Elemental Mapping & Capabilities at the

Dartmouth Trace Element Analysis Core

Tracy Punshon Biological Sciences Dartmouth College Hanover NH

Outline

- •Elemental mapping defined
- •Scientific applications when bulk measurements are not enough
- Choosing an imaging technique
- •Highlighted techniques and how they work
 - Synchrotron X-ray fluorescence mapping (SXRF)
 - Laser ablation inductively coupled plasma spectrometry (LA-ICP-MS)
- •Resources and access to techniques
 - Accessing Synchrotron facilities: Beamtime proposals
 - The Dartmouth Trace Element Analysis Lab

Elemental mapping defined:

Elemental mapping is a *mode* of chemical analysis that, in addition to quantifying elements (how much), also gives spatial information (where) in the context of the sample.

Configurations:

•1D: line scans or profiles (X axis)

•2D: raster or map (X and Y axes), consisting of pixels of data

•3D: volume (X, Y, θ), consisting of voxels of data, reconstructed from multiple tomograms

•4D: volumes (X,Y, θ) integrated over time (how much, where and when)

Terminology: *Volume-averaged*: specimen structure is destroyed via homogenization and (if solid) dissolution prior to analysis

Spatially-resolved: specimen structure is preserved prior to analysis

Configurations 1D

- profile
- Points:
 - Counts,
 - distance or time (X axis only)

2D

Copper in unpolished rice by SXRF

3D

Iron, manganese and zinc in Arabidopsis seed

- map
- Pixels:
 - Counts,
 - X value,
 - Y value

- volume
- Voxels:
 - Counts,
 - X value,
 - θ value (angle of rotation)

EPA CLU-IN Webinar, May 22 2017

Scientific applications

Environmental

- Contaminant distribution in soils, mineral associations, bioreduction processes
- Petrography
- Entry and movement through biota
- •Biological
 - Genetic control of elemental homeostasis in organisms
 - Modes of toxicity elemental perturbations
 - Chemical signaling
- •Human health
 - Time-resolved biomarkers: teeth and hair

Applications: Petrography – Toxic metals in tailing from the Iron King Mine and Humboldt Smelter Superfund Site (AZ)

 Elemental associations evident by plotting correlations between elemental abundances

Image credit: Root et al, 2015 Applied Geochem 2015

Applications: Entry and movement through biota – Elements in Daphnia

Applications: Entry and movement through biota – Arsenic in rice grains

Rice grain exposed to133 µM arsenite through the cut end of the flag leaf during grain development

Applications: Genetic control of elemental homeostasis - Calcium in alfalfa

NSLS: X27A. E = 4.1 keV. 7 μ m x 10 μ m beam: 50 ms dwell. Image credit: Punshon 2013, The Plant Journal 76(4) p627

Applications: Human health and exposure – Metals in human teeth

Line profile of lead in human tooth

Calcium and **lead** in deciduous baby teeth as a biomarker of in utero metal exposure

Applications: Human health and exposure – silver in skin biopsy tissue

Visual overlay

- Participant took over-the-counter colloidal silver supplements
- Skin had a blue coloration due to accumulation of silver

Image credit: Whitney High

Applications: Environmental – Food chain transfer of Cd Se Quantum Dots in benthic amphipod Leptocheirus pulmunosa

Aqueous exposure: Cd and Se closely co-localize

Exposure via algae: Cd and Se disassociation evident

Image credit: Jackson et al ES&T 2012 46(10) 5550

Se

Cd, Se overlay

Choosing a technique

Synchrotron based techniques

- Involves writing a peer-reviewed proposal for your experiment
- Involves travel to and accommodation at the facility
- 24-hour availability of the synchrotron beam
- Training, technical assistance and support provided
- Simultaneously multi-elemental
- Can be non-destructive (less so with newer, more powerful facilities)

Synchrotron (blue) light emanating from the crab nebula

EPA CLU-IN Webinar, May 22 2017

How it works: Laser ablation

- Power and frequency of the laser
- Sample specific interactions
- Efficiency of collection and transport of particulates into the ICP-MS
- Availability of matrixmatched standards
- Multi-elemental collection is sequential, not simultaneous

Interferences in ICP-MS

1. Polyatomics: Two- or three-atom clusters formed in the plasma with the same molecular weight as the analyte ion:

> Phosphorus (31) or ON (16 + 15) Sulphur (32) or O_2 (16 + 16) Vanadium (51) or OCI Chromium (52) or ArC Iron (56) or ArO Arsenic (75) or ArCI Selenium (78), Se 80 or Ar₂

- 2. Doubly charged ions
 - MS separates based on mass to charge ratio, we just assume that z = 1 + 1
 - Proportion of 2+ ions formed can be ca. 2 %

Access to elemental mapping techniques

For synchrotron access:

1.Visit the web pages of beamlines you see in papers of interest (or ask the Dartmouth TEA)

2.Email the Beamline Scientists with your experimental details to discuss feasibility

3.Write a Beamtime proposal short web form – abstract, significance, experiment

4. Include number of samples you have, and how long it will take

5. Consult synchrotron websites for submission deadlines

6.Fill out online form

For Laser Ablation access 1.Contact Dartmouth TEA

Dartmouth TEA Core Services and Instrumentation

- Quantitative analysis
 - Water, soils, sediments
 - Biological: urine, serum, blood, tissue,
- Speciation analysis
 - Arsenic in water, urine, food
 - Mercury in water, tissues, sediments
- Spatial analysis
 - Laser ablation ICP-MS
 - Agilent 7900 and 8900 ICP-MS
 - Agilent 1260 LC
 - Brooks Rand MERX-T, MERX-M Mercury Analyzer
 - Milestone Dissolved Mercury Analyzer
 - New Wave Research Laser Ablation 213 system

EPA CLU-IN Webinar, May 22 2017

National Institute of Environmental Health Sciences Your Environment. Your Health.

Dartmouth Superfund Research Program