

SCHOOL OF PUBLIC HEALTH

Powerful ideas for a healthier world

Impacts of Global Change on Cycling and Bioaccumulation of Anthropogenic Pollutants

SRP Risk e-Learning Webinar Series: Climate Change and Health

Elsie M. Sunderland

November 4, 2022

Biogeochemistry of Global Contaminants HARVARD

Bioaccumulation results in magnification of chemical concentrations at each trophic level in a food web

Concentrations are 10⁶-10⁷x water

- Neurotoxicant
- Increased risk of cardiovascular disease
- Endocrine disruptor
- Immunotoxicant

CH₃Hg methylmercury

water

methylmercury concentration

Societal Costs of methymercury exposure in US are large:

https://www.hsph.harvard.edu/c-change/news/mercury-emissions-reductions/

Research Question

- How are climate-driven changes affecting the distribution and bioaccumulation of:
- Mercury (Hg)
- Polychlorinated biphenyls (PCBs)
- Perfluorooctane sulfonate (PFOS)

Global environmental quality affects chemical exposures from your food

What does the future hold?

Global mercury emissions roughly constant ca. 2010

Total Deposition 10 15 20 25 30 35 $(\mu g m^{-2} y^{-1})$ **EGU Deposition** 0.01 0.10 1.0 10 $(\mu g m^{-2} y^{-1})$

2010

2020

Arctic region is particularly vulnerable to climate driven changes

Warming 2 x Global Average

Melting Permafrost

Loss of Sea Ice

Modeled (MITgcm) Hg inputs to the Arctic Ocean from rivers

Vulnerable Human Populations

Fisher et al., 2012; 2013; Zhang et al., 2015; Soerensen et al., 2016, Sonke et al., 2019; Zolkos et al., 2022

Melting permafrost and wildfires in the Arctic expected to have large impacts on the global Hg cycle

Fig. 2 Annual net elemental mercury (Hg⁰) flux into the atmosphere. The net flux is Hg⁰ evasion into the atmosphere minus Hg⁰ deposition from the atmosphere, summed across all permafrost regions. The shaded areas represent uncertainty in the net Hg⁰ flux and the dashed line represents current global anthropogenic emissions.

Stronger affinity of PCBs for particles than Hg leads to more rapid accumulation in the deep ocean

- 209 congeners; carcinogenic, neurotoxic
- Extremely hydrophobic
- Strong affinity for particles
- Variable volatility depending on MW

Log K_{oc} CB 153: 5.8-8.3 Log K_d Hg: ~4-6

Relative enrichment of volatile congeners in the Arctic sustaining biological concentrations 30 years after ban

Sea-ice melt enhancing modeled concentrations of PCBs in some regions of the Arctic

Difference between simulated concentrations of chlorinated biphenyl 153 (CB-153) with constant 1992-1996 meteorology and 1992 to 2015 meteorology

Wagner et al., 2019

Parent chemical to perfluorooctane sulfonate (PFOS) phased out by 3M between 2000-2002

PFOS $log K_{oc} = 2.6$ $pK_{a} = -3$

Modeled PFOS in North Atlantic seawater (10 m)

X. Zhang et al., 2017

For chemicals like PFOS with weak sorption to organic carbon Weakened AMOC = >>>bioaccumulative contaminants to the Arctic

Rivers are a major source of nutrients to the marine environment

Effect of Phytoplankton Size on Methylmercury Uptake

Effect of DOC on Methylmercury Uptake

Impacts of shifts in DOC and nutrients are dampened in zooplankton due to competing intake vs. growth

Schartup et al., 2018

Seawater warming affects fish metabolism and growth, MeHg elimination, prey availability, and species habitat

Unprecedented warming in the Gulf of Maine

Large temperature driven fluctuations in MeHg concentrations in Atlantic bluefin tuna

Seawater warming affects fish metabolism and growth, MeHg elimination, prey availability, and species habitat

Summary

- Future increases in freshwater discharges likely to enhance direct inputs of contaminants to the ocean & increase stratification, leading to >> concentrations in biota
- Declines in sea-ice cover may lead to greater evasion and lower seawater concentrations of the most volatile compounds in the Arctic, redistribution to lower latitudes
- Climate driven changes in trophic structure and bioenergetics likely to exacerbate bioaccumulation of toxicants in predatory fish & marine mammals

Acknowledgements

- **BGC group members past and present**: Helen Amos, Prentiss Balcom, Ben Geyman, Hannah Horowitz, Miling Li, Asif Qureshi, Amina Schartup, Colin Thackray, Charlotte Wagner, Xianming Zhang, Yanxu Zhang, Scott Zolkos
- Many collaborators including: Daniel Jacob (Harvard), Dave Krabbenhoft (USGS), Rainer Lohmann (URI), Ann Pearson (Harvard), Kevin Schuster (CU Denver), David Streets (Argonne)

