan Meier (K	(M) Method	
Mean	2.002	95% KM (t) UCL	3.246
SD	2.458	95% KM (BCA) UCL	3.433
SE of Mean	0.702	95% KM (% Bootstrap) UCL	3.239
		95% KM (Chebyshev) UCL	5.063
		97.5% KM (Chebyshev) UCL	6.388
		99% KM (Chebyshev) UCL	8.99
Potential UCL to Use		Data appear Gamma Distributed (0.05)	
		May want to try Gamma UCLs	

UCLs for TCE Data with NDs (with 9.29) -GROS

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	3.333
, , ,	
95% Modified-t UCL (Johnson-1978)	3.049
95% Nonparametric UCLs	
95% Bootstrap-t UCL	4.905
95% Hall's Bootstrap UCL	7.983
95% Gamma UCLs(Assuming Gamma Distribution)
95% Approximate Gamma UCL	6.843
95% Adjusted Gamma UCL	8.405

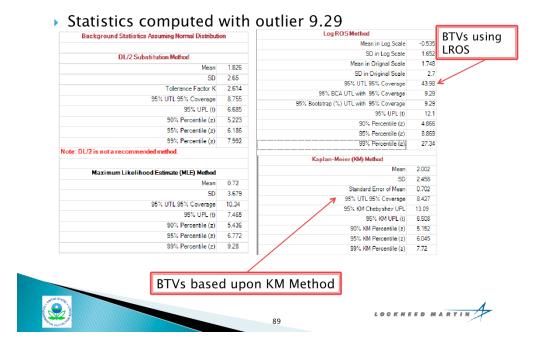
95% UCLs (Adjusted for Skewness)	
95% Adjusted-CLT UCL (Chen-1995)	3.333
95% Modified-t UCL (Johnson-1978)	3.049
95% Nonparametric UCLs	
95% Bootstrap-t UCL	5.231
95% Hall's Bootstrap UCL	8.015
95% Gamma UCLs(Assuming Gamma Distribution	on)
95% Approximate Gamma UCL	8.859
95% Adjusted Gamma UCL	11.3

Stats obtained by replacing GROS extrapolated negative values by 0.0001


Stats obtained by replacing GROS extrapolated negative values by 0.000001

Caution: GROS yields negative extrapolated values which are replaced by small numbers: 0.001, 0.0001, ...

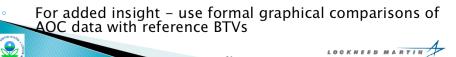
Different choices for negative values yield different UCL95 Use of ROS methods should be avoided, use nonparametric KM method

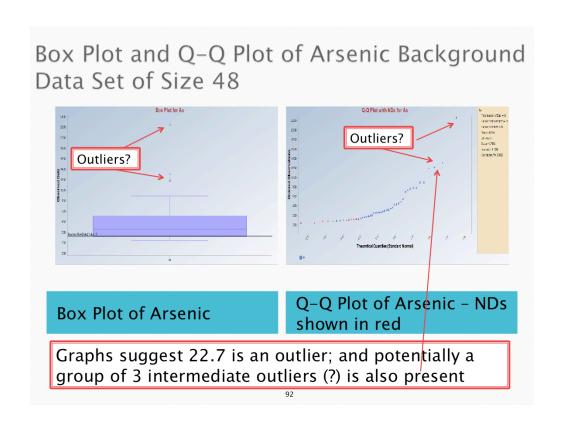

87

Background Statistics – UPL, UTL for TCE Data with NDs

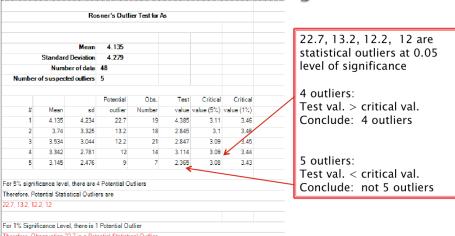
UPL95, UTL95-95 TCE Data with NDs

ProUCL 4.1.00

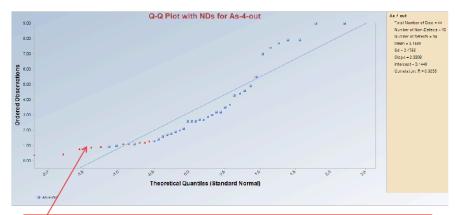

Case Study Estimating Background Threshold Values (BTVs) Arsenic Data with Nondetects from a Federal Facility



Arsenic Data Set from a Federal Facility

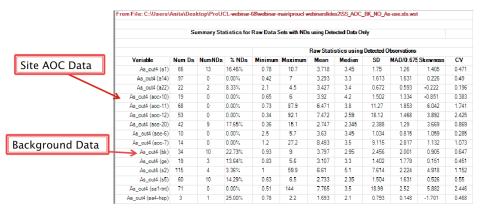

Objective: Compute site-specific background level concentrations/BTVs to compare site data with BTVs

- Look at your background/reference data graphically
- Perform outlier tests
 - Establish background/reference area data set represented by unimpacted locations
 - Perform GOF test to determine data distribution
- Compute UPLs and UTLs to estimate BTV


Rosner Outlier Test on Background Data

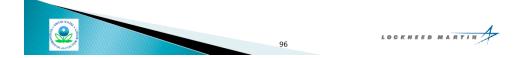
Project team should decide about disposition of outliers Supplement outlier tests with graphical displays

LOCKHEED MARTIN


Q-Q Plot of Background As Without 4 Outliers

Q[/]Q plot of Arsenic without 4 outliers – NDs shown in red Graph does not display a linear pattern Background arsenic does not follow normal distribution

Summary Statistics for Background/ Reference Area and AOC Data Sets

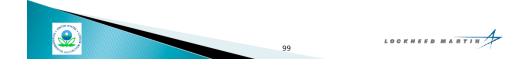

4 outliers excluded from background (As-out4 (bk)) data set

GOF Test for Reference Data Set

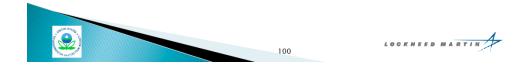
- Background data set has 10 nondetects
- For data sets with many NDs, it is not easy (nor needed) to justify distributional assumptions
- Use of nonparametric method such as KM method is suggested to compute BTVs

KM (1958) method is a nonparametric method used on data sets with NDs to estimate population mean, standard deviation, standard error of mean, UCLs, UPLs, and UTLs

Estimates of BTV Using KM Method Background data set of size 48 was collected Background data screened for outliers Identified outliers removed - Project team should get involved Kaplan-Meier (KM) Method Mean 3.742 Kaplan-Meier (KM) Method Mean 3.147 SD 3.284 SD 2.441 Standard Error of Mean 0.486 Standard Error of Mean 95% UTL 95% Coverage 10.55 95% UTL 95% Coverage 8.251 95% KM Chebyshev UPL 18.21 95% KM Chebyshev UPL 13.91 95% KM UPL (t) 9.313 95% KM UPL (t) 7.297 90% KM Percentile (z) 90% KM Percentile (z) 6.276 95% KM Percentile (z) 9.144 95% KM Percentile (z) 7.162 99% KM Percentile (z) 11.38 99% KM Percentile (z) 8.826 95% KM Simultaneous Upper Limit 13.37 95% KM Simultaneous Upper Limit 10.24 BTV estimates without 4 outliers BTV estimates without 1 outlier


Expanding Site-Specific Background Data

- PRP suggested to expand existing background data by including onsite AOC data comparable to background
- Since a background data set of size 48 is already available, BTV is computed using background data; and
- Observations less than BTV are considered coming from background population (common practice in background evaluation studies) establishing the expanded background data set.


Extracting Site-Specific Background Data

- However, when background data are not available, one can potentially extract background data from onsite data using normal Q-Q plots and population partitioning methods (e.g., Singh, Singh, Flatman, 1994, Math Geology).
- Since background data were already collected, population partitioning was not used to extract background data from onsite data.
 - A scenario extracting background data using onsite data is considered for illustration purposes.

Expanding Site-Specific Background Data Based upon BTV

- All onsite arsenic values less than BTV = UTL95-95 (=8.25 without 4 outliers) are considered as coming from background population.
- This resulted in expanded background data of 639.
- Formal Index Plots and Q-Q plots of reference and AOC data sets using original background data (without 4 outliers and 1 outlier) and expanded background data are shown next.

These graphs with horizontal lines at BTV estimates represent formal graphical displays.

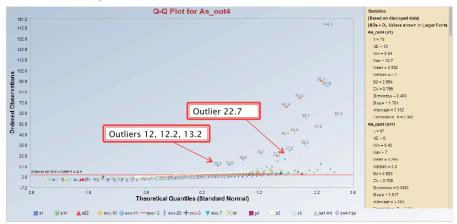
Onsite observations exceeding the BTVs may represent locations not belonging to site background population.

These onsite locations may require further investigation.

Statistical Software Scout 1.1

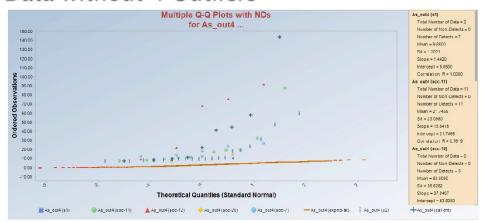
- Both ProUCL4.1 and Scout1.1 software packages were used to establish expanded background data
- Scout with advanced graphical capabilities and robust statistical methods was developed by Lockheed Martin for NERL-EPA Las Vegas
- An older Scout 2008 Version 1.0, its User and Technical Guides can be downloaded from EPA ESD website:

http://www.epa.gov/esd/databases/scout/abstract.htm



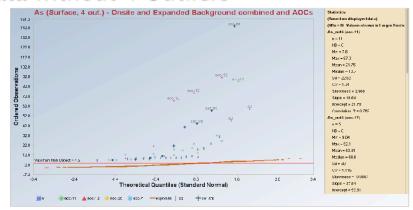
Formal Graphical Displays Generated by Scout 1.1

- Scout can generate graphical displays including Index Plots and Q-Q plots by groups.
- These graphs can be *formalized* by displaying horizontal lines at decision statistics such as UPLs, upper percentiles, and UTLs.
 - On graphical displays, Scout can label observations by values, group ID, observation numbers- providing a formal visual comparison of background and AOC data sets.
- At present ProUCL cannot generate formal Index plots and cannot label observations by group IDs.


Q-Q plots Using Original Background (without 4 outliers) and AOC Data Sets

Graph compares As in AOCs and original background without 4 outliers (positions of removed outliers shown on graph).

Q-Q Plots Using Expanded Background Data without 4 Outliers

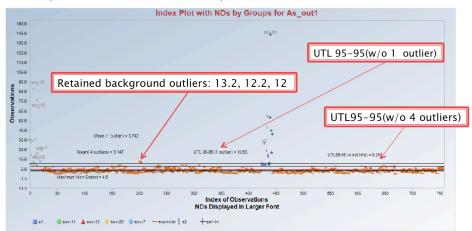

Graph identifies onsite observations that are significantly higher than background population

Graph generated by ProUCL

104

LOCKHEED MARTIN

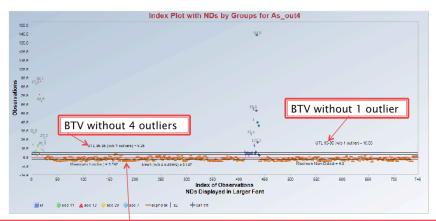
Q-Q Plots Using Expanded Background Data without 4 Outliers


Graph identifies onsite observations that are significantly higher than background population

Graph generated by Scout, observations labeled by Group ID

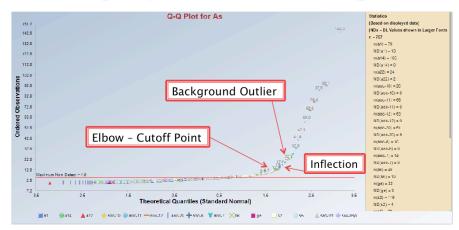
105

Formal Index Plot of Expanded Background Data (without 1 Outlier) and AOC Data Sets



Graph shows BTVs (and mean) computed using background data without 1 and also without 4 outliers.

QC-7, AOC-11, AOC-12, AOC-20, S2, Sa1-TNT exhibit higher AS than background


Formal Index Plot of Expanded Background Data (without 4 outliers) and AOC Data Sets

Observations above BTV may not belong to background Mean w/o 1 outlier = 3.742, mean w/o 4 outliers = 3.147; both are below largest ND AOC-7, AOC-11, AOC-12, AOC-20, S2, Sa1-TNT exhibit higher arsenic than BTVs

Extracting Background Data from Onsite Data Using Population Partitioning

Q-Q plot of Arsenic using all data (757 points) from background and AOCs

Extracting Background Data from Onsite Data Using Population Partitioning

- Background outlier 22.7 represents an impacted location
- ▶ Elbow of Q-Q plot seems to be around 9-13 and inflection point is around 15 (cutoff between Arsenic in background and onsite locations)
 - Project team should make a decision about which value to select as the cutoff point
- ➤ AOC arsenic less than 9-13 may be considered as representing site-specific background:
 - Onsite values <13 may be used to establish extracted site– specific background data and compute BTV estimates based upon extracted background data

- Establishing background data sets:
- Collect appropriate amount of data from background locations
 - Make sure that no outliers and/or multiple populations are present in background data set
 - Use Q-Q plots to visualize data for additional insight about extremeness of outliers and/or multiple populations
 - Q-Q plots help Project Team in determining which values represent potential outliers not belonging to background population
 - This information cannot be obtained by using outlier tests alone

- Based upon CSM/historical information, Project Team should decide about disposition of identified outliers
 include or not include them in BTV calculations
- Perform GOF tests to determine data distribution
- Depending upon data distribution and frequency of nondetects in background data, use an appropriate (e.g., UTL95-95) parametric or nonparametric method to estimate of BTVs
 - Compute UTL95-95 to establish BTVs

- In case of uncertainties (e.g., at large Federal Facilities), background data can be established in more than one way:
 - Collect data from background locations;
 - Expand background data by including onsite data comparable to collected background data;
 - Extract site-specific background data from available onsite data
 - Population partitioning methods based upon Q-Q plots can be used to extract site-specific background data from onsite data

- Project Team should determine the appropriateness of extracted background data from onsite data
- Use of more than one method to establish background data set provides managers more options which can help them in:
 - · Making cost effective and defensible decisions; and
 - · Risk management evaluations
- Consult a statistician for clarification and discussing the best approaches to establish background data and estimate BTVs

Resources & Feedback

- To view a complete list of resources for this seminar, please visit the <u>Additional Resources</u>
- Please complete the <u>Feedback Form</u> to help ensure events like this are offered in the future

114