Soil Health and the Arid Microbiome in a Warming Climate: Challenges for Reclamation

Raina M. Maier

Director, University of Arizona Superfund Research Center

Department of Environmental Science

The University of Arizona

Julia Neilson

Priyanka Kushwaha

Juliana Gil-Loaiza

John Hottenstein

Fun Facts

Earth's microbiome is composed of a quadrillion quadrillion microorganisms living in Earth's crust and waterways

The mass of the Earth's microbiome is greater than all of the plants and animals on the planet

The importance of Earth's microbiome to soil health is analogous to that of the human microbiome to human health

Dryland ecosystems comprise 41% of the Earth's land area but are poorly studied

How will a warming climate impact Earth's microbiome?

Atacama desert

Sonoran desert

Reclamation of arid mine tailings

Peru Bolivia Arica Volcano Isugua Park • Iquique € Tocopilla Pacific Ocean Calama San Pedro de Atacama Atacama Quarry **Atacama Desert** Chile perarid Antofagasta 6 Argentina Copiapo ©

Microbial Diversity in the Atacama Desert

Neilson et al. 2017. MSystems. doi: 10.1128/mSystems.00195-16

Richness, diversity and dominant microbes are a function of aridity

	Average Soil Relative Humidity														
	17.18	20.7	20.9	28.79	44.74	59.69	69.08	73.21	82.1	82.5	87.3	93.6	99.4	99.99	100
Phylum	Phylum Relative Abundance (%)														
Acidobacteria	0.04	0.02	0.06	0.54	3.64	1.17	3.21	6.35	7.97	4.34	3.76	5.84	8.18	9.60	8.82
Proteobacteria	3.13	5.14	2.26	15.93	13.41	7.94	12.83	12.33	25.34	20.43	27.94	20.57	26.14	23.06	27.83
Planctomycetes	0.20	0.30	0.09	0.71	1.48	0.87	0.94	2.01	3.19	1.53	1.50	2.58	2.52	3.16	2.52
Verrucomicrobia	0.02	0.00	0.00	0.35	0.51	0.07	0.13	4.43	1.56	0.22	1.99	0.74	4.57	2.63	6.68
Euryarchaeota	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.09	0.05	0.03	0.01	0.05	0.16	0.09	0.07
Crenarchaeota	0.00	0.16	0.30	0.46	1.59	0.46	1.09	1.45	2.64	1.04	0.71	2.08	2.17	1.48	1.86
Nitrospirae	0.05	0.10	0.00	0.12	0.53	0.14	0.17	0.80	0.52	0.16	0.21	0.46	0.70	0.59	0.78
Elusimicrobia	0.00	0.00	0.01	0.00	0.10	0.00	0.00	0.04	0.06	0.08	0.01	0.04	0.07	0.14	0.10
Actinobacteria	86.20	79.41	80.82	67.24	54.05	75.94	54.22	53.56	39.81	44.14	47.16	42.26	37.65	37.67	31.86
Aridity Class	Н	Н	Н	Н	М	Н	М	Α	Α	М	Α	Α	Α	А	А

Aridity classes:

H = hyperarid M = margin A = arid

Increasing soil relative humidity supports denser, more tightly connected communities

Arid sub-network

Margin sub-network

Hyperarid sub-network

Avg Soil Relative Humidity (%)

Microbial Diversity in the Sonoran Desert – Comparing Canopy and Gap Sites

Critical microbial species may be missing in gap sites therefore new canopy sites will not be able to recruit all microbiome members from gap sites.

What we know:

- Dryland area and aridity will increase as Earth's climate warms
- Already, 10-20% of drylands are degraded or marginal
- Dryland gap areas may not contain keystone microbial species needed to support plant growth.

What we need to know:

- How will climate warming impact the microbiome and the ability of soils to maintain a plant cover
- What are the best management practices that will help maintain and recover degraded lands

Reclamation in the context of arid mine tailings

Compost-assisted direct planting Based on greenhouse work

Field Study 2010 - 2017

Iron King Mine and Humboldt Smelter Superfund Site

IKMHSS field trial - Initiated May 18, 2010

This is a story of warring microbes

Field microbiome progression

Microbiome-plant gene expression interactions

- Greenhouse study
- Iron King mine tailings
- Compared plant and microbiome response to 10, 15, and 20%

compost amendment

WRT the microbiome: there are significant taxonomic differences between 10 and 20% compost-amended treatments

WRT plants: root stress response genes have significantly higher expression in 10% compost treatment

WRT plant-microbome interaction: key taxa are significantly associated with plant stress response at the 10 and 20% compost treatments

Lessons I have learned over the past 30 years

The importance of the soil microbiome for soil and plant health is vastly underappreciated and understudied

Working with stakeholders can provide unique insights and allow access to research sites

It will be important in the coming years to quickly translate research to application to combat effects of climate warming

UArizona Center for Environmentally Sustainable Mining https://cesm.arizona.edu/

<u>Translating Innovation into Practice</u> through development of environmental educational and research initiatives related to mining activities in arid and semi-arid environments

Key components:

- Advised by a technical advisory committee (TAC)
- Provides student training
- Bidirectional research translation to the mining industry
- Neutral tech transfer to policy makers and regulators

Faculty

Dr. Alicja Babst-Kostecka
Dr. Albert Barberan

Dr. Eric Betterton

Dr. Bradley Butterfield (NAU)

Dr. Jon Chorover Dr. Elise Gornish

Dr. Julie Neilson

Dr. Robert Root

Dr. Eduardo Saez

Dr. Julian Schroeder (UCSD)

Staff, Post-Docs, Students

Alaina Adel

Mary K. Amistadi

Travis Borillo

Lauren Bozeman

Dr. Yongjian Chen

Dr. Janae Csavina

Omar Felix

Catherine Fontana

Jason Field Ariel Friel

Emalee Eisenhauer

Dr. Asma El Ouni

Xiaodong Gao

Dr. Juliana Gil-Loaiza

Catherine Gullo

Zhilin Guo

Dr. Corin Hammond

Gail Heath

Dr. Sarah Hayes

Dr. David Hogan John Hottenstein

Dr. Linnea Honeker

Shannon Heuberger

Dr. Lydia Jennings

Shuqiong Kong

Dr. Priyanka Kushwaha

Jessica Ledesma

Viviana Llano

Billy Linker

Karis Nelson

Lia Ossanna

Shawn A. Pedron

Michael Pohlmann

Diego Quintero

Benjamin Rivera

Mackenzie Russell

ACKNOWLEDGMENTS

Richard Rushforth

Yiamar Rivera

Karen Serrano

William J. Scott

Harrison Smith

Miranda Song

Mira Theilmann

Alexis Valentin

Sonny Wang

Yadi Wang

Qi Yu

Scott White

Lane D. Undhjem

Kayla M. Virgone

<u>Funding</u>

Amer Soc Microbiology Undergrad Research Fellowship

Arizona Technology and Research Initiative Fund (TRIF)

ASARCO Mission Mine

BHP Copper, Inc

KGHM Carlota Copper Company

Resolution Copper Mining, LLC

UA Undergraduate Biology Research Program

NIEHS Superfund Research Program Grant P42 ES04940

NIH EHS TRUE (Undergraduate Research Experiences)

NSF Graduate Research Fellowship Program

<u>Partners</u>

Arizona Department of Environmental Quality

Arizona Department of Health Services

ATSDR Region 9

EPA Region 9

Jesse Dillon/Cedar Creek Associates

North American Industries, Stephan Schuchardt

