
NanoAffix Science, LLC NIEHS Virtual Technology Fair

Real-Time Portable Lead Tester for Improving Access to Safe Drinking Water

James Hill, Ph.D. Chief Science Officer October 28, 2024

Accurate Affordable Analysis

Problem/Solution

Problem: Toxic contaminants in drinking water cause acute and chronic organ damage

- Lead (Pb) in drinking water causes brain damage, especially in children
- Current testing methods are either inaccurate (paper test strips) or expensive and slow (ICP)
- EPA Maximum Contaminant Level (MCL) is 15 ppb Pb
- EPA MCLG is 0 ppb Pb

Solution: NanoAffix has developed a portable water test kit that provides results in minutes

- Faster, better, and less expensive than other portable analyzers
- Enables increased frequency of testing

NanoAquaSense

Technology

NanoAquaSense

- Media Water
- Target Contaminant Lead (Pb²⁺)

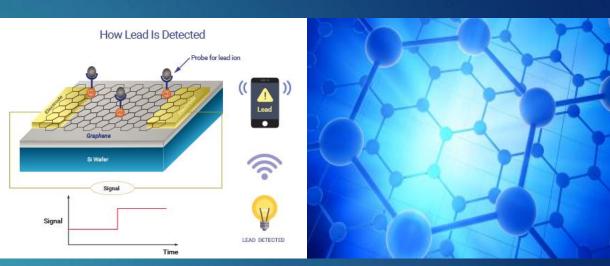
Innovation

Prototype version 1.0

- Nanoscale graphene-based sensors
- Reduced graphene oxide (rGO)
 - Highly sensitive to surface modification

XXX

- Measure change in conductivity when exposed to very low concentration of target contaminant.
- Platform technology research being conducted to detect other contaminants in water.


Prototype version 2.0

Beta version 3.0/ Minimum Viable Product

NanoAquaSense

Specifications

- Target limit of detection 1 ppb
- Target resolution 0.1 ppb
- Sensitivity range 1 30 ppb
- Weight < 0.5 lbs</p>
- Bluetooth communication via smartphone app
- Rechargeable lithium-ion battery

Technology Readiness Level = 7

Business Model

- Razor/Razor Blade model
- Meter used for years
- Single use sensors

Competing lead testing methods

5

	NanoAffix tester	Paper test strips	Portable analyzers	ICP-MS in labs
Types of lead*	Total, soluble, and particulate lead	Soluble lead only (false negative)	Total lead	Total lead
Ease of use	\checkmark	\checkmark	X	X
Sample preparation	X	X	\checkmark	\checkmark
Cost	\$990 (\$10/sensor)	~\$10-20 /kit	Typically ~\$2,000 plus consumables	>\$50,000 plus ~\$40/test
Testing time	~1 min for soluble lead ~15 min for total lead	~10 min	~30 min for total lead	Days (sample prep. & transport)
Sensitivity	<1 ppb	>15 ppb	1 ppb	~0.02 ppb
Quantitative		X		\checkmark
Onsite	\checkmark	\checkmark		X

- > Faster Analysis (onsite results in minutes with portable meter)
- Improved Accuracy (1-30ppb sensitivity with 0.1 ppb resolution)
- Less expensive (<5% of the cost of ICP-MS and about 50% less than most other portable testers)</p>

Commercialization Progress

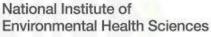
Initial target market – high volume users

- Water treatment facilities
- Home service providers
- Water quality professionals

Beta-testing completed

- Ease of sample preparation 8.8/10
- Ease of use of app 8.6/10
- Implemented design feedback

Currently


- Scaling up sensor fabrication manufacturing
- Validate new manufacturing process before product launch

Acknowledgments

NIEHS CRP SBIR – 1SB1ES036493-01

- Graphene-based Nanosensor Device for Rapid, Onsite Detection of Total Lead in Tap Water
- NIEHS Phase II SBIR 2R44ES028656-02A1
 - Graphene-based Nanosensor Device for Rapid, Onsite Detection of Total Lead in Tap Water
- EPA Phase II SBIR 68HERC21C0048
 - > A Low-cost Handheld Sulfur Dioxide Tester with a Hybrid Nanomaterials-Based Sensor Chip
- NIH Phase | SBIR 1R43ES036055-01A1
 - ▶ Graphene-Based Nanosensors for Rapid Detection of Low-concentration PFAS in Water
- USDA Phase I SBIR 2020-33610-31519
 - > A Graphene-based Handheld Device for Rapid Detection of Escherichia coli Bacteria in Water

Accurate Affordable Analysis

Inventing the Future of Sensing