ProUCL A to Z

Presenters:

Travis Linscome-Hatfield,

Anita Singh

Polona Carson

Learning objectives

- Objectives
 - Get familiar with ProUCL and some commonly used data analysis features
- Today we will discuss:
 - Starting ProUCL
 - Preparing data for analysis and loading in ProUCL
 - Basics of dealing with missing values and NDs
 - Exploratory Data Analysis
 - Hypothesis testing

- Statistical software for environmental data analysis
- User Guide
 - Provides instructions on how to use ProUCL
- Technical Guide
 - Provides detailed background on statistical methods

Navigating ProUCL

Turning panels on / off

	ProUCL 5.0 - [WorkSheet.xls]													
🖳 File	Edit	Stats/Sample Sizes	Graph	s Statistical Tests	Up	per Limi	ts/BTVs	UCLs/EPCs	Windows	s Help				
Nav	Nav Configure Display 🕨			Full Precision		3	4	5	6	7	8	9	10	11
Name		Cut Ctrl+X	~	Log Panel										
WorkShe		Copy Ctrl+C	~	Navigation Panel										
		Paste Ctrl+V	Excel 2003											
	Header Name		-											
	_	4												
5														
6														

Starting ProUCL and Loading the data

 Zn-Cu-two-zones-NDs.xls in ProUCL > This PC > Documents > ProUCL 5.1 > proucl_5.1 > ProUCL 5.1 Date modified Name Type \checkmark Data 08/12/19 5:01 PM File folder apers Documents 08/12/19 5:01 PM File folder ChartFX.WinForms.Adornments.dll 08/12/19 5:01 PM Application extens... File Edit Stats/Sample Sizes ISM Simulator Graphs Statistical Tests New

File Edit Stats/Sample Sizes ISM Simulator Graphs Statistical Tests Upper Limits/BTVs
New
Open Single File Sheet
Open Excel File with Multiple Sheets
Opens First Sheet in an Excel File or an Output or Older ProUCL (.WST) File
Exit

Data set

- Zn-Cu-two-zones-NDs.xls available in ProUCL 5.1 Data folder
- Copper and zinc concentrations (mg/L) in shallow ground water from two geological zones (Alluvial Fan and Basin-Trough) in the San Joaquin Valley, CA.
- Multiple detection limits for both the copper and zinc data
 at 1, 2, 5, 10 and 20 ug/L
- Original source:
 - Millard, S.P. and Deverel, S.J. (1988). Nonparametric statistical methods for comparing two sites based on data with multiple non-detect limits. *Water Resources Research 24: doi: 10.1029/88WR03412. issn: 0043-1397*

How to organize data?

- Columns → variables
- Rows \rightarrow observations
- Grouping variable
 - Count denotes iris species
 - Equal counts
- Data formats
 - .xlsx (Excel)
 - .xls (Excel)
 - .wst (Worksheet)
 - .ost (Output)

Nondetects

- Nondetect (ND) values
 - Censored data values
 - Concentrations or measurements that are less than the analytical/instrument method detection limit or reporting limit.
- How to designate nondetect values?
 - Add new variable for each variable with nondetects
 - Column name: d_+ variable name (Cu \rightarrow D_Cu)
 - No missing values in d- column!!

			1 = detect	0 = nondet	ect
Cu	Zn	Zone	D_Cu	D_Zn	1
1	10	Alluvial Fan	0	0	
1	9	Alluvial Fan	0	1	
3		Alluvial Fan	1		
3	5	Alluvial Fan	1	1	

Cu	Zn	Zone	D_Cu	D_Zn
1	10	Alluvial Fan	0	0
	9	Alluvial Fan	0	1
3	no data	Alluvial Fan	1	1e31
3	5	Alluvial Fan	1	1

- Blanks
- Alphanumeric strings
- Very large values (1e31)

Exploratory Data Analysis (EDA)

• Summary statistics - User Guide Chapter 4

														ProUCL	5.0 - [W	MW-with	NDs.xls]
🖳 File Edit	Sta	ts/San	nple Size	s Graphs	Statistic	al Tes	ts I	Upper Limits/BTVs	UC	Ls/EP	Cs	Window	s Help				
Navigation R		Gen	eral Stati	stics		►		Full (w/o NDs)	•	5		6	7	8	9	10	11
Name Imputed NDs using ROS Methods				•	With NDs Raw Statistics												
Work Sheet xls	Work Sheet xls DQOs Based Sample Sizes			•	-	1		Log-Transformed									
Well 10 xls	_		2	4	4		0	0									
WMW-with NDs>	ls		3	5	8		1	0									
ASHALL7groups:	ds		4	7	17		0	1									

Exploratory Data Analysis (EDA)-I

- Graphical presentations of data
 - User Guide Chapter 6

Box Plot

• Quick 5-point summary:

- Lowest / highest value
- Median (Q2)
- Degree of dispersion
- Degree of skewness
- Unusual data

Histogram – Cu

- Shape
- Center (location) of the data
- Spread of the data
- Skewness

Q-Q plot

Q-Q Plot for D3 D3 N = 200 Mean = 1.569 15 Sd = 1.866 Slope = 1.493 12 Intercept = 1.569 Correlation, R = 0.795 ä 9 Best Fit Line 6 3 0 -2 -1 0 1 2 Theoretical Quantiles (Standard Normal

Skewed distribution

Distribution with heavy tails

Evaluate distribution of the data

- General Statistics Table:
 - Compare Mean & 50% percentile (Median) in General stat table
 - Box plot
 - QQ-plot
 - Goodness of fit test

	ProUCL 5.0 - [pyrene.xls]												
Statistical Tests	UC	Ls/EPCs	Wind	lows	ł	Help							
Outlier Test	s	•	6	7		8		9	10	11	12	13	14
Goodness-o	Goodness-of-Fit Tests			Full (w/o	NDs)	►							
Single Sam	Single Sample Hypothesis			With NDs	;	•	Exclude NDs Normal				rmal		
Two Sample	e Hypothesis	•	_					Norma	al-ROS Estir	mates 🕨 🕨			
Oneway AN	IOVA	•	-				Gamma-ROS Estimates Lognormal				normal		
OLS Regress	sion		-					Log-R	Log-ROS Estimates				
Trend Analy	Trend Analysis							DL/2 E	stimates	•	<u> </u>		
								G.O.F.	Statistics				

Goodnes of Fit Test UG Chapter 8

- Use G.O.F Statistics
- Generates a detailed output
- Helps determine distribution of data set

Outliers

- Extremely large or small values relative to the rest of the data
- Suspected to misrepresent the population from which they were collected
- May result from errors:
 - Transcription errors
 - Data-coding errors
 - Laboratory measurement errors
- May indicate more variability than expected
 - Extreme population values
 - On-site hot spots
 - Multiple soil types in background area
- Outliers can distort most decision statistics
 - mean, UCL, UPL, test statistics, ...
- "Not removing true outliers or removing false outliers both lead to distorted estimates of population parameters" (QA/G-9S)

Outliers – 5 steps to treat extreme values

- 1. Identify extreme values that may be potential outliers;
- 2. Apply statistical test;
- 3. Scientifically review statistical outliers and decide on their disposition;
- 4. Conduct data analyses with and without statistical outliers; and
- 5. Document the entire process.

Reference: EPA guidance QA/G-9S Data Quality Assessment: Statistical Methods for Practitioners

Statistical Tests	Upper Limits/	BTVs	UCLs/E	PCs W	/indows
Outlier Test	s	•	Full	s) 🕨	
Goodness-o	of-Fit Tests	•	With	n NDs	•
Single Samp	ole Hypothesis	- F	_		
Two Sample	e Hypothesis	→	1	1	
Oneway AN	OVA	- F	1	1	
OLS Regress	ion		0	0	
Trond Analy			1	1	
Trend Analy	/515	_	1	1	

Outlier test -

UG Chapter 7

- Dixon and Rosner tests in ProUCL
 - Both require assumption of normality of the data set without outliers
- How to deal with NDs?
 - Exclude NDs
 - Replace NDs b y DL/2 values

Hypothesis testing

- User Guide Chapter 9
- Parametric and non-parametric test are available in ProUCL
- Single-sample hypothesis test
 - To compare site data with prespecified cleanup standard (Cs) and compliance limit (CL)
- Two-sample hypothesis testing
 - To compare two populations ie: background vs area of concern (AOC)

Steps in hypothesis testing

- 1. State the null hypothesis H_0
- 2. State the alternative hypothesis H_A
- 3. Set confidence level 1- α
- 4. Collect data
- 5. Calculate a test statistic
- 6. Construct acceptance/rejection region
- Based on steps 5 and 6, draw a conclusion about H₀

Single sample hypothesis testing

- One sample t-test
 - Assumes normality of data set
 - Can't be used for censored data
 - Large data set required depending on the data skewness
- One-Sample Sign Test or Wilcoxon Signed Rank (WSR) Test
 - Can handle NDs
 - Requires ND < C_s

- Percentile Test
 - to compare exceedances to the actionable level
 - Can handle NDs
 - Requires ND < C_s

				ProUC	L 5.0 - [V	/SR	EPA (2006)-cha	pter 9-US	Ser.xls]		
Statistical Tests Upper Limits/BTVs			UCL	s/EPCs W	/indows	Help						
Outlier Test	Outlier Tests			6 7 8			9	10	11	12		
Goodness-of-Fit Tests												
Single Samp	le Hypothesis	Full (w/o NDs) ► t Test										
Two Sample	Two Sample Hypothesis				With NDs Proportion							
Oneway AN	Oneway ANOVA							Sign Test				
OLS Regression			Wilcoxon Signed Rar						igned Rank			
Trend Analy	sis	•							_			

Single sample hypothesis testing

- Ground water data
 - Is Cu concentration lower than XX?
 - Is Zn concentration higher than YY?

Two-sample hypothesis testing

Without NDs

With NDs

- Student's t and Satterthwaite tests
 - to compare the means of two populations (e.g. Background versus AOC).
- F-test
 - to the check the equality of dispersions of two populations.
- Two-sample nonparametric Wilcoxon-Mann-Whitney (WMW) test
 - equivalent to Wilcoxon Rank Sum (WRS) test

- Wilcoxon-Mann-Whitney test
 - All observations (including detected values) below the highest detection limit are treated as ND (less than the highest DL) values
- Gehan's test and Tarone-Ware test
 - useful when multiple detection limits may be present

					ProUCL 5.0 - [MW89-Chapter 6.xls]							
Statistical Tests Upper Limits/BTVs			UCLs	/EPCs W	indows I	Help						
	Outlier Tests		6	7	8	9		10	11	12		
	Goodness-of-Fit Tests		×.	Mn-89		MW9	MN9			MN-99	D_MN-99	
	Single Sampl	Single Sample Hypothesis		4600		9	2200			2200	1	
	Two Sample	Hypothesis	Þ	Fu	ull (w/o ND:	s)	F		t Test			
	Oneway ANG	AVC	×	W	ith NDs		► Wilcox			on-Mann-Whitney		
	OLS Regression		1790		9	21	50		2150	1		
	Trend Analys	is	Þ	1730		9	22	20		2220	0	

Two sample hypothesis testing

• Groundwater data

- Is concentration of Cu equal in Alluvial Fan and Basin Trough?
- Is Zn concentration greater in Alluvial Fan than in Basin Trough?

Final remarks

- Take time to carefully prepare and organize data
- When in doubt consult statistician
- Don't be quick to discard the data
 - You need to have a good scientifically justified reason
- Document well steps of analysis and decisions you make

ProUCL Utilization 2020: Part 2: Trend Analysis Feb 10, 2020 1:00PM-2:30PM EST

ProUCL Utilization 2020: Part 3: Background Level Calculations Mar 9, 2020 1:00PM-2:30PM EST Contact Information for ProUCL

Felicia Barnett, EPA SCMTSC

barnett.felicia@epa.gov

Travis Linscome-Hatfield, Neptune and Company, Inc travis@neptuneinc.org

Polona Carson, Neptune and Company, Inc pcarson@neptuneinc.org