Perinatal arsenic exposures

The long-term impact of perinatal exposures on the immune system and disease risk

Fenna Sillé, MS, PhD Johns Hopkins University School of Public Health Environmental Health & Engineering All human subject studies have been approved and conducted in accordance to both U.S. and Chile IRB All animal procedures have been approved and conducted in accordance with the JHU institutional ACUC

No Conflict of Interest

Immunomodulation

Adapted from: Casarett & Doull's Essentials of Toxicology, 2010. 2nd edition (Klaassen CD, Watkins JB, eds) New York: McGraw-Hill. ISBN – 978-0-07-162240-0

Perinatal windows of susceptibility

Early-life exposures to environmental factors

Environmental exposures during pregnancy: Mechanistic effects on immunity, Rychlik K., & Sillé, F. Birth Defects Research Vol. 111; 4: 178-196, 2019

Early-life exposures to environmental factors

Environmental exposures during pregnancy: Mechanistic effects on immunity, Rychlik K., & Sillé, F. Birth Defects Research Vol. 111; 4: 178-196, 2019

Developmental immunotoxicity (DIT): windows of susceptibility

Gestation				Lactation				
Immune Maturation Events					Immune Maturation Events			
Gestation Length	1. Initiation of Hema- topoiesis	2. Migration of Stem Cells and Expansion of	3. Colonization of Bone marrow and Thymus itor se: Rat/Mouse: Birth- GD 11	Lactation Timing	4. Maturation to Immuno- competence		5. Establishment o Immune Memory	
		Progenitor Cells		Rat/Mouse: Birth - PND21	Rat/Mou: Birth – P	se: ND21	-	
Rat average: 22 days Mouse average: 20 days	Rat/Mouse: GD 7-9	Rat/Mouse: GD 9-16		Human: Human: Birth to ~ 6 Birth - 1 wk up to		an: Human: 1 – 1 yr 1-3 yrs		
Human average: 40 weeks	Human: GW 8-10	Human: GW 10-16	Human: Birth – GW 16	3 yrs*				
	Pre-Pube	scent			Po	st-Puberty	:	
	Imm	une Maturatio	n Events			Immune	Maturation Events	
Pre-Pubescent Tim	ling 4 Matura Immu compe	tion to Euno- etence	5. Post-Pu stablishment of Immune Memory		erty Timing Esta		5. blishment of Immune Memory	
			251	>~ 6 weeks rat (~PND42) >~ 4-5 weeks mouse (varies by strain)		Rat/Mouse: > PND60		
~6 weeks rat (~PND42) ~4-5 weeks mous (varies by strain)	Rat/Mou PND21 - PND30	se: Rat PNI	/Mouse: D30 - PND60	> ~ 6 weeks ra (~PND42) > ~ 4-5 weeks (varies by stra	nt mouse in)	Rat/Mous	e: > PND60	

Current Status of Developmental Immunotoxicity: Early-Life Patterns and Testing, DeWitt, J., et al, Toxicologic Pathology, 40: 230-236, 2012

In utero and early life exposures to arsenic: Later life disease

Arsenic prevalence, exposure & disease

• US EPA & WHO drinking water standard = $10 \mu g/L$ (10 ppb)

Google Images, Wikimedia Commons

Schwarzenbach et al. (2010) Annual Review of Environment and Resources Vol. 35:109-136

Early-life exposure to arsenic in Chile

Ferreccio, C., et al. Epidemiology 2000; Smith, A., et al. EHP 2006 ; Yuan, Y., et al. Epidemiology 2010; Steinmaus, C., et al. CEBP 2013

Early-life exposure to arsenic in Chile – Later life disease

Ferreccio, C., et al. Epidemiology 2000; Smith, A., et al. EHP 2006 ; Yuan, Y., et al. Epidemiology 2010; Steinmaus, C., et al. CEBP 2013

Early-life exposure to arsenic in Chile – Later life disease

Ferreccio, C., et al. Epidemiology 2000; Smith, A., et al. EHP 2006 ; Yuan, Y., et al. Epidemiology 2010; Steinmaus, C., et al. CEBP 2013

Early-life exposure to arsenic in Chile – Lung cancer

Steinmaus, C. et al Cancer Epidemiol Biomarkers Prev. 2014 Aug;23(8):1529-38. and Smith, A., et al. J Natl Cancer Inst. 2018 Mar 1;110(3):241-249.

Steinmaus, C. et al Cancer Epidemiol Biomarkers Prev. 2014 Aug;23(8):1529-38. and Smith, A., et al. J Natl Cancer Inst. 2018 Mar 1;110(3):241-249.

Early-life exposure to arsenic in Chile + Obesity = high cancer risk

Environmental Research Volume 142, October 2015, Pages 594-601

Obesity and excess weight in early adulthood and 3 high risks of arsenic-related cancer in later life

Craig Steinmaus ^{a, b} & 편, Felicia Castriota ^c, Catterina Ferreccio ^d, Allan H. Smith ^a, Yan Yuan ^a, Jane Liaw ^a, Johanna Acevedo ^d, Liliana Pérez ^d, Rodrigo Meza ^e, Sergio Calcagno ^f, Ricardo Uauy ^{& h}, Martyn T. Smith ¹

Steinmaus et al, Environ Res. 2015 Oct;142:594-601.

Early-life exposure to arsenic in Chile – T2D

Environmental Research Volume 167, November 2018, Pages 248-254

Obesity and increased susceptibility to arsenicrelated type 2 diabetes in Northern Chile

Felicia Castriota ^a, Johanna Acevedo ^b, Catterina Ferreccio ^b, Allan H. Smith ^c, Jane Liaw ^c, Martyn T. Smith ^a, Craig Steinmaus ^{c, d} A 📾

Dark line represents the odds ratios. Shaded area represents the 95% confidence intervals. 10,000 µg/L is approximately the range between lower and upper tertile groups of arsenic exposure.

Castriota et al, Environ Res. 2018 Nov;167:248-254

Early-life exposure to arsenic in Chile – T2D

Environmental Research Volume 172, May 2019, Pages 578-585

Socioeconomic status and the association between arsenic exposure and type 2 diabetes

Stephanie M. Eick^a, Catterina Ferreccio^b, Johanna Acevedo^b, Felicia Castriota^c, José F. Cordero^a, Taehyun Roh^d, Allan H. Smith^d, Martyn T. Smith^c, Craig Steinmaus^{d, e} \otimes \boxtimes

Low SES

Eick et al, Environ Res. 2019 May;172:578-585.

Early-life exposure to arsenic in Chile – Later life TB

Smith, A., et al. EHP 2006; Smith, A. et al. Am. J. Epi. 2011

Early-life exposure to arsenic in Chile – Later life cytokine profiles

*External Exposure at Birth (ug/L)										
		Continuous Scaled per 200 ug/L				Categorical Low: <860 ug/L; High: 860 ug/L				
Cytokine**	% detec table	Unadjusted OR (95% CI)	p-value	Adjusted OR*** (95% CI)	p-value	Unadjusted OR (95% CI)	p-value	Adjusted OR*** (95% CI)	p-value	
MCP-1	100	0.06 (0.00, 0.11)	0.036	0.05 (-0.01, 0.10)	0.082	0.22 (-0.00, 0.44)	0.052	0.19 (-0.04, 0.42)	0.097	
IP-10	100	0.02 (-0.04, 0.08)	0.499	0.00 (-0.06, 0.06)	0.941	0.04 (-0.20, 0.28)	0.727	-0.03 (-0.27, 0.22)	0.830	
MIP-1-β	99	0.05 (-0.01, 0.11)	0.094	0.05 (-0.01, 0.11)	0.083	0.20 (-0.04, 0.45)	0.096	0.22 (-0.03, 0.46)	0.083	
Eotaxin-CCL-11	98	0.10 (-0.00, 0.21)	0.060	0.10 (-0.01, 0.21)	0.074	0.43 (0.00, 0.86)	0.049	0.44 (-0.01, 0.88)	0.056	
EGF	88	0.10 (-0.04, 0.25)	0.171	0.10 (-0.05, 0.25)	0.188	0.40 (-0.19, 0.99)	0.180	0.38 (-0.22, 0.98)	0.208	
IL-1Ra	85	0.06 (-0.06, 0.19)	0.329	0.09 (-0.03, 0.21)	0.150	0.27 (-0.24, 0.79)	0.296	0.40 (-0.10, 0.90)	0.116	
TNF-α	73	0.01 (-0.11, 0.12)	0.906	0.02 (-0.10, 0.14)	0.704	0.02 (-0.45, 0.48)	0.941	0.09 (-0.39, 0.57)	0.718	
IL-8	69	0.11 (-0.00, 0.23)	0.056	0.12 (0.00, 0.24)	0.047	0.40 (-0.07, 0.88)	0.097	0.45 (-0.04, 0.94)	0.072	
VEGF	61	-0.18 (-0.44, 0.08)	0.183	-0.17 (-0.44, 0.10)	0.223	-0.70 (-1.76, 0.37)	0.196	-0.65 (-1.77, 0.46)	0.248	
IL-15	59	0.05 (-0.09, 0.19)	0.503	0.08 (-0.06, 0.21)	0.265	0.22 (-0.35, 0.79)	0.446	0.33 (-0.22, 0.87)	0.235	
MIP-1-α	56	0.10 (0.01, 0.19)	0.039	0.12 (0.02, 0.21)	0.016	0.38 (-0.00, 0.76)	0.052	0.45 (0.07, 0.84)	0.022	
IL-5	46	0.08 (-0.05, 0.22)	0.218	0.11 (-0.02, 0.23)	0.093	0.34 (-0.20, 0.89)	0.213	0.44 (-0.07, 0.95)	0.088	
IL-12p40	44	0.04 (-0.11, 0.20)	0.600	0.08 (-0.08, 0.24)	0.316	0.23 (-0.40, 0.86)	0.470	0.40 (-0.24, 1.03)	0.216	
GM-CSF	42	0.05 (-0.06, 0.15)	0.375	0.06 (-0.05, 0.15)	0.279	0.26 (-0.15, 0.67)	0.209	0.30 (-0.10, 0.71)	0.140	
TNF-β	42	0.14 (-0.01, 0.28)	0.062	0.19 (0.05, 0.33)	0.010	0.54 (-0.04, 1.12)	0.066	0.78 (0.21, 1.35)	0.008	
IL-10	38	0.13 (-0.05, 0.30)	0.150	0.13 (-0.04, 0.31)	0.129	0.44 (-0.27, 1.14)	0.221	0.48 (-0.23, 1.18)	0.184	
IL-1-β	27	0.02 (-0.02, 0.07)	0.323	0.02 (-0.02, 0.07)	0.319	0.12 (-0.09, 0.32)	0.256	0.12 (-0.08, 0.31)	0.250	
IFN-a-2	23	0.09 (-0.03, 0.21)	0.122	0.08 (-0.04, 0.21)	0.191	0.39 (-0.09, 0.87)	0.113	0.34 (-0.17, 0.84)	0.187	
IL-6	21	0.05 (-0.02, 0.12)	0.126	0.06 (-0.01, 0.13)	0.094	0.24 (-0.04, 0.53)	0.094	0.26 (-0.02, 0.55)	0.072	
IL-2	19	0.02 (-0.05, 0.09)	0.571	0.01 (-0.06, 0.08)	0.784	0.09 (-0.18, 0.37)	0.497	0.06 (-0.23, 0.35)	0.672	
IL-12p70	18	0.01 (-0.03, 0.06)	0.527	0.02 (-0.03, 0.06)	0.509	0.08 (-0.11, 0.27)	0.402	0.09 (-0.11, 0.29)	0.369	
IL-13	17	0.07 (-0.03, 0.16)	0.152	0.08 (-0.01, 0.17)	0.084	0.28 (-0.10, 0.66)	0.152	0.33 (-0.05, 0.70)	0.088	
IFN-γ	13	-0.00 (-0.09, 0.08)	0.918	0.00 (-0.08, 0.08)	0.986	-0.02 (-0.36, 0.31)	0.891	-0.01 (-0.35, 0.34)	0.971	
G-CSF	6	0.09 (-0.03, 0.21)	0.149	0.11 (-0.01, 0.23)	0.073	0.40 (-0.08, 0.88)	0.103	0.49(0.00, 0.98)	0.048	
IL-4	5	-0.00 (-0.07, 0.07)	0.971	-0.00 (-0.08, 0.08)	0.965	0.03 (-0.27, 0.32)	0.864	0.02 (-0.29, 0.33)	0.889	
IL-17a	5	-0.02 (-0.08, 0.04)	0.610	-0.02 (-0.08, 0.05)	0.582	-0.06 (-0.30, 0.19)	0.651	-0.07 (-0.33, 0.19)	0.598	
IL-7	4	-0.01 (-0.04, 0.03)	0.606	-0.00 (-0.04, 0.03)	0.929	-0.02 (-0.16, 0.12)	0.748	0.01 (-0.14, 0.15)	0.916	

Grant-Alfieri, A., Zhang, H., et al, unpublished

In utero arsenic exposure model

In utero Arsenic Exposure Model

Kristal Rychlik, PhD

* *P* < 0.05

Rychlik & Sillé et al, unpublished

In utero Arsenic Exposure Model & Lung Function

		E B		8 8		
	Embryonic	Pseudoglandular	Canalicular	Sacular	Alveolar	Term
Human	Weeks 3-7	Weeks 5-17	Weeks 16-26	Weeks 24-38	Weeks 36 to 3 years	38 Weeks
Rat	E9-13	E13-18	E18-20	E20-T	T-PN28	22 Days
Mouse	E9-12	E12-17	E17-18	E18-PN5	PN5-28	20 Days

*E = Embryonic, PN = Postnatal, T = Term

Rychlik, Mitzner & Sillé et al, unpublished

Chapter 15 - Lung Development. Lin Liu et al. MicroRNA in Regenerative Medicine; 381-399; 2015

In utero Arsenic Exposure Model & Heart Injury

Rychlik, Kohr & Sillé et al, unpublished Heart Development. David J. McCulley, Brian L. Black, Current Topics in Developmental Biology, 2012

In utero Arsenic Exposure Model: serum cytokine changes

Rychlik & Sillé et al, unpublished

In utero Arsenic Exposure Model: Macrophage cytokines

i.u. iAs

Rychlik & Sillé et al, unpublished Two-way ANOVA with Tukey's Multiple Comparisons Test; N=3; P<0.03

In vitro models for *in utero* exposures to arsenic: Macrophages

Arsenic & macrophages

Hypothesis:

Early-life exposure to arsenic alters macrophage development & function causing increased disease later in life.

Evaluate function and polarization states of arsenicexposed macrophages

*Arsenic was added to culture either during or after differentiation in doses: 0, 0.01, 0.1, 1 μ M

Arsenic alters macrophage function

Illingworth & Sillé et al, unpublished

* *P* < 0.05

Arsenic alters cytokine/chemokine expression

Homeostasis

Mouse bone marrow Macrophages +/- 0.1 uM iAs M1: 100ng/mL LPS + 6.25 ng/mL IFNg M2: 20ng/mL IL-4 and IL-13

Signaling protein analysis

Sillé et al, unpublished

Arsenic alters cytokine/chemokine expression

Arsenic alters signaling lipids expression

Sillé et al, unpublished

Arsenic alters signaling lipids expression

Sillé et al, unpublished

PGE2/PGD2 = Prostaglandins; C16:0 S1P = sphingosine-1-phosphate; LPA= lysophosphatidic acid.

Arsenic & macrophages

In utero & early life arsenic: increased cytokine profiles, and increased mortality from immune-related diseases even >40 years later.

In utero (*P9-birth*) >> Reduced pro-inflammatory cytokines

In utero (P9-birth), no effect on ischemia

In utero (P9-birth), no effect on airway resistance

iAs-exposed during differentiation vs mature macrophages >> M1/M2 skewing >> Reduced pro-inflammatory cytokines >> Increased pro-inflammatory lipids

Google Images, Wikimedia Commons

Thank you!

- SILLÉ LAB @ JHU:
- ♦ Kristal Rychlik
- ♦ Sarah Attreed
- ♦ Emily Illingworth
- ♦ Tyrone Howard
- ♦ Jimmy Liao
- ♦ Sylvia SanchezAlumni:
- Donia Moustafa
- ♦ Han Zhang
- ♦ Ian Sanchez
- ♦ Chloe Kashiwagi

COLLABORATORS:

- Mark Kohr (JHU)
 - Ryne Venema
- Wayne Mitzner (JHU)
 - Jeff Loube

- Craig Steinmaus, MD, MPH (UC Berkeley)
 - Amelia Grant-Alfieri, MPH (U. Michigan)
- Catterina Ferreccio, MD, MPH (Pontificia Universidad Católica de Chile)
- Martyn Smith, PhD (UC Berkeley)
- Allan Smith, PhD (UC Berkeley)
- Daniel Nomura, PhD (UC Berkeley)

FUNDING:

- NIEHS ROOES024808 (F. Sillé)
- NIEHS 5T32HL007534-35 (E. Illingworth, K. Rychlik)
- NIHLBL 5T32HL007534-35 (S. Attreed)
- NIEHS SuperFund Grant # P42ES004705 (Steinmaus, C., Smith, M., Smith A.)

CONTACT:

FSILLE1@JHU.EDU

