DEVELOPMENT OF A USER FRIENDLY FRAMEWORK FOR GEOSPATIAL IDENTIFICATION OF POTENTIAL PFAS SOURCE ZONES

Jennifer Guelfo, PhD June 12, 2017

BROWN

Φ

- Terminology/ chemistry
- Uses/regulation
- UCMR3 data
- Knowledge gaps

- Key PFAS sources
- Geospatial eval.
 framework

Perfluoroalkane sulfonates:

Examples: m=3 PFBS m=5 PFHxS **m=7 PFOS**

Per = fully fluorinated alkyl tail.

Perfluoroalkane sulfonates:

Examples: m=3 PFBS m=5 PFHxS **m=7 PFOS**

Poly = partially fluorinated alkyl tail.

Polyfluoroalkyl substances:

m=5 6:2 FtS m=7 8:2 FtS

Polyfluoroalkyl substances:

m=5 6:2 FtS m=7 8:2 FtS

Buck, Robert C., et al. "Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins." Integrated environmental assessment and management 7.4 (2011): 513-541.

ABSTRACT: More than 3000 per- and polyfluoroalkyl substances (PFASs) are, or have been, on the global market, yet most research and regulation continues to focus on a limited selection of rather well-known long-chain PFASs, particularly perfluorooctanesulfonate (PFOS), peratleas been re

3000 + new PFASs+ transformation products = relevant PFASs

 Semifluorinated n-alkanes and alkenes 	polymers
---	----------

Buck, Robert C., et al. "Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins." *Integrated*₇ *environmental assessment and management* 7.4 (2011): 513-541.

PFAS OVERVIEW: CHEMISTRY & USES

Electronegativity = strong, polar covalent bond

Not polarizable = weak intermolecular interactions

Small size of fluorine = F shields C

Resulting PFAS properties:

- Strong acidity (low pK_a)
- Thermal stability
- Chemical stability
- Hydrophobic & lipophobic
- Surfactant

Kissa, Erik, ed. Fluorinated surfactants and repellents. Vol. 97. CRC Press, 2001.

Banks, Ronald Eric, Bruce E. Smart, and J. C. Tatlow, eds. *Organofluorine chemistry: principles and commercial applications*. Springer Science & Business Media, 2013.

PFAS OVERVIEW: CHEMISTRY & USES

Electronegativity = strong, polar covalent bond

Not polarizable = weak intermolecular interactions

Small size of fluorine = F shields C

Resulting PFAS properties:

- Strong acidity (low pK_a)
- Thermal stability
- Chemical stability
- Hydrophobic & lipophobic
- Surfactant

Kissa, Erik, ed. Fluorinated surfactants and repellents. Vol. 97. CRC Press, 2001.

Banks, Ronald Eric, Bruce E. Smart, and J. C. Tatlow, eds. *Organofluorine chemistry: principles and commercial applications*. Springer Science & Business Media, 2013.

PFAS OVERVIEW: REGULATION

Drinking Water Health Advisories for PFOA, PFOS 70 ng/L: individually or in combination

RfD	* Body	/Wt.
DW ingestion		

Relative Source Contribution

Water Quality Standard

Advisory or standard	Source
70 ng/L Σ PFOA,	
PFOS	USEPA LHA
20 ng/L Σ PFOA, PFOS	Vermont
14 ng/L PFOA, 10 ng/L	
PFNA	New Jersey

Why the differences?

- VT: same RfD as EPA, different DW ingestion
- NJ: different RfD based different endpoint- liver weight vs. developmental delay.

Information courtesy of Dr. David Klein

EPA UCMR Data 2013-2015:

- •4120 Systems > 10,000
- •800 systems ≤ 10,000
- •No private systems
- •Multiple PFAAs/sample
- •4% detection rate (~200); which are 'impacted'?
 - 64 systems > LHA
 - 122 systems > NJ (but MRL=20 ng/L)
 - 151 systems > VT

Hu, Xindi C., et al. "Detection of poly-and perfluoroalkyl substances (PFASs) in US drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants." *Environmental science & technology letters* 3.10 (2016): 344-350.

Data reflect only samples with PFAA detections

EPA UCMR Data

- [PFAAs] 10-7000 ng/L
- [PFOS] = max overall
- **PFOA most frequent detect**
- Groundwater in ~80% of
- 2818 GW/GU systems, 2691 SW systems
- Average GW [PFAA]_{tot} > SW
- Overall: GW % detect > SW % detect

- G = groundwater
- S = Surface water
- O = Detection rate (right axis)

Is UCMR representative?

- No UCMR detects in VT, including Bennington, Pownal but impacts present
- Impacts present in areas not sampled (e.g. Hoosick Falls, NY)
- 0.5% of small systems in U.S. sampled (Hu, 2016)
- [PFAA]_S > [PFAA]_L <u>but</u> S = small sample size

Data warrant targeted screening of community, private groundwater wells; need efficient, effective design of well screening programs.

PFAS IN THE U.S.: KEY CHALLENGES

Finding sources:

- Numerous uses/applications = numerous potential sources
- Low target concentrations = small releases, indirect sources relevant
- Unconsolidated or missing information on current, historical sources

May cause: inefficient sampling plans, failure to ID all relevant sources, inability to determine source, increased time required to reduce risks to human health, environment

Data Sources:

- Landfills
- Fire stations
- Fire Training Areas
- Airports
- Manufacturing facilities 1960-2012
 - Identified industrial codes known to use or produce PFAS

Hazard = (Release Prob.) * (Years of Operation)

How do hazards compare to groundwater vulnerability?

Vulnerability based on proximity to:

- Drinking water aquifers
- Wellhead protection areas

Hazard vs. Risk:

- •GW not classified for drinking
- • Risk in rural areas for small, community scale systems

Risk = Hazard * Vulnerability

Geospatial future work:

- Assist in sample point selection, sampling, analysis
 Ground truth geospatial analysis
 Pending *source data availability*, implement in regions w/GW data
 Key questions:
 - Can we evaluate based on potential for release vs. known use/release?
 - Relative importance of location info for each source type

Wells = exposure potential

TOXICANT EXPOSURES IN RHODE ISLAND: Past, Present, and Future

Brown University Superfund Research Program

- Dr. Scott Frickel
- Thomas Marlow
- Amy Parmenter, RIDOH
- Dr. Eric Suuberg
- Suuberg lab group

National Institute of Environmental Health Sciences Superfund Research Program

